Finite Kripke Models of HA are Locally PA

D. van DALEN, H. MULDER, E. C. W. KRABBE, and A. VISSE
It is well-known that $\|\cdot\|$ is cumulative, i.e., if $\alpha \vdash \phi$ then, for all β such that $\alpha \leq \beta$, $\beta \vdash \phi$.

Deletion of some (but not all) nodes from a Kripke model K again yields a Kripke model. It suffices to restrict \leq, D, and I to the remaining set of nodes. If $\alpha \in K$ then the model obtained by deleting all β such that $\alpha \leq \beta$ will be denoted as $K^\alpha (= \langle K^\alpha, \leq^\alpha, D^\alpha, I^\alpha \rangle)$, its relation of forcing as $\|_{\alpha}$. Obviously, for all $\beta \in K^\alpha$ and for all $\phi \in L_\beta$: $\beta \|_{\alpha} \phi$ iff $\beta \| \phi$.

A **classical node** in a Kripke model K is to be a node α of AT that forces all sentences $\forall x_1 \ldots \forall x_n (\phi \lor \neg \phi) \in L_\alpha$. We note the following properties of classical nodes:

1. The following conditions are equivalent:
 (i) α is a classical node
 (ii) α forces all sentences $\forall x_1 \ldots \forall x_n (\phi \lor \neg \phi) \in L$
 (iii) For all $\phi \in L_\alpha$ $\alpha \vdash \phi$ iff $\alpha \| \phi$.

2. All final nodes (i.e., nodes such that for no $\beta < \alpha$: $\alpha \leq \beta$) are classical.

3. If α is classical, so are all β such that $\alpha \leq \beta$.

4. Let L be the language of arithmetic. If α is classical and $\alpha \| \text{HA}$ then $\alpha \| \text{PA}$. Moreover M_α will be a Peano model.

Let ρ be any sentence of L. For each formula ϕ of L we can construct another formula, ϕ^ρ, by substituting $\phi^0 \lor \rho$ for each atomic component ϕ^0 of ϕ. The result, ϕ^ρ, is called the Friedman translation of ϕ by ρ in L. We write Γ^ρ for $\{ \phi^\rho | \phi \in \Gamma \}$. We shall exploit the following facts about Friedman translations (cf. [2]):

(A) $\rho \vdash \phi^\rho$.

(B) If $\Gamma \vdash \phi$ then $\Gamma^\rho \vdash \phi^\rho$.

(C) Let L be the language of arithmetic: if $\text{HA} \vdash \phi$ then $\text{HA} \vdash \phi^\rho$.

(D) Let L be the language of arithmetic, $\phi \in \Sigma_1^0$, then $\text{HA} \vdash \phi^\rho \iff (\phi \lor \rho)$.

2 Pruning

Definition 1 Let K be a Kripke model, ρ a sentence such that, for at least one node $\alpha \in K$, $\rho \in L_\alpha$ and $\alpha \| \rho$. Then the model obtained by **pruning** ρ-nodes from K shall be the model obtained from K by deleting all nodes that force ρ. This model will be denoted as $K^\rho (= \langle K^\rho, \leq^\rho, D^\rho, I^\rho \rangle)$, its forcing relation by $\|_{\rho}$.

First Pruning Lemma If $\beta \in K^\rho$ and $\phi, \rho \in L_\beta$ then: $\beta \| \phi^\rho$ iff $\beta \| \rho \phi$.

Proof: This is proved by induction on ϕ, the two relatively complex cases being '\rightarrow' and '∨'.

Case $\phi = \phi_1 \rightarrow \phi_2$. ($\Rightarrow$) Assume $\beta \|_{\rho} \phi_1 \rightarrow \phi_2$. Then, for some β' such that $\beta \leq_{\rho} \beta'$, $\beta' \|_{\rho} \phi_1$ and $\beta' \|_{\rho} \phi_2$. Obviously, $\beta \leq \beta'$ and $L_{\beta'} \subseteq L_\beta$, so ϕ_1, ϕ_2, $\rho \in L_{\beta'}$. By the induction hypothesis $\beta' \|_{\rho} \phi_1^\rho$ and $\beta' \|_{\rho} \phi_2^\rho$, whence it follows that $\beta' \|_{\rho} \phi_1^\rho \rightarrow \phi_2^\rho$, i.e., $\beta' \|_{\rho} (\phi_1 \rightarrow \phi_2)^\rho$.

(\Rightarrow) Assume $\beta \|_{\rho} (\phi_1 \rightarrow \phi_2)^\rho$, i.e., $\beta \|_{\rho} \phi_1^\rho \rightarrow \phi_2^\rho$. Then, for some β' such that $\beta \leq \beta'$, $\beta' \|_{\rho} \phi_1^\rho$ and $\beta' \|_{\rho} \phi_2^\rho$. Since $\rho \vdash \phi_2^\rho$ (fact A, Section 1), it follows
that $\beta' \Vert \rho$. Hence $\beta' \in K^\rho$ and $\beta \leq^\rho \beta'$. Obviously $\phi_1, \phi_2, \rho \in L_{\beta'}$, so we can apply the induction hypothesis to obtain $\beta' \Vert^\rho \phi_1$ and $\beta' \Vert^\rho \phi_2$, whence it follows that $\beta' \Vert^\rho \phi_1 \to \phi_2$.

Case $\phi = \forall x \phi_1$. (\Rightarrow) Assume $\beta \Vert^\rho \forall x \phi_1(x)$ (writing '$\phi_1(x)$' for 'ϕ_1'). Then, for some β' such that $\beta \leq^\rho \beta'$, and for some $c \in D_{\beta'}$, $\beta' \Vert^\rho \phi_1(c)$. Obviously, $\beta \leq \beta'$ and $\beta \in L_{\beta'}$, so $\forall x \phi_1, \rho \in L_{\beta'}$. Moreover $D_{\beta'} = D_{\beta'}$, so $c \in D_{\beta'}$ and $\phi_1(c) \in L_{\beta'}$. By the induction hypothesis $\beta' \Vert^\rho (\phi_1(c))^\rho$. Since ρ is a sentence, $(\phi_1(c))^\rho = (\phi_1)^{\{c/\}}$. It follows that $\beta \Vert^\rho \forall x(\phi_1)^{\{c/\}}$, i.e., $\beta \Vert^\rho (\forall x \phi_1)^\rho$.

(\Leftarrow) Assume $\beta \Vert (\forall x \phi_1)^\rho$, i.e., $\beta \Vert^\rho \forall x(\phi_1)^{\{c/\}}$. Then, for some β' such that $\beta \leq \beta'$, and for some $c \in D_{\beta'}$, $\beta' \Vert (\phi_1)^{\{c/\}}$, i.e., $\beta' \Vert (\phi_1(c))^\rho$. Since $\rho \vdash (\phi_1(c))^\rho$ (fact A), it follows that $\beta' \Vert \rho$. Hence $\beta' \in K^\rho$ and $\beta \leq^\rho \beta'$. Obviously, $(\phi_1(c)), \rho \in L_{\beta'}$, so we can apply the induction hypothesis to obtain $\beta' \Vert^\rho \phi_1(c)$. Since $c \in D_{\beta'} (=D_{\beta'})$, it follows that $\beta \Vert^\rho \forall x \phi_1$.

Second Pruning Lemma Let L be the language of arithmetic. If $\beta \in K^\rho$ and $\rho \in L_{\beta}$ and $\beta \vdash HA$ then $\beta \vdash^\rho HA$.

Proof: Assume $\beta \in K^\rho$, $\rho \in L_{\beta}$, $\beta \vdash HA$. Let ϕ be any theorem of HA. Since $HA \vdash \phi$ (fact C), it follows that $\beta \vdash \phi$. According to the first pruning lemma and $\phi \in L_{\beta}$, $\beta \vdash^\rho \phi$. Hence $\beta \vdash^\rho HA$.

3 Spotting Peano models From now on we shall assume that L is (any suitable variant or extension of) the language of arithmetic.

Theorem 1 The local models in finite Kripke models of Heyting arithmetic are Peano models.

Proof: Let K be a finite Kripke model, $\alpha \in K$, $\alpha \vdash HA$. Avoiding α, we shall apply several prunings to K. Construct a sequence of models $K^{(0)}, \ldots, K^{(n)}$ as follows. Let $K^{(0)}$ be K. Let $K^{(i)}$ be given and assume $\alpha \in K^{(i)}$. If there is a sentence $\rho \in L_{\beta}^\rho$ such that $\alpha \vdash^\rho \rho$ whereas some $\beta \in K^{(i)}$ can be found such that $\beta \vdash^\rho \rho$, take any such β and let $K^{(i+1)}$ be the model obtained by pruning ρ-nodes from $K^{(i)}$. Otherwise, if there is no such ρ, the construction will halt. Let n be the stage where the process halts.

Claim α is a classical node in $K^{(n)}$. For, let ρ be any sentence $\forall x_1 \ldots \forall x_n (\phi \lor \neg \phi) \in L_{\beta}^\rho$. Let β be some final node such that $\alpha \leq \beta$. β is classical (fact 2, Section 1) and $L_{\beta}^{(n)} \subseteq L_{\beta}^\rho$. Hence $\beta \vdash^\rho \rho$, and by definition of $n \alpha \vdash^\rho \rho$. Further, it follows from $\alpha \vdash HA$, by the second pruning lemma, that $\alpha \vdash^\rho HA$ (for all $1 \leq i \leq n$). Hence $M_{\alpha}^{(n)}$ will be a Peano model (fact 4). But $M_{\alpha}^{(n)} = M_\alpha$.

Corollary Let α be a node in a Kripke model K such that $\alpha \vdash HA$. Let K^α be finite. Then M_α is a Peano model.

There seem to be no straightforward extensions of this result to infinite Kripke models. However, if the underlying structure is of type ω, we have:

Theorem 2 A Kripke model of HA over ω (with its natural order) contains infinitely many local Peano models.

Proof: Let $K = \langle \omega, \leq, D, I \rangle$ be a Kripke model of HA (i.e., for each $n \in \omega$, $n \vdash HA$), where \leq is the natural ordering on ω.
Case 1. Let \(K \) contain a classical node \(n \). Then all \(m > n \) will be classical as well (fact 3, Section 1). For each such \(m \), since \(m \vDash \text{HA} \), \(M_n \) will be a Peano model (fact 4).

Case 2. Let \(K \) contain no classical nodes. Consider the set \(A = \{ n \mid n \in \omega \text{ and for all } \phi \in L_n : n + 1 \vDash \phi \text{ then } n \vDash \phi \} \). We shall first show that

(i) \(\omega \sim A \) is infinite.

Suppose \(\omega \sim A \) were finite. Let \(n \) be such that, for all \(m \geq n, m \in A \). Since \(n \) is not classical, there is a sentence \(\forall x_1 \ldots \forall x_r (\phi \vee \neg \phi) \in L_n \) such that \(n \not\vDash \forall x_1 \ldots \forall x_r (\phi \vee \neg \phi). \) Hence, for some \(m \geq n \) and for certain \(c_1, \ldots, c_r \in D_m, m \vDash \phi(c_1 \ldots c_r) \vee \neg \phi(c_1 \ldots c_r). \) Then \(m \vDash \phi' \) and \(m \not\vDash \neg \phi' \). Hence, for some \(k > m, k \vDash \phi' \). Let \(k^* \) be minimal with the property: \(k^* > m, k^* \vDash \phi' \). Then \(k^* - 1 \not\vDash \phi' \) and \(k^* - 1 \geq m \geq n \). Since \(\phi' \in L_{k^* - 1} \), it follows that \(k^* - 1 \in \omega \sim A \), contradicting the choice of \(n \). Therefore (i) holds.

Let \(K^- (= (K^-, \leq^-, D^-, I^-)) \) be the model obtained from \(K \) by deleting all nodes in \(A \). Forcing in \(K^- \) will be denoted by \(\vDash^- \). It can be shown, by a simultaneous induction on \(\phi \) for all \(n \in K^- \), that the following holds:

(ii) For all \(n \in K^-, \phi \in L_n, n \vDash \phi \) iff \(n \not\vDash \phi \).

We consider the case of the implication.

\(\phi = \phi_1 \rightarrow \phi_2. \) (\(\rightarrow \)) Assume \(n \not\vDash \phi_1 \rightarrow \phi_2 \). Then, for some \(m \) such that \(n \leq^-, m, m \vDash \phi_1 \) and \(m \not\vDash \phi_2 \). Obviously \(n \leq m \) and \(\phi_1, \phi_2 \in L_m \). According to the induction hypothesis \(m \vDash \phi_1 \) and \(m \not\vDash \phi_2 \). Hence \(n \not\vDash \phi_1 \rightarrow \phi_2 \).

(\(\rightarrow \)) Assume \(n \not\vDash \phi_1 \rightarrow \phi_2 \). Then, for some \(m \), such that \(n \leq m, m \not\vDash \phi_1 \) and \(m \vDash \phi_2 \). Suppose first that \(m \in K^- \). Since \(\phi_1, \phi_2 \in L_m \), it follows by the induction hypothesis that \(m \vDash \phi_1 \) and \(m \not\vDash \phi_2 \). Obviously \(n \leq m \), so \(n \not\vDash \phi_1 \rightarrow \phi_2 \). Now suppose that \(m \notin K^- \). Since (i) holds there is a \(k > m \) such that \(k \in K^- \). Let \(k^* \) be minimal with that property: \(k^* > m, k^* \in K^- \). Then, for all \(k \) such that \(m \leq k < k^* \), \(k \in A \) and also \(\phi_2 \in L_k \). By definition of \(A \) the following holds: if \(k \not\vDash \phi_2 \) then \(k + 1 \not\vDash \phi_2 \). Hence, since \(m \not\vDash \phi_2 \), \(k^* \not\vDash \phi_2 \). On the other hand \(k^* \vDash \phi_1 \) (cumulation). Since \(\phi_1, \phi_2 \in L_{k^*} \), it follows by the induction hypothesis that \(k^* \vDash \phi_1 \) and \(k^* \not\vDash \phi_2 \). Since obviously \(n \leq k^* \) we may conclude that \(n \not\vDash \phi_1 \rightarrow \phi_2 \). The case \(\phi = \forall x \phi_1 \) can be treated similarly, whereas the other cases are even simpler. So (ii) holds.

An immediate consequence of (ii) is that for each node \(n \in K^- \), \(n \not\vDash \text{HA} \). We shall now show that \(M_n \) is a Peano model. Since \(n \notin A \), there is a sentence \(\rho \in L_n^-(=L_n) \) such that \(n \not\vDash \rho \) and \(n + 1 \vDash \rho \). According to (ii) \(n \not\vDash \rho \), hence the model \(K^- \rho \) exists and contains \(n \). By the second pruning lemma it follows that \(n \not\vDash-\rho \text{HA} \). Moreover \(n \) is a final node of \(K^- \rho \). For if \(n <^-, m \) it follows that \(n + 1 \leq m \), therefore \(m \vDash \rho \) (cumulation) and by (ii) \(m \not\vDash-\rho \). Hence \(m \) will be pruned away. Since \(n \) is final it is classical in \(K^- \rho \) (fact 2, Section 1) and so \(M_{n^-} \) is a Peano model (fact 4). But \(M_n = M_{n^-} \rho \), hence each of the infinitely many \(M_n \) such that \(n \in K^- \) is a Peano model.

4 Other applications of pruning Friedman's proof of Markov's rule (MR) (cf. Friedman, [2]) has a model theoretic version.
MR Let $\phi \in \Sigma^0_1$. Then $\text{HA} \vdash \forall x_1 \ldots \forall x_n \neg \neg \phi \rightarrow \text{HA} \vdash \forall x_1 \ldots \forall x_n \phi$.

Proof: Assume $\phi_0 \in \Sigma^0_1$, $\text{HA} \vdash \forall x_1 \ldots \forall x_n \neg \neg \phi_0$, but $\text{HA} \nvdash \forall x_1 \ldots \forall x_n \phi_0$. By the completeness theorem there is a Kripke model K of HA with a node α such that $\alpha \not\Vdash \forall x_1 \ldots \forall x_n \phi_0$. Therefore, K contains a node β such that, for certain $c_1, \ldots, c_n \in D_\beta$, $\beta \Vdash \phi_0(c_1, \ldots, c_n)$. Put $\phi = \phi_0(c_1, \ldots, c_n)$, then $\phi \in L_\beta$ and $\beta \Vdash \phi$. Hence K^ϕ exists and $\beta \in K^\phi$. According to the second pruning lemma, $\beta \Vdash \phi$. Consequently $\beta \Vdash \neg \neg \phi$ and there is some $\gamma \in K^\phi$ such that $\gamma \Vdash \phi$. By the first pruning lemma $\gamma \Vdash \phi$. Since $\phi \in \Sigma^0_1$, ϕ is equivalent to $\phi \lor \phi$ in HA (fact D, Section 1). Since $\gamma \Vdash \text{HA}$, $\gamma \Vdash \phi \lor \phi$. Therefore $\gamma \Vdash \phi$. This means that γ must have been pruned away, contradicting $\gamma \in K^\phi$.

In the same way we can formulate a model-theoretic version of Visser’s proof of the following (cf. [4]):

VR Let $\phi \in \Sigma^0_1$. Then $\text{HA} \vdash \forall x_1 \ldots \forall x_n (\neg \neg \phi \rightarrow \phi)$ implies $\text{HA} \vdash \forall x_1 \ldots \forall x_n (\phi \lor \neg \phi)$.

Proof: Assume $\phi_0 \in \Sigma^0_1$, $\text{HA} \vdash \forall x_1 \ldots \forall x_n (\neg \neg \phi_0 \rightarrow \phi_0)$, but $\text{HA} \nvdash \forall x_1 \ldots \forall x_n (\phi_0 \lor \neg \phi_0)$. By the completeness theorem there is a Kripke model K of HA with a node α such that $\alpha \not\Vdash \forall x_1 \ldots \forall x_n (\phi_0 \lor \neg \phi_0)$. Therefore, K contains a node β such that for certain $c_1, \ldots, c_n \in D_\beta$, $\beta \Vdash \phi_0 \lor \neg \phi$, where $\phi = \phi_0(c_1, \ldots, c_n)$. Certainly, $\neg \phi \in L_\beta$ and $\beta \not\Vdash \neg \phi$, hence $K^{\neg \phi}$ exists and $\beta \in K^{\neg \phi}$. According to the second pruning lemma $\beta \Vdash \neg \neg \phi$, so $\beta \Vdash \neg \neg \phi \rightarrow \phi$. Consider any $\gamma \in K^{\neg \phi}$ such that $\beta \leq^{\neg \phi} \gamma$. For such γ: $\gamma \Vdash \neg \phi$, whereas $\neg \phi \in L_\gamma$, therefore there is some γ' such that $\gamma \leq \gamma'$ and $\gamma' \Vdash \phi$. Since $\gamma' \Vdash \neg \phi$ it follows that $\gamma' \in K^{\neg \phi}$ and $\gamma \leq^{\neg \phi} \gamma'$. Obviously, $\gamma' \Vdash \phi \lor \neg \phi$. Since $\phi \in \Sigma^0_1$, $\phi \lor \neg \phi$ is equivalent to $\phi^{\neg \phi}$ in HA (fact D). By the first pruning lemma $\gamma' \Vdash \neg \neg \phi$. Therefore $\gamma' \Vdash \neg \phi$. Since this holds for any γ such that $\beta \leq^{\neg \phi} \gamma$ we can conclude that $\beta \Vdash \neg \neg \phi$ and therefore $\beta \Vdash \neg \phi$. Applying the first pruning lemma once more we get $\beta \Vdash \phi^{\neg \phi}$, and, again by fact D, $\beta \Vdash \phi \lor \neg \phi$, a contradiction.

REFERENCES

