
Notre Dame Journal of Formal Logic 483
Volume 27, Number 4, October 1986

Gentzen Systems, Resolution, and Literal Trees

DANIEL J. DOUGHERTY*

1 Introduction We are concerned with the relationship between various
proof systems for propositional logic, with particular emphasis on the size of
derivations. Two traditional systems, Gentzen's sequent calculus, and Robinson's
resolution method, are investigated by introducing a (somewhat) new formal-
ism, which may be viewed as a common generalization.

Cook and Reckhow, in [4] and [5], studied many logical calculi, including
resolution and Gentzen systems, viewing these as nondeterministic algorithms,
and reported polynomial time simulation results among certain systems. Both
[4] and [5] contain discussions of the connection with computational complexity.
More recently, Haken, in his thesis [8], showed that resolution is not a polynomi-
ally bounded system. Our emphasis here is on the structure of the derivations
themselves, and upon obtaining inference-by-inference transformations, usually
preserving the relation of subderivation. Our notation is as follows:

Propositional Logic: We assume an infinite set of literals /?,; these come
in complementary pairs, the complement of p is denoted p. Formulas are
defined as follows: a literal is a formula, and if A\,... ,Ak are distinct for-
mulas, then A{A{,... ,Ak} and y{Au . . . 9Ak} are formulas. We sometimes
write A\ Λ . . . Λ Ak and Ax v . . . v Ak. A disjunction of literals v{pι,... ,pk} is
a clause; it is convenient to refer to a clause by juxtaposing its literals:

PiPi- - >Pk-
The negation -A of a formula A is defined by induction: if A is a literal,

then -A is A; if A is Λ{AI, . . . ,Ak}, then -A is v{~Aχ9... 9~Ak}; if A is
v{Au.. .9Ak}9 then ~A is Λ{~V415. . .,~Ak}.

All of the systems we consider are refutation systems, that is, they dem-
onstrate unsatisfiability, usually of sets of clauses. We will, however, use the
terms proof, refutation, and derivation synonymously to refer to objects in these
systems.

Trees: Our trees are finite, rooted trees, which we draw branching down-
ward. If N~ is on the path from the root to N+

9 N~ Φ N+, we say N+ lies
below N~, and write N~ < N+. If N+ lies immediately below TV", we say that

*This is a portion of the author's Ph.D. dissertation, written under the direction of Prof.
James C. Owings, at the University of Maryland. Partial support was provided by NSF
Grant MCS-7919418.

Received May 14, 1984; revised March 22, 1985

484 DANIEL J. DOUGHERTY

TV+ is a child of TV~. If Nx and TV2 are children of the same node, we say they
are adjacent. If TV is any node, adj(N) = {TV' :Np is adjacent to TV}. Note that
NGadj(N).

A leaf node is a node with no children; an interior node is a nonleaf node.
We will make constant use of the following conventions when discussing

nodes. The letter K will name "conjunctive" nodes, these will have exactly one
child K\. The letter D will stand for a "disjunctive" node; with children
Du... ,Dk, k > 1. Certain nodes with precisely two children will be "cut-
nodes"; the letter X will always denote one of these, with children Xx and X2.
Leaf nodes will be called L. Arbitrary nodes will be designated by N or M.

A path is a sequence of nodes (N\,... ,Nk) such that TV/+1 is a child of TV/,
1 < i < k — 1. A branch is a path with Nx = root, and TV̂ a leaf node. If TV is
any node, the subtree generated by TV is the subgraph determined by TV and all
the nodes below TV.

We will usually be considering pairs of the form (Γ, h), where h is a func-
tion defined on nodes of Γ, sometimes just the nonroot nodes. In this case, we
define Sub(N) to be the pair (Γ', Λ')> where T' is the subtree generated by TV,
and h' is the restriction of h to 7", with the understanding that if h was not
defined for the root of Γ, then h' is not defined for TV. Thus Sub(N) is an
object of the same type as (Γ, h).

2 Literal trees and resolution

2.1 Definition A literal tree is a pair 3 = (Γ, /), where 3 is a tree and /
maps nonroot nodes of Γ t o literals. If X is a node with precisely two children,
Xι and X2i with l(X\) = l(X2), then JΠs a cut node. If TV is not a cut node and
Nι,...,Nkare the children of TV, then the clause v{/(TV!),... J(Nk)} occurs on
3. If S is the collection of clauses occurring on 3, then 3 is a literal tree for S.
If Π is a branch of 3, ending in L, then Π is closed if for some TV on Π, /(TV) =
l(L). 3 is closed if each of its branches closes.

A branch of a literal tree may have more than one pair of complementary
literals —we only insist that the leaf node find its literal complemented above it.

We will occasionally speak of " the node/?" when we mean a particular
node TV that /(TV) = p. However, since / need not be one-to-one, we usually
must be careful to distinguish between TV and /(TV).

The following characterization of the set of clauses occurring on 3 is con-
venient. We simultaneously define the set of clauses Occ(TV), for each node TV:

(1) Occ(L) = l(L)
(2) Occ(X) = Occ{Xx) U Occ(X2)

(3) Occ{D) = U {Occ(A)} U {v{/(A)}}

Then Occ(N) is the set of clauses occurring on Sub(N), and we define Occ(3)
to be Occ(root of T).

2.2 Theorem Let S be α set of clauses. Then S is unsatisfiable iff there exists
a closed literal tree for a subset of S.

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 485

Proof: Suppose S is unsatisfiable. The full binary tree of truth assignments to
the atoms in S is such that for each branch of the tree there is a clause in S, all
of whose literals are complemented in the branch. Thus, we can build a closed
tree by appending a suitable clause to the end of each branch.

If S is satisfiable, and 3 is any literal tree for S, we can construct an open
branch through 3 by choosing a literal from the successful truth assignment for
S at each level.

2.3 Definition Let 3 = (Γ, /) be a literal tree, and let M, TV be nodes of T.
If the subliteral trees generated by M and TV are isomorphic, we say that M and
TV are equivalent, and write M — TV.

Thus, M ^ TV if the patterns of nodes and the associated literals below M
and TV are the same, but it is not required that /(M) = /(TV) in 3. Since literal
trees do not assign literals to their roots, /(TV) is irrelevant to the subliteral tree
generated by TV.

The above relation — is clearly an equivalence relation.

2.4 Definition If 3 = (Γ, /) is a literal tree,
(i) | 3 | = the number of interior nodes of T.

(ii) #3 = the number of — equivalence classes of interior nodes of T.

We have chosen to count only the interior nodes of trees, to facilitate com-
parison with other systems. The total number of nodes in a tree is then bounded
by Λ | 3 | , where n is the length of the longest clause in S. If one has a complexity-
theoretic interest in proof systems as nondeterministic algorithms, it is worth
recalling here that any set of clauses can be transformed into a set with three
literals per clause, with a linear change in the length of the set, without affect-
ing satisfiability.

2.5 Definition
(i) An analytic literal tree is a literal tree with no cut nodes,

(ii) A cut tree is a literal tree such that for all interior nodes TV, either TV is a
cut node, or all of TV's children are leaves,

(iii) A regular literal tree is one for which, in any path, Nx Φ TV2 implies l(Nγ) Φ

KN2).

The tree constructed in the proof of Theorem 2.2 is a regular cut tree. In
general, a branch Π in a literal tree for S may be regarded as a potential (par-
tial) truth assignment for 5. If the leaf-literal of Π finds its complement above
it, then Π is abandoned as a candidate for satisfying S. An irregular tree 3 is sim-
ply one in which certain branches contain redundant occurrences of literals. An
irregular cut tree 3 can actually have branches which contain complementary
pairs of literals (recall that a branch is closed only if its leaf literal is comple-
mented above; if we are building a tree, we do not necessarily terminate a branch
when we come to a literal whose complement appears above). For example, if
3 is a cut tree with a branch containing the literal p twice, then the lower occur-
rence of p will be adjacent to a p, which is indeed a descendant of p, and is
not, in general, a leaf-literal. In this case, one of the branches of 3 corresponds
to a contradictory "truth assignment".

486 DANIEL J. DOUGHERTY

In fact, it will be shown later in this chapter that "irregularities" of this type
can be removed from a tree 3 without increasing |3| , but there is evidence that
regular trees are not minimal with respect to #-size. At present, there is no
known method of removing irregularities without increasing the #-size. This is
discussed further below.

As an example, let 6 be the set of clauses {p, pq, rx, qx, qr} and let 3 be
the closed literal tree for C shown in Figure 1.

The node labeled q is a cut node, and the two nodes labeled x are equiv-
alent. The tree is not regular, because of the branch with labels q, x, x, x. We
have |3| =7 , #3 = 6.

A cut node in a literal tree is reminiscent of a cut-inference in a Gentzen-
style derivation. (The correspondence between literal trees and Gentzen systems
is explored fully in Section 3.) A cut-elimination theorem for literal trees is
obtained as follows.

2.6 Theorem If a set of clauses S is unsatisfiable, then there exists an ana-
lytic closed literal tree for S.

Proof: Let 3 be a closed literal tree for S. The proof is by induction on the num-
ber of — equivalence classes of cut nodes in 3; we give a procedure for eliminat-
ing these as follows:

Let X be a cut node such that no X' — X has a cut node above it; say that
l(X\) =p, l{Xi) = A a nd let 3i be the subtree generated by/?, 32 generated by
P-

Form the new tree 3' as follows. If L is a leaf node of 3 which is below
X2, with l(L) = /?, call L an orphan. Now delete X\ and X2, letting the new
children of X be the old children of X2, and attach a copy of 3! below each

(3)./ \ , < 4 >

p x' x ^ '

(1) / \ / \
r x q x

q f q x

Figure 1

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 487

orphan. For any X' — X, perform the same procedure. We have eliminated all
occurrences of nodes equivalent to X9 and have not introduced any new
#~classes of cut nodes (by the choice of X, if two cut nodes were ~ in 3, they
are ~ in 3'). It remains to show that 3' is closed.

Let L be a leaf node of 3'. If L was a leaf node of 3 originally, then L is
not one of the Lh thus l(L) is not /?. But the only change in the set of literals
above L is the deletion of the/? node. Thus l(L) is still above L in 3', and the
branch ending in L closes. If L was a leaf node from 3! in 3, then the set of
literals above L in 3' contains those above L in 3 (recall that copies of 3i are
attached below occurrences of/?), so again l(L) lies above L in 3'.

In general, the construction above will increase both the | | and #-measure
of tree size. It will follow from later results that cut-trees are actually the trees
of minimal | | and #-size (to within a factor of 2). The remarks following Corol-
lary 3.26 contain the implications of this for Gentzen system derivations.

Analytic literal trees are, of course, special sorts of analytic tableaux, which
were devised independently by Beth [1], Hintikka [9], and Schutte [14] and were
developed and streamlined by Smullyan [15].

2.7 Definition The resolution rule is the following rule of inference: From
clauses p U Q and p U C2, infer Cx U C2. The clause Cx U C2 is the resolvent
of p U C\ and p U C2, and p is the literal resolved upon. If both Cλ and C2 are
empty, then the resolvent (of p and p) is the empty clause D.

Let S be a set of clauses. A resolution refutation of S is a pair (R = (Γ, c),
where Γis a binary tree and c maps nodes of Γto clauses, such that

(i) {c(Z,):L is a leaf of T} ς 5 ,
(ii) c(root) = D,

(iii) if N is the parent of Nx and N2, then c(N) is a resolvent of c(Nχ) and
c{N2),

(iv) if c(7V) = c(N'), then the subderivations generated by TV and N' are iso-
morphic.

We will also refer to such an (R as a resolution proof of S.
A proof procedure based on resolution was introduced by Robinson [12]

as a means of verifying the unsatisfiability of sets of clauses in the predicate cal-
culus, and as such is the basis of much automatic theorem proving (see, for
example, [3]).

2.8 Theorem Let S be a set of clauses. Then S is unsatisfiable iff there exists
a resolution refutation of S.

Proof: See, e.g., [3]. An alternate proof is implicit in Theorems 2.10 and 2.12
below.

2.9 Definition Let (R = (T, c) be a resolution proof.
(i) |(R| = the number of interior nodes of T. This is the number of inferences

in (R.
(ii) #(R = the number of distinct clauses appearing among the interior nodes.

This equals the number of distinct inferences in the proof.

Figure 2 gives an example of a resolution proof.

488 DANIEL J. DOUGHERTY

2.10 Theorem Let 3 = (Γ, /) be a closed literal tree for S. Then there exists
a resolution refutation (R = Res(3), of S with |(R| < | 3 | and #(R < #3.

Proof: The proof is by induction on #3.
When #3 = 1, then 3 is of the form:

P

P

Thus | 3 | = 1, 5 is {/?, p}, and we can let (R = Res(3) be the following proof,
with |(R| = 1 and#(R = 1:

D

P P

Now, suppose #3 > 1, and let S be the set of clauses occurring on 3. We
construct a closed literal tree 3i for a set of clauses S\, such that

(i) I3J < | 3 | , #3X < #3,
(ii) Si = S or Si is obtained from S by one resolution inference.

This will establish, by induction, the existence of a resolution proof (R of S, with
|(R| < | 3 | a n d # (R < # 3 .

Let p be any leaf node such that its adjacent nodes are also leaves. Let
C-P\Pi.. -Pk be the clause in S consisting of p and its adjacent literals. Now
let pio be the lowest node in the path through p which is complementary to one
of the ph and let c~ = {piQ9 rx,...,η) be the clause given by pio and its adja-
cent nodes. Let TV be the parent node of the literals in c~:

N

Pio r i rJ

P\ Pio.. Pκ

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 489

To construct 3 1 } delete the nodep/0 and the subtree below it, and add new
children of TV corresponding to each /?/ from C which is not piQ nor is equal to
any of the η in C~. If N' is any other node of 3 with N - N'9 perform the
same operation below N'.

N

Pi'. PK, r\"'rj

Since the node pio is annihilated, |3i| < |3 | . Since all N' ~ N were treated
alike, # 3 ^ #3.

If N was a cut node of 3, then the new clause below N is simply C, thus
5] = S. If N was not a cut node, then C and C~ are clauses from S, and thus
Si is obtained from β by resolution.

It remains to see that 3i is closed. The only branches of 3! which are not
identical with branches of 3 are those ending in one of the /?/ from C. Each of
these/?/ were complemented in 3, and sincepio was the lowestpj occurring as
such a complement, the remaining p{ still serve to close the respective branches
ending in/?/.

2.11 Corollary If 3 is a closed cut tree for S, then there exists a resolution
proof (R ofS, with |(R| < | | 3 | .

Proof: In the construction of Res(3)9 when the node Nis a cut node we actu-
ally eliminate both children of N with one resolution (the first new clause below
N is identical with the clause being brought up from below). If all interior nodes
of 3 are cut nodes, then we can associate with each inference of Res(3) a pair
of interior nodes of 3, namely the complementary pair of cut-literals below the
node A in the proof. Hence |(R| < £|3|.

In Figure 2, we illustrate the resolution proof Res(3) derived from the

D

q ' ^ < 7

p pq q* q*

qr rx
Res{3)

Figure 2

490 DANIEL J. DOUGHERTY

literal tree 3 of Figure 1. The numbers of the nodes in 3 correspond to infer-
ences in Res{3).

2.12 Theorem Let (R be a resolution proof of S. Then there exists a closed
cut tree 3 = 7V((R) for S, with |3 | = 2|(R| + 1 and #3 = #(R + #5, where US is
the number of clauses in S.

Proof: Let (R = (Γ, c), and let L be a leaf node of Γ, so that c(L) = p{.. .pk

is a clause of S. For each such L, add A: children Lu... ,Lk to L, which will
serve as leaves of a new tree T. The literal tree 3 will be (T\ I) where / is
defined as follows. For a node L, as above, define /(L7) = /?,-. If TVis an interior
node of Γ, then its children N{ and N 2 are interior nodes of 7", and c(Nχ) and
c(ΛΓ2) resolve to give c{N). If |p| is the literal resolved upon, with p G c(N{)
andp £ c(N2), we define /(TV̂) = p and /(iV2) = /?. It is easy to check that 3 is
the desired tree.

Note that although Tr(Res(3)) need not equal 3, Res{Tr((R)) will always be (R,
so that after the first iteration, the operations Tr and Res are inverses of each
other, and the factor of 2 in tree size is introduced only once.

The elimination of cuts from a literal tree can lead to an increase in proof
size (we will say more on this in Section 3). We can observe now, though, that
cut-trees are in fact minimal in size, up to a factor of 2:

2.13 Corollary Given any closed literal tree 3 for 5, there is a closed cut tree
3'forS, with |3' | < 2|3| + 1 am/#3'< #3 + #S.

Proof: Let 3r = Tr(Res(3)).

Semantic trees, defined in Kowalski and Hayes [11], correspond to certain
regular cut trees, in fact, those of the type constructed in Theorem 2.2. These
were introduced to study resolution refutations, but Theorem 2.12 fails if "cut
tree" is replaced by "semantic tree".

A significant question to be raised concerning a propositional proof sys-
tem is, "What is the relationship between the length of a provable formula and
the length of its shortest proof in the given system?" The following theorem is
due to Haken [8]:

2.14 Theorem There exists c> 0 and unsatisfiable sets of clauses Sn of size
O(«3), such that for infinitely many n, every resolution refutation (R of Sn has
#(R > 2cn.

The notion of extended resolution was introduced by Tseitin in [16], in his
attempt to prove an exponential lower bound for the complexity of resolution.
He was able to define a class of sets of clauses which seemed to require long
resolution refutations, but in fact were not intrinsically difficult to refute, if aux-
iliary literals were introduced.

If S is a set of formulas, the extension rule may be applied to yield a new
set S*. Let Aγ,... ,Ak be formulas, and let x be a literal not occurring in any
formula of S. Then any occurrence v{Ax,... ,Ak} in S may be replaced by x9

and any occurrence of Λ { - ^ ! , . . . ,~Ak} may be replaced by x, provided the
following set of clauses is added: v{x, Ax,... ,Ak}, v{x, ~AX}9... ,v{x,

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 491

~Ak}. The conjunction of the new clauses added to S is logically equivalent to
x~ v{Al9...,Ak}.

2.15 Definition An Extended Resolution refutation of 5 is a resolution refu-
tation of a set S*, where S* is obtained from 5 by finitely many applications of
extension.

2.16 Theorem (Cook and Reckhow) For each of the sets Sn in Theorem
2.14, there is an Extended Resolution refutation δ, with #δ = O(n4).

Extended Resolution has been investigated by Cook and Reckhow [5], who
prove that this system is powerful enough to polynomially simulate almost all
standard proof systems for propositional logic, including Natural Deduction,
Hilbert-style system, and Gentzen-style systems. Cook's paper [2] discusses the
relationship of Extended Resolution to Cobham's class £ (the class of
polynomial-time computable functions). Section 3 clarifies the connection
between Extended Resolution and the sequent calculus.

2.17 Definition A resolution proof (R = (T, c) is regular if no path in T
contains two clauses which are the results of resolutions on the same atom.

Regular Resolution, also due to Tseitin, is the proof system obtained from Reso-
lution by requiring proofs to be regular.

It is clear from Theorem 2.12 that (R is a regular resolution proof iff
7>((R) is a regular literal tree. Tseitin was able to show that Regular Resolution,
as a nondeterministic algorithm, is exponentially complex, and Galil improved
his lower bound [16], [6]. Tseitin observed that Regular Resolution was mini-
mal with respect to the tree size of proofs.

2.18 Theorem (Tseitin) For every Resolution refutation (R of S, there is a
Regular Resolution (R' of S, with |(R'| < |(R|.

It is not known whether Regular resolution is #-minimal. This is equiva-
lent to the question of whether regular cut-trees are minimal with respect to #-
size, that is (cf. the discussion following Definition 2.5), whether or not trees
with contradictory truth assignments on their branches allow for #-shorter
proofs.

Tseitin did not provide a proof in [16] of Theorem 2.18, but Galil gives a
proof in [7]. It is easy to prove Theorem 2.18 by passing to literal trees, and we
leave this to the interested reader. In fact, the technique is similar to that used
in the following lemma, to the effect that trees need not contain nodes which
are not used to close branches. This can lead to a considerable decrease in the
size of trees.

2.19 Lemma Let 30 be a closed literal tree for S. Then there exists a closed
literal tree 3\,for a subset of S, with |3i| < |3 0 | and #3i < #30, such that for
every nonroot interior node N, there exists a leaf L below N, with 1{N) = 1{L),
and N is the lowest node complementing L.

Proof: Let TV be a node of 30, with parent M and children Nu... ,Nk, not
satisfying the conclusion of the lemma. Let 3' be obtained by deleting TV and its
adjacent nodes, that is, by letting the new children of M be the Nx,... ,Nk. If

492 DANIEL J. DOUGHERTY

we perform the same operation below each M' - M, then |3 ' | < |3 | and #3' <
#3, and iterating this procedure will eventually yield a tree 3! satisfying the
lemma. We show that 3' is closed as follows:

The only leaves whose branches have been altered are those below some
M' ~ M\ these have had an occurrence of l(N) deleted. But N (and any N' -
N) has the property that any branch passing through it with a node labeled
l(N) must have a node lower than N, labeled l(N). Thus the deletion of N will
not affect the closing of the branch.

3 Gentzen systems In this section we examine the relationship between
resolution-based proof systems and Gentzen-style systems, and explore the con-
sequences of restricting the form of inferences allowed in the sequent calculus.

3.1 Definition A sequent Δ is a finite set of formulas. A sequent
{A i,... 9Ak} is said to be unsatisfiable if the formula A{AU. .. ,Ak} is unsatis-
fiable. As usual, we write Δ, A in place of Δ U {A} and Au Δ2 in place of
A\ U Δ2. A sequent of the form Δ, A, -A is an axiom. Rules are configura-
tions of sequents:

Au...,An,A1\/A2 v . . . v An

AuAι\A2,A2\...\An,An

Δ, Aλ Λ...AAn

Δ, A u . . .9An

Note that we have written our rules upside-down in comparison with standard
treatments—this is to facilitate the comparison with literal trees and resolution.

In each rule, the sequent on top is the derived sequent, the sequents below
are premises. In each premise, the formulas A-t are the minor formulas (m.f.).
In the (Λ) rule, Ax Λ. . .Λ An is the principal formula (p.f.), in the (v) rule,
A i v . . . v An is the p.f. Cut has no p.f.

We will write m.f. (TV) to denote the set of minor formulas of seq(N).

3.2 Definition Let G/ be the collection of rules above, with the restriction
that in each inference rule and axiom, the Aj must be literals.

Let G be the collection of rules with no restrictions.

G/ is thus the proof system which can only manipulate literals; conjunc-
tions and disjunctions must be formed at one step, and are not eligible to enter
into subsequent inferences. It is this feature which makes G/ the precise coun-
terpart to Resolution (cf. Corollaries 3.14 and 3.16 below). Resolution, of
course, treats a clause (Ax v . . . v Ak) as a unit and does not allow a resolution
to be performed on, say (A{ v A2). The flexibility, in system G, to treat a
disjunction (Ax v A2) in different ways, for example as part of a disjunction
(04! v A2) v β) o r a conjunction {{Ax v A2) Λ C), is the analogue of the exten-
sion rule (cf. Corollary 3.22). A sequent containing Ax\ι A2 can be derived in
G then used in different places in a proof, allowing for shorter proofs (cf. Corol-
lary 3.25).

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 493

Note that system G allows axioms of the form Δ, A, ~A, where A is not
necessarily a literal. It is easy to see that such sequents are provable in a system
allowing only axioms Δ, p, ~p9 by proofs linear in the length of A, and the gen-
eral axioms are more in the spirit of system G.

3.3 Definition Let Δ be a sequent. A Gentzen derivation g of Δ in system
G[G/] is a pair (T, seq), in which Γis a tree and seq is a function mapping
nodes of T to sequents such that

(i) seq(root) = Δ,
(ii) if L is a leaf of Γ, seq(L) is an axiom of G[Gι]9

(iii) if TV is an interior node, with children N\,... 9Nk, then

seq(N)

seq(N{)\...\ seq{Nk)

is in the form of a rule of inference of G[G/], and
(iv) if seq(N) - seq(M), then the subderivations below TV and M are iso-

morphic.

Provision (iv) of Definition 3.3 is not necessary to the completeness or
soundness of the proof systems, but since it clearly does not alter the set of prov-
able sequents, and the shortest proofs of a given sequent will always satisfy (iv),
we find it convenient to insist on this property.

We may characterize derivations in another way, as follows. A derivation
is a tree Πabeled with sequents, each of which has a specified set of minor for-
mulas, such that:

(i) seq(L) is an axiom,
(ii) seq(K) = [seq{Kx), Λ{m,f.(^)}] - {m.f.(^)},

(iii) seq(D) = N (A) , v m . f . (A)] - Um.f.(A),
(iv) seq(X) = [seq{Xx), seq(X2)] = [m.f.(Xx)9 m.f.(X2)].

3.4 Definition Let g = (T, seq) be a Gentzen proof, let TV be a node of T.
(i) The weight of TV, wt(N), is the sum of the number of minor formulas used

in deriving p.f.(TV).
(ϋ) |9 | = Σwt(N), the sum taken over all nodes of T.

(iii) #8 = the number of distinct nonaxiom sequents occurring in G.

Note that if 9 is a G/ proof of a set of clauses S, then w/(TV) = 1 for each
node TV, so that |9 | is simply the number of interior nodes in the underlying tree,
that is, the number of nonaxiom sequent occurrences in g.

We note here that if a standard Gentzen system, such as in [10], is trans-
formed into a "left-handed" one, and our convention of automatically putting
formulas in negation-normal form is implemented, then we obtain a line-by-line
translation of a standard proof into a G-proof. On the other hand, our treat-
ment of v and Λ as operations on sets rather than as binary relations is only a
convenience, and has no significant complexity ramifications: any inference with
p.f. Ai v . . . v Ak or A\ Λ . . . Λ Ak can be replaced by k — 1 inferences in a sys-
tem treating v and Λ as binary operations. To summarize:

494 DANIEL J. DOUGHERTY

3.5 Proposition Given any standard proof P of a standard sequent
Ax,... ,An -> Bx,... ,Bk, there exists a proof Q of the sequent Ax,... ,Ani

Bι,... ,Bk in system G, with |Q| < the number of sequent-occurrences in P and
#8 < the number of distinct sequents in P.

Proof: We outlined above a method of transforming P into 8.

3.6 Corollary A sequent A is unsatisfiable iff there is a derivation in system
GofA.

System G{ is sound, and is complete for unsatisfiable sets of clauses. This
is implied by Theorems 3.10 and 3.13 below.

We collect here three technical lemmas which will be used below.

3.7 Lemma In any G proof if a formula A appears in some seq(N), then
it appears in seq(N+)} for all N+ > N, unless A E m.f. N' for some N' in the
path between N+ and N.

Proof: This is immediate from the characterization of seq(M) given following
Definition 3.3.

3.8 Lemma Given any G proofQ of A, there is a proof Qf of A, |S ' | ^ |S|>
#8' ^ #S> such that for each axiom Γ,A, ~A ofQ', either A or -A is a minor
formula of that axiom.

Proof: Suppose L is a leaf node of 8, with seq(L) = Γ, A, —A, m.f. (L) <Ξ Γ.
Then by Lemma 3.7, both A and ~A are in seq(L*), where L* is the parent of
L, thus seq{L*) is a G-axiom. We can thus delete L from S> and continue this
process until one of A or — A is used as a minor formula.

Next, we note that instances of Λ-rule, since it involves no branching, can
be "pushed upward" toward the root of the tree, with no increase in proof size.

3.9 Lemma Let Q be a G-proof of Ά. Then there is a proof Qf ofA,\Q'\<
| 8 | , #8 ^ #8', such that, if *{AU... ,Ak} E m.f(N) in 8', N has precisely
one child Nu with m.f.(N{) = {Au... ,Ak}.

Proof: Let Γ, (A{ Λ . . . Λ Ak) be the lowest sequent below N containing {Aγ
Λ...ΛAk).

Construct 8i by first adding the node Δ', A\,... ,An just below TV, and
deleting all lower inferences in which (A\ Λ . . . Λ An) is a p.f.; then repeating
this process beneath every other occurrence of Δ', (A{ Λ . . . Λ An). We are call-
ing upon part (iv) of Definition 3.3, of course.

8i is still a G-proof, and the top-sequent has not changed. The new node
(sequent) Δ\ Au... ,Ak has been paid for by the disappearance of Γ, {Aγ
Λ. . Λ Λ *) , thus |Si | ^ |S|> # S i ^ # S

Iterating this construction yields the desired 8'

We can now show that system 8/ corresponds precisely to Resolution, by
exhibiting a correspondence between 8/ and literal trees.

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 495

3.10 Theorem Let S be a set of clauses, and let g be a G/ proof ofS. Then
there exists a closed literal tree 3 for S, with |3 | < |g| + ra, #3 < #g + ra, where
m is the number of single-literal clauses of S.

Proof: Let g = (Γ, seq). Let ̂ , . . . , ^ O T b e the single-literal clauses which are
elements of 5. We now define 3.

Replace the root of T (the underlying tree of g) with a path of m nodes,
labeled qx,... ,qm. We then let T' be formed by adding Tbelow this configu-
ration (that is, identify the root of T and the node underlying qm...). For
nodes TV of T' other than those underlying the qi9 we define /(TV) = m.f. of
seq(N). 3 = (T\ I) is then a literal tree. |3 | < |g| + n is immediate, and #3 <
#g + n follows from this by the usual argument that identical sequents of g will
lead to — nodes of 3.

To see that 3 is closed, let L be a leaf of 7", hence a leaf of T, and sup-
pose l(L) = p. Thus seq(L) is Γ, p, p. But by Lemma 3.7, p must occur as
m.f. in the branch above Z, or be one of the clauses in Δ. In either case, there
is a node labeled with p in the 3-branch above L, hence the branch is closed.

3.11 Corollary Given any G/ proof g of S, there exists a resolution refuta-
tion <R ofS, with \<R\ < |g| + #S, #(R < #g + #5.

Proof: Immediate from Theorem 3.10 and Corollary 2.11.

3.12 Corollary System G/ is not a polynomially bounded proof system.

Proof: Immediate from Corollary 3.11 and Theorem 2.14.

We have a converse to Theorem 3.10:

3.13 Theorem Let 3 be a closed literal tree for 5, a set of clauses. Then there
exists a Gιproof g of S, with |g | = |3 | , #g = #3.

Proof: We assume that 3 = (Γ, /) satisfies the conclusion of Lemma 2.19. g will
have underlying tree T and seq defined by induction as follows:

seq(L) = {l(L), JζΓ)}
seq(X) = [seqiX,), seq(X2)] - [/(^), l(X2)]
seq(N) = [\J {seqNi}, v{l{Ni)}] - {/(^)},

where {TV,: 1 < / < k) are the children of N. g is clearly a G/ proof, and since
g and 3 have identical underlying trees, |g| < |3 | . Since the definition of
seq(M) above depends only on Sub(M) in 3, it follows that M — M' in 3
implies seq(M) = seq{M'), hence #g < #3.

It remains to show that seq(root) = A. To do this, we prove by induction:

(*) seq(N) = Occ(N) U {p :p = l(L) for some L < TV and p Φ l(N~) for all
N~ <N}.

This is immediate for leaf nodes. The definition of seq(M) given above
parallels the characterization of Occ(M) given following Definition 2.1, except
that seq(L) contains both of p and^, where Occ(L) contains only/7. Thus the
extra p will persist in the sequents of the ancestors of L, until p is m.f. of a
node TV in g. But this happens precisely whenjσ = /(TV) in 3. This establishes *.

496 DANIEL J. DOUGHERTY

Now, since 3 is closed, every L below the root has the complement of l(L)
above it, thus seq(root) = Occ(root) = S.

3.14 Corollary For any resolution proof (R of S, there is a G/ proof 9 of
S, with |S | ̂ 2|(R| + 1, #9 < #(R + #S, απrf such that every interior inference
of S is an instance of Cut.

Proof: Immediate from Theorems 2.12 and 3.13.

Cut elimination for G/ follows immediately from the version for literal
trees, as does the minimality of cut proofs:

3.15 Corollary Given a G/ proof 9 ofS, one can construct a cut-free proof
G'ofS.

Proof: From 9, obtain a literal tree 3, then use Theorem 2.6 to eliminate cut-
inferences from 3, obtaining 3'. Theorem 3.13 yields 9'.

3.16 Corollary Let S be a set of clauses with m single-literal clauses. Given
a G,proof 9 of S, there is a G,proof 9 ' of S, | 9 ' | < 2|9| + 2#S + 1, #9' <
#9 + 2#S, with each interior inference o/9 ' an instance of Cut.

Proof: Apply Corollary 3.11, then Corollary 3.14.

Recall that G is the system with no restrictions on its axioms or rules of
inference, and is essentially equivalent to the traditional sequent calculus. Let
G~ be G without the Cut rule. G~ is complete, of course.

Cook and Reckhow, in [4] and [5], investigate many different proof sys-
tems and prove polynomially bounded simulation results between pairs of sys-
tems. If Si and S2 are two proof systems, then S{ < p S2 means that for every
proof P2 of a formula in S2 there is a proof Pi of the same formula in S t, with
the size of P\ bounded by a polynomial in the size of P 2 . Here, "size" is inter-
preted to mean number of steps in a Turing-machine computation, which is
essentially our #-measure. Cook and Reckhow report:

Extended Resolution <p G < p Resolution, and
Extended Resolution <p G~.

Here G and G~ refer to standard versions of Gentzen-style systems.
In this notation Theorems 2.10, 2.12, 3.10, and 3.13 imply:

Resolution =p Literal Trees =p Gι

where in fact the subscript p indicates a possible increase in proof length
bounded by the length of the formula.

In this section we will show a one-to-one correspondence between Extended
Resolution and system G, with respect to | | and # measures. As with earlier
results, the proofs will also provide a correspondence between the "structures"
of the proofs, that is, their underlying trees, but the savings in space allowed
by the extension rule precludes a corollary to the effect that Extended Resolu-
tion and G have the same computational complexity. We will return to this at
the end of this section.

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 497

Just as literal trees were seen to be the "skeletons" of Gt proofs, the fol-
lowing notion exhibits the essential structure of a proof in system G. What we
call formula trees below are broadly equivalent to a Beth/Smullyan tableaux;
we modify some of the details in order to discuss more precisely their relation-
ship to Gentzen proofs.

3.17 Definition A. formula tree $F is a pair (T,/), where Γis a tree and/
maps nonroot nodes of Γto finite sets of formulas. We insist that if a node D
has children DΪ9... ,DK for K > 1, then each / (A) is a singleton.

From now on, we will use the following convention. If /(TV) is a single-
ton, we will write /(TV) to stand for the formula in the set f(N). Expressions
such as "—/(TV)" should be taken as designating the negation of the formula
which is the element of f(N).

If Xhas children Xι and X2, withf(Xι) = ~f(X2), then Xis a cut node.
A formula tree $ is closed if, for each leaf node L, there exists L* > L, with

f(L*) containing a formula which is the negation of a formula in/(L).
As usual, we define TV ̂ M if Sub(N) - Sub(M). The weight of a node

TV, wt(N), is the sum of the number of formulas in the children of TV. Then
lίFl = Σwt(N), the sum taken over all nodes of T, and #^ = |ίF|/~

If /\{Aly... ,AK} G/(TV), we say that t\{Au... 9AK} is analyzed at K<
N iff (Id) = {Al9...9Aκ}. lfv{Al9...,Aκ}f(N)9 then v{Al9... ,AK] is
analyzed at D < TV if the children of D are Dx,... ,DK, with/(£>,-) = Ah

We now want to define the notion of a set of formulas occurring on $9 in
much the same way as for literal trees, but we now must take into account the
analysis of formulas. We begin by defining Occ(N), for nodes N:

3.18 Definition Let ff = (Γ, /) be a formula tree
(i) if L is a leaf node, Occ(L) =/(L) .

(ii) Occ(/O = [OccίAΊ) U Λ/X*I)] - / (*) •
(iii) Occ(D) = [\JOcc(Di)] U [v{/(A)>] -f(D).
(iv) Occ(^) = OccίAΓO U Occ(X2).

We then let

(v) Occ($) = Occ(root of ίF).

For example let ίF be the tree shown in Figure 3, with/(TV) written below
the name of the node N:

Then Occ(L{) = {A}9 Occ{Dx) = {(AvB)}9 Occ(D) = {(EvF)9 (Sv
T)}. The formula (A v B) has been deleted since it i s / φ) . This reflects the
fact that although (A v B) G Occ(Dx), the nodes below Dx represent an anal-
ysis of the ancestor node ,4 v £ . Occ($) is {(Sv Γ), (£ v F) , (Λ Λ C), ((Λ V
ί)vη).

We can now make precise the idea that a formula tree is essentially a G-
proof.

3.19 Proposition Lei Q be a G-proof of a conjunction ΛΔ. Then there exists
a closed formula tree 3:, |ίF| = |9 | , #^ = #8, with Occ($) c Δ.

498 DANIEL J. DOUGHERTY

x

D K

{AvB} {Y}

A D2

{E} {F} Kχ

A A ίA C}

{A} {B} {S} {T}

Figure 3

Proof: Suppose 9 is (Γ, seq). We define $ as (Γ,/), with/(TV) = {m.f. of
seq(N)}. The fact that |ίF| = |g| is immediate, and #$ = #9 follows from the
fact that if seq(N) = seq(M) in 9, then Sub(N) = Sub(M) in 9, and hence
Sub(N) = Sub(M) in 5\

The root of Γhas one child Nχ> with Δ equal to the set of m.f. in seq(Nχ).
(Actually, Δ is precisely seq(Nι) in this case.) Then we can see that $ is closed:
let L be a leaf node of T, and let A be an m.f. of seq(L) such that ~ A is also
in seq(L). (Here, we are using Lemma 3.8.) But then — A must occur as m.f.
in some L* > L9 since we can apply Lemma 3.7 to the G proof of Δ determined
by the subtree generated by A^ to conclude that either ~A occurs as m.f. in this
tree, or is an element of Δ. But if -A is an element of Δ, -A is an m.f. of the
node Nι, with respect to the original proof 9 In either case, then, ~A appears
in/(L*) for some L* > L, so the node L closes.

Finally, to see that Occ($) c Δ, suppose that some Λ {AU . . . ,Ak} G
Occ{$). Then there is a node K such that f(Kx) = {Al9... ,Ak], and the
formula {Aΐ9... ,AK} does not occur above Kx in 5\ Then Λ{AU . . . ,AK} G
seq(K) in Q, since this is what the m.f. Au... ,AK produce in the inference
from Kγ to K. Since Λ{AI, . . . ,AK} does not appear above K in JF, it is not
an m.f. above K, hence by Lemma 3.7, Λ{AΪ9. .. ,AK} G Δ. Similarly, if
v{Aι,... ,AK} occurs at node D9 then v{Ax,... ,AK} G seq(D) in 9> and
hence v{Ax,... ,̂ 4 }̂ G Δ.

As expected, we can construct a G-proof based on a closed-formula tree.

3.20 Proposition If $ is a closed formula tree, then there is a G proof Q of
Occ{$) with |9 | < 1̂ 1, #9 ^#ίF.

Proof: The proof is similar to that of 3.13.

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 499

We can now parallel the course taken earlier and manipulate formula trees
in order to derive results about G-proofs.

In particular, we can now show the equivalence of system G and Extended
Resolution. The strategy is as follows. Given a proof 8 of Δ in system G, we
consider the corresponding formula tree ίF. This is not, in general, a literal tree,
so we cannot produce an ordinary resolution proof. But the thing that keeps 5
from being a literal tree is the existence of nonliteral minor formulas at the
nodes, and the extension rule is precisely the tool for replacing these by literals.
We can systematically transform ^ into a literal tree by using extension, and can
then produce a resolution proof of the extended set of formulas Δ*, that is, an
extended resolution proof of Δ. The basic tree structure of the formula tree and
the literal tree will be the same.

In the other direction, we can, given an Extended Resolution proof of Δ,
build a G-proof of Δ with the same tree structure.

3.21 Theorem Let $ be a closed formula tree, and let Occ($) = Δ. Then
there is a closed literal tree 3 for Δ*, with Δ* obtained from Δ by extension,
|3 | = |<F|, #3 = #S.

Proof: Suppose ^ is (Γ, /) . If $ is not a literal tree, we will construct a new for-
mula tree ίF' = (Γ ' , / ') , with Occ(^f) obtained from Occ(ίF) by one applica-
tion of extension, |ίF'| = |ίF|, #ίF' = #JF, such that the number of interior nodes
N' of ίF' with f(N') not a single literal is smaller than the number of such
nodes in ίF.

Let TV be a node of ίF with f(N) = v{>4/} or Λ{~AJ}. Introduce a new
literal x, replace each occurrence of v{̂ 4, } in ff by x, and each occurrence of
A{~.4/} by x. If v{y4/} was analyzed in ίF at some node 7V~, add a new child
N£+\ to TV", with f(N£+χ) = x; NK+{ then becomes a (closed) leaf node. If
f\{~Ai} appears on the tree, then using Lemma 3.9, we assume that
{~Aχ9... ,~AK} appears immediately below it in ίF.

We then have the following configuration (in ίF):

Λ{~AU...,~AK}

{~AU...,~AK}

A\
We replace this in ίF' as shown at the top of p. 500. This completes the defini-
tion of JF'.

To verify that this works, first note that |ίF'| = |ίF|, since the new literals
x, x either replace nodes in $F or become leaf nodes, while the new interior
nodes such as the ~Ai above represent k nodes of weight 1 replacing 1 node of
weight k. The construction is clearly well defined with respect to the — relation,
so that #5' - #5\ The tree %' still closes since the set of formulas above any
given leaf node has not changed in the passage from £F to ίF'.

Finally, to see that Occ(^') is obtained from Occ(ίF) by extension: the for-

500 DANIEL J. DOUGHERTY

x

/ \
x ~A\

/ \
x ~A2

A
x ~AK

A\
mulas in OccC5') not in Occ(^) arise from the replacement of occurrences of
v{Ai} by x or Λ{~V4/} by x, which is clearly an instance of extension, or by the
introduction of a new leaf x, or the splitting of {~Aχ,... ,~Ak} into k new
interior nodes. The adjacent nodes Ai9... ,>1^ (which, in $F, represented the
analysis of v {A u . . . ,̂ 4A:}> which has disappeared) now have a new sibling, the
node labeled x, thus v{x, ^4 l f . . .,^4^} G Occί?'). But this is a formula
(expressing "ΛΓ-*^4I .. .Aκ") added to Δ in the definition of extension. In the
same way, the old ~AΪ9... ,~Ak, the analysis of Λ{~AU . . . ,~Ak} in ff, have
been replaced by (xv ~AX),... ,(xv -^4^) which express "Ax v . . . v Ak-+x",
and are added to Δ by extension. Thus ff' is as claimed, and iterating the con-
struction eventually yields a literal tree 3.

3.22 Corollary If g is a G proof of Δ, /Λez? there exists an Extended Reso-
lution proof(Ά* of A, with \<A*\ < |S|> #«* ^ #S

Proof: Proposition 3.19 yields a formula tree ί? for g> with Occί^) = Δ. The-
orem 3.21 produces a literal tree 3, w/Y/z 0cc(3) = Δ*, Δ* obtained from Δ by
extension. Corollary 2.11 then gives a resolution proof (R of Δ*, which can be
considered an Extended Resolution proof (A* of Δ. The | | and #-measures are
respected by each of the transformations.

The above procedure can be reversed, providing a method of eliminating
the abbreviations in an Extended Resolution proof to produce a G-proof. Again,
we perform the construction on formula trees.

3.23 Theorem Let 3 be a closed cut literal tree for Δ*, where Δ* is a set of
clauses obtained from a set of formulas Δ by extension. Then there exists a
closed cut formula tree $ for Δ, with |SF| < |3 | , #?F < #3.

Proof: The set Δ* is obtained from Δ by applications of extension. Thus we have
a chain Δ = Δo £ Δi c . . . c Δn = Δ*, in which each Δ/ + 1 is obtained from Δ,
by one application of extension. We will show how, given a closed cut formula
tree ϊ / + 1 for Δ / + 1, we can build a closed cut formula tree ^z for Δ, , with |{F, | <
l^z+il, #5Γz ̂ ^ i + i This clearly suffices to prove the theorem.

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 501

Suppose Δ, + 1 is obtained from Δ, by substituting x for v{̂ 4/} (and thus x
for Λ{~^4/}). Then £F/ is obtained from $i+i by first replacing each adjacent
pair

x x

by

v{Λ) Λ { ~ A }

The only noncut nodes of ίFf + 1 are leaf nodes. The only occurrences of
x or x among the leaf nodes are instances of replacing v{>4/} by x, replac-
ing /\{~Ai} by x, or occurrences of the new clauses x v Ax v . . . v Aκ, x v
~AΪ9... ,x v -^4^. This is because x has no occurrences in Δ, , and the above
are the only type of formula in Δ ί + 1 — Δ, . Any occurrence of x[x] which arose
due to a replacement of V{^4,}[Λ{ ~̂ 4/}] maintains this relationship of a for-
mula and its negation.

The other occurrences of x or x are due to the introduction of the for-
mulas x v Ai v . . . v Aκ and x v — A\,... ,x v — 4̂̂ - Whenever x v 4̂1 v . . . v ̂ 4#
appears, simply delete the x node. This changes the formula occurring at the
parent of this leaf to Ax v . . . v Aki which is not necessarily a formula in Δ, ,
but, since the node x was a leaf, hence closed in ίF/+i, there was a node TV
above Jc with f(N) = x. But then in JF,-, /(iV) is v{̂ 4/}, so that the nodes
labeled At represent an analysis of v{Aj}9 and do not contribute to Occ(5i).

Finally, if x occurs at a leaf adjacent to one of the ~Ai (corresponding to
a new clause xv ~Ai in Δ / + 1), delete the nodes with x and change the ~Af node
to contain all of the ~Aχ,... 9~AK. These new elements do not affect the clos-
ing of the tree, and since the x node was closed in $i+ι> there was an x above
it in {F/+1, thus an Λ{~^4/} in ff,-, and {~AΪ9... ,~^4Λ:} is the analysis of this
formula.

No new nodes have been added anywhere, thus l^+il < |JF, | and #3:

/+i <

3.24 Corollary Given any Extended Resolution proof (R*ofa set A, there
is a G-proofg of A, with \Q\ < |(R|, #g < #Λ.

Proof: Immediate from Theorem 3.23 and Proposition 3.20.

When the extension rule is iterated, very long formulas can be abbreviated
as single literals. In this way an Extended Resolution proof could conceivably

502 DANIEL J. DOUGHERTY

be a much smaller "object" than the corresponding G proof. Corollary 3.24
shows that the underlying trees and the relationships among the clauses/sequents
in the proof will be almost identical. However, the space required to represent
the sequents in their "unabbreviated" state might be large compared to the size
of the Extended Resolution proof. (The question is open.)

Thus, Theorem 3.23 and Corollary 3.24 cannot be construed as providing
efficient simulations of Extended Resolution by G proofs, when these are con-
sidered as nondeterministic algorithms. This is the only place in the paper where
the results do not translate immediately to the complexity-theoretic setting.

We can conclude, though, that there is no polynomial relating the number
of steps in (shortest) G-proofs to the number of steps in G/-proofs:

3.25 Corollary For the sets of clauses Sn of Theorem 2.14 (considered as
sequents), and for some c> 0, the shortest Gι proof of Sn has at least 2cn infer-
ences, while there exist G-proofs of Sn with O(n4) inferences.

Proof: From 2.14, 2.16, 3.11, and 3.24.

3.26 Corollary Given any G-proofξj of A, there is a proof Q' of A, with
|S ' | ^ 2|8| + 1, #S' < 2#S> such that every inference at interior nodes ofQ' is
an instance of cut.

Proof: From 8, we get an Extended Resolution proof (R* of Δ, by Corollary
3.22, which is in fact a Resolution proof of Δ*. Theorem 2.12 provides a literal
tree 3 for Δ*, with |3| < 2|Q| + 1, #3 < #8 + #Δ. Note that #Δ < #8, then apply
Theorem 3.23 and Proposition 3.20.

It is well-known that proofs in system G can be transformed into cut-free
proofs. The usual cut-elimination procedure involves a potential growth in the
size of the proof as cuts are eliminated. Statman [13], investigating the tree size
of Gentzen proofs (our | | measure), showed that this cannot always be avoided,
by exhibiting a class of formulas whose shortest cut-free proofs had exponen-
tial length but which had polynomial-bounded proofs when cut was allowed. In
other words, the system G without cut cannot polynomially simulate G.

Corollaries 3.16 and 3.26 assert that eliminating cuts can never substantially
shorten proofs, that the shortest proofs of a formula (up to a factor of 2) are
"pure cut" proofs.

REFERENCES

[1] Beth, E. W., "Semantic entailment and formal derivability," Mededelingen
Koninklijke Nederlandse Λkademie van Wetenschappen, Afdeling Letterkunde,
Nieuwe Serie, N. S. 19 (1955), pp. 309-342.

[2] Cook, S. A., "Feasibly constructive proofs and the propositional calculus," Pro-
ceedings of the Seventh Annual ACM Symposium on Theory of Computing,
Association for Computing Machinery, 1975, pp. 83-97.

[3] Chang, C. L. and R. Lee, Symbolic Logic and Mechanical Theorem Proving, Aca-
demic Press, New York, 1973.

[4] Cook, S. A. and R. A. Reckhow, "On the lengths of proofs in the propositional
calculus," Proceedings of the Sixth Annual ACM Symposium on Theory of Com-

GENTZEN SYSTEMS, RESOLUTION, AND LITERAL TREES 503

puting , Association for Computing Machinery (1974), pp. 135-148. See also cor-
rections for the above in SIGACTNews, vol. 6, no. 3 (1974), pp. 15-22.

[5] Cook, S. A. and R. A. Reckhow, "The relative efficiency of propositional proof
systems, The Journal of Symbolic Logic, vol. 44 (1979), pp. 36-50.

[6] Galil, Z., "On the complexity of regular resolution and the Davis-Putnam proce-
dure," Theoretical Computer Science, vol. 4 (1977), pp. 23-46.

[7] Galil, Z., "On resolution with clauses of bounded size," SI AM Journal on Com-
puting, vol. 6 (1977), pp. 444-459.

[8] Haken, A., "The intractability of resolution," Ph.D. dissertation, University of Illi-
nois at Urbana-Champaign, 1984.

[9] Hintikka, J., "Form and content in quantification theory," Acta Philosophica Fen-
nica, vol. 8 (1955), pp. 11-55.

[10] Kleene, S. C , Introduction to Mathematical Logic, Van Nostrand, 1967.

[11] Kowalski, R., and P. Hayes, "Semantic trees in automatic theorem proving," pp.
87-101 in Machine Intelligence, vol. 4, eds. B. Meltzer and D. Michie, American
Elsevier Publishing Company, New York, 1969.

[12] Robinson, J. A., "A machine oriented logic based on the resolution principle,"
Journal of the Association for Computing Machinery, vol. 12 (1965), pp.23-41.

[13] Statman, R., "Bounds for proof-search and speed-up in the predicate calculus,"
Annals of Mathematical Logic, vol. 15 (1978), pp. 225-287.

[14] Schutte, K., "Ein System des verknupfenden Schliessens," Archiv fur
Mathematische Logik und Grundlagenforsch, vol. 2 (1956), pp. 55-67.

[15] Smullyan, R. M., First Order Logic, Springer-Verlag, Berlin, 1968.

[16] Tseitin, G. S., "On the complexity of derivations in propositional calculus," in
Studies in Constructive Mathematics and Mathematical Logic, Part II, ed. A. O.
Slisenko, 1968.

Department of Mathematics
Wesleyan University
Middleton, CT 06457

