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On Generic Structures

D.W. KUEKER and M. C. LASKOWSKI

Abstract We discuss many generalizations of Fraisse's construction of
countable 'homogeneous-universal' structures. We give characterizations of
when such a structure is saturated and when its theory is ω-categorical. We
also state very general conditions under which the structure is atomic.

/ Introduction In this paper we investigate variations on the classical con-
struction of countable homogeneous-universal structures from appropriate classes
of finite structures. The most basic result here is the following theorem of Fraisse
[1]:

Theorem 1.1 Let K be a class of finite structures in a finite, relational lan-
guage that is closed under isomorphism and substructure. Assume further that
K satisfies the joint embedding property and amalgamation. Then,
1. there is a unique, countable Q which is "homogeneous-universal" for K, i.e.,

a is (ultra)-homogeneous and K is precisely the class of finite structures em-
beddable in d;

2. the complete theory of the structure (I in (1) is ω-categorical.

It is easy to see that (1) holds also for countably infinite relational languages
provided K contains only countably many isomorphism types, but (2) may fail
in this context. If K is not closed under substructure then the same basic argu-
ment establishes a variant of (1) in which CE satisfies a weaker sort of homoge-
neity (called pseudo-homogeneity by Fraisse); here too (2) may fail, even if the
language is finite. More recently, Hrushovski [3,4] has used a construction that
generalizes the basic construction by replacing substructure by stronger relations.

In this paper we unify all of these variations in a single framework (allow-
ing also functions and constants in the language). We refer to the resulting struc-
tures as generic rather than as homogeneous-universal. We then investigate some
properties of these generics. Ever since Morley-Vaught there has been a tendency
to view homogeneous-universal structures as analogues of saturated models. The

Received December 3, 1990; revised January 20, 1992



176 D. W. KUEKER AND M. C. LASKOWSKI

main question we consider is how to determine the conditions under which the
generic is actually saturated. We also give various examples where this fails.

Throughout we will assume that the underlying language is always countable,
but it may contain function and constant symbols. Whenever we mention a class
K9 K will be a class of finite L-structures closed under isomorphism. The follow-
ing definition is the starting point of our discussion.

Definition 1.2 A class (K, <) of finite structures, together with a relation <
on K x K9 is called smooth if < is transitive, (B < C implies (B £ Q9 and for all
(B E K there is a collection p®(x) of universal formulas with |Jc| = |(B| and for
any β EϋΓwith (B Q C,

(B< e ^ e \=φ(b) for all φEp®

where b enumerates the universe of (B. We also require that p® — pe if (B = C.

It should be noted that for any class K of finite structures, (K, c=) is always
smooth, where ci denotes the usual substructure relation. The reader should note
also that the restriction on the formulas being universal is close to being neces-
sary to extend the definition to (K, <)-unions.

Definition 1.3 Let (K, <) be a smooth class of finite structures. A structure
α is a (K,<)-union if ft = (Jneω 6Λ> where each en E K and en < Qn+i for all
n E ω. If ft is a (K, <)-union and (B c ft, (B E ϋΓ, we define

(B<α<^αf=φ(5) f o r a l l φ E ^ ^ ,

where again b enumerates the universe of (B. Equivalently, (B < (i if and only
if (B < CΛ for some (equivalently for a tail of) AZ E ω.

The following definition and the existence and uniqueness theorem that fol-
lows are essentially due to Fraisse [1] in the case where < is c=.

Definition 1.4 Suppose that (K, <) is a smooth class of finite structures. A
structure ΰί is (K,<)-generic if

1. d is a (K, <)-union.
2. For each (B E AT there is (B' < Q, (B = (B' (i.e., (B embeds strongly into Q).
3. If (B,6 E K, (B,β < fl and/ is an isomorphism of (B onto C, then/ ex-

tends to an automorphism of &.

A standard back-and-forth argument shows that d is (K, < )-generic if and
only if conditions (1), (2), and (3*) hold, where

3* If (B < α, (B < C and (B,6 E K then there is & < d and an isomorphism
/ e-^e ' so that/ r 5 = id.

Recall that a class (^, <) satisfies the joint embedding property (JEP) if for
every (B ι ,(B2 E ^ there is β E AT and isomorphic embeddings / : (B, -• C so that
/((B/) < β for / = 1,2. (AΓ,<) satisfies the amalgamation property (AP) if for
any &, 6^,(62 E AT with Q < Bγ and G < B2 there is C E K and isomorphic
embeddings/: (B, -• C so that/((B/) < β for / = 1,2 and/j Γ ^ = / 2 Γ A.
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Theorem 1.5 Suppose (K, <) is a smooth class of finite structures.
• There is a (K,<)-generic structure if and only if K contains only countably

many isomorphism types and (K,<) satisfies (JEP) and (AP).
•Ifd and GL' are each (K, <)-generic then ft = &'.

2 Generic structures when < is £ This section will be devoted to a discus-
sion of the model-theoretic properties of a (K><)-generic structure when < is
simply <Ξ. We will be particularly interested in characterizing when the generic
structure is saturated. As this setting is a special case of the general theory, how-
ever, we will need to anticipate theorems from the next section in our discussion.

We call a structure d locally finite if for all finite XQ A there is a finite sub-
structure (B of d containing X. A theory T is locally finite if every model of T
is locally finite. Let

K(T) = {all finite substructures of models of T}.

The following remark follows easily from the definitions and the fact that any
model of Γv can be extended to a model of T.

Remark 2.1

1. Γis locally finite iff Γv is locally finite.
2. K(T)=K(Tv).
3. If a is ^-generic then K cAχTh(β)).

We next distinguish two nice subclasses of K(T). A subclass K of K(T) is
cofinal if for any (ΆGK(T) there is β G K with B c e . We call a subclass K of
K(T) large if any countable model of Γis contained in a union of an increas-
ing chain of elements of K.

Certainly K a large subset of K(T) implies K is cofinal and Tis locally fi-
nite. However, the following example shows that the converse does not hold,
even in the case where a AΓ-generic structure exists.

Example 2.2 A locally finite theory Γand a cofinal subclass K of K(T) that
is not large.

Let L = {S], S a binary relation, and let Γbe the theory of a successor func-
tion, i.e., Γsays every element has a unique successor and a unique predeces-
sor. Let K denote the finite models of T. Then CE, the AΓ-generic structure, just
consists of infinitely many disjoint copies of every finite cycle. However AT is not
large, as (Z, S) is not contained in the union of finite cycles.

As far as the utility of these notions is concerned, the following proposition
states that if Kf is a cofinal subclass of K and K has a generic then K' has the
same generic. Consequently, the interesting case is one in which a large subclass
of K(T) satisfies (JEP) and (AP) whereas K(T) does not.

Proposition 2.3 Assume that K' is a cofinal subclass of a class K of finite
structures, and assume that Q is K-generic. Then & is K'-generic as well. In par-
ticular K' also satisfies (JEP) and (AP).

Proof: Conditions (2) and (3*) of the alternate definition of genericity follow
trivially from CE being ^-generic and Kι being a subclass of K, so it suffices to



178 D. W. KUEKER AND M. C. LASKOWSKI

show that β is a union of a chain of elements from K'. To see this, it first fol-
lows from the cofinality of K' and condition (3*) of β being iί-generic that given
any (B c α with ( B G ί there is β E K' with ( B c e c f l , Now suppose β =
U«Gω <8* with (BΛ Q (&n+ι and (Brt E K for each « G ω. We construct a chain
(Qi'.lE ω> of elements of AT' by induction on / as follows: let β 0 E Kf be arbi-
trary such that (Bo ̂  Go ̂  G. Next, given 6/ £ β, pick « least such that Q c £ Λ

and choose C / + 1 E ΛΓ' so that (BΛ c c / + 1 c β b y the note above. Clearly β =
U/eω β/» so β is ΛΓ'-generic.

Note that K <Ξ K(T) is large if and only if any model of Γv is contained in
a union of an increasing chain from K, so largeness also depends only on Γv.
We also remark that K(T) is a large subset of K(T) if and only if Γis locally
finite. Also, it is easy to verify that if AT is a large subset of K(T) then K is closed
under substructures iff K = K(T).

The following lemma is a generalization of a theorem of Fraisse.

Lemma 2.4 Suppose K £ K(T) is cofinal, T is locally finite and β is K-
generic. Then β is an e.c. model of Γv.

Proof: As & is the union of substructures of models of Γv, ft \= Γv by the usual
preservation results. Now assume φ(x9a) is a quantifier-free formula such that
there is some (B 2 fi, (B t= Γv, and (B t= 3xφ(x,a). By adding dummy variables
as needed, we may assume a is the universe of some 0L0 E K. Now let (Bo <Ξ (B
be finite with (Bo 1= 3Jcψ(Jc, a). As (Bo E ϋΓ(Γ) there is C E ϋΓ, (Bo ε C. Now we
finish by amalgamating C into ft over <20.

The main theorem of this section is the following equivalence.

Theorem 2.5 Assume & is K-generic and T = Th(β). The following condi-
tions are equivalent:
1. Oί is saturated.
2. K is a large subclass ofK(T) and T is model complete.
3. K is a large subclass of K( T) and Γ v is companionable.

Proof: (1) => (2). Assume that Cί is saturated. Then for any (B t= Γ,(B count-
able, (B embeds (elementarily) into β, which is a union of elements of K, so K
is a large subclass of K(T).

As a first step toward showing model completeness we show that if ά, b are
from A and tp3(<z) Q tp 3 (ΐ) then tp(α) = tp(5). Suppose ά and 5 are as above.
Choose G c β, e E # with <z from C. Let

^(x,j?) = ( α U j ) : f i h α ( α , ί / ) , α q . f . ) ,

where rf enumerates C\5. Since tp3(£) £ tp3(5), q(b,γ) is consistent, hence
realized in β by some e. Now defining/ by f (ad) = be, f is an isomorphism
of elements of K so / extends to an automorphism of β, which implies that
tp(<z) = tp(έ) as desired.

To complete the proof of model completeness, suppose φ(x) is any formula.
It follows from the paragraph above and the saturation of β that for any ά from
A so that β N φ(a)9 there is a single existential formula θά(x) such that β f=
θά(a) and T1= Vx[θa(x) -> Φ(x)]. But now, by the saturation of β again, it fol-
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lows that d 1= Vx[φ(x) <-• ψ(x)], where ψ is a finite disjunction of 0/s. So φ is
equivalent to an existential formula, which implies T is model complete.

(2) => (3). As Γis model complete, Γis the model companion of Γv.
(3) => (1). Assume that S is the model companion of Γv. Now as K is cofi-

nal and Γis locally finite, d is an e.c. model of Γv = 5V by Lemma 2.4. Thus
d 1= 5, so Γ is model complete. However, as noted above, every countable
model of Th(Cϊ) embeds isomorphically, hence elementarily into d. That is, d
is a universal model of Γ, so d is saturated by Proposition 3.1.

If we assume K is closed under substructures we obtain the following cor-
ollary.

Corollary 2.6 Assume K is closed under substructures, d is K-generic and
T= Ίh(d). Then d is saturated if and only ifTis locally finite, K = K(T), and
Γv is companionable.

Proof: Assume that d is saturated. Then d is universal. However, as Q is K-
generic, it is locally finite, so T must be locally finite. Also, by the theorem
above, AT is a large subclass of K(T), so K = K(T) and Γv is companionable.

For the converse we need only recall that Γlocally finite implies K(T) is a
large subclass of itself and apply the theorem.

We conclude this section with two examples of classes K each having a ge-
neric structure that is not saturated. In the first example K is not a large subclass
of K(Th(6ί)), and in the second Th(G) is not model complete.

Example 2.7 A class K closed under substructure with a ^-generic structure
Oί such that Th(G) admits elimination of quantifiers, yet d is not saturated (in
fact Th(CE) does not have a prime model).

Note that by Proposition 3.4, the underlying language must be infinite. Let
L = {Ps:s G <ω2], where each Ps is a unary predicate. Let (B be the structure
with universe ω2 and P® = {/ G ω2 :s c /} for each s E < ω 2 and let T =
Th((B). As is well-known, Γhas no prime model and Tadmits elimination of
quantifiers.

Let d be any countable model of T such that

\Γl{P?:s£f)\^i forevery/Gω2.

Let K be the class of all finite L-structures embeddable in (2. It is easy to check
that d is AΓ-generic.

Example 2.8 A theory Γin a finite, relational language and a large subclass
K of K(T) so that there is a A -̂generic structure d that is not saturated.

Let L = {E,R}, where E and R are both binary predicates. Fix (as in Hen-
son [2]) a countable collection ((Gn,Rn))nGω of mutually non-embeddable finite
tournaments (i.e., a directed graph with an edge in some direction between any
two vertices).
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Let Γbe the following collection of universal axioms:

• E is an equivalence relation
• On each equivalence class, R defines a directed graph
• R{x,y)-*E(x,y)
• For each n Φ m an axiom stating that if Gn embeds into an equivalence

class then Gm does not embed into the same class.

Let Kconsist of all (B G K(T) such that some Gn embeds in each is^-class
(with the n allowed to vary among the classes). The verification that K satisfies
(JEP) and (AP) is as in [2]. Let & denote the ΛΓ-generic structure. Clearly Th(ft)
is not ω-categorical since there are infinitely many 1-types ("the equivalence class
of x embeds Gn"). However, it is easy to verify (or one can invoke Proposition
3.4) that Gί is atomic, so it cannot be saturated.

Finally, to see that K is a large subclass of K(T), let (B be a countable model
of T. Then there is a countable model 6 of T extending (B with every Ee -class
embeds some Gn9 and C can be written as a union of a chain from K as desired.

3 The smooth case In this section we wish to study general facts about
(K, <)-generic structures for an arbitrary smooth class of finite structures. Our
first result requires only that < be type-definable.

Proposition 3.1 Assume that (K, <) is smooth and that the (K, <)-generic
structure & is weakly saturated (i.e., d realizes every pure type consistent with
Th(β)). Then <3L is saturated.

Proof: We first show that every model (B of Th(CE) which is a (iΓ,<)-union
can be elementarily embedded in Gί. Say that (B is the union of the (K, <)-chain
{®/i)/iGω Since Gί is (K, <) -generic we may assume that ( B c f t and ($>n < Gί
for all n G ω. We show that (B < Q. Suppose Gί t= φ(b) where 5^ B.We may
assume that b enumerates some Bn. We may further take p®n(x) to include
the open diagram of (Rn. In order to show (B 1= Φ(B) it suffices to show that
Th(G) 1= Ap®n(x) -> Φ(*) However, if this failed then by the weak saturation
of & we could find some a c A realizing p®n(x) U {-*φ(x)}. But then by
gehericity there would be an automorphism of Q, taking a to 5, which is a con-
tradiction.

Next, since fi is weakly saturated and is itself a (ΛΓ,<)-union, we know
that for every type q(x) consistent with Th(G) there is some (BeϋC such that
q{x) Up^iXyp) is consistent. It follows from this that any countable model of
Th(CE) has an elementary extension that is a (K, <)-union. Thus d is universal.
In particular Th(S) is small, so we can find CE', a countably saturated elemen-
tary extension. From this we can form a chain Qo < GLX < d2 <•. .where GL2n is
isomorphic to β and d2n+χ is countably saturated. Let Gί* be the union of this
chain. Now &* is saturated, so it suffices to show that Gί* is (iΓ,<)-generic. The
first two clauses are easily checked as every (B G K embeds strongly in Gί and
Gί < <$*, so (B embeds strongly in Gί*. Finally, if/: (B -* Q is an isomorphism of
substructures of β* with (B,6 G K and (B,6 < a* then there is a2k so that (B
and G are substructures of Gί2k and (B,β < Gί2k. Thus/ extends to an automor-
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phism of &2k9 so B and C (as sets) have the same complete type over 0 . So, as
G* is saturated, / extends to an automorphism of &*.

Recall that a <x (B if and only if a c (B and

a\=φ(ά) Φ*(B tφ(a)

for any universal formula φ(x) and any a from ^4. We call a theory T1-model
complete if for any two models β,(B of T, (2 <! (B implies a < (B.

Theorem 3.2 .̂ sswrae that (K, <) is a smooth class of finite structures and
that d is (AΓ,<) -generic. Let T - Th(ft). Then the following are equivalent:
1. d is saturated.
2. (a) Th(Q) is 1-model complete,

(b) every countable model of T can be embedded as a 1-substructure of some
(K,<:)-union, and

(c) d realizes every universal type consistent with T.

Proof: The proof that if d is saturated then Γis 1-model complete is exactly
analogous to the proof of model completeness in Theorem 2.5. The other two
clauses of (2) are immediate consequences of the saturation of d.

Conversely, by Proposition 3.1 it suffices to show that (2) implies that ev-
ery model (B of Γ that is a (K, < )-union is elementarily embeddable in Q. So let
(B (= Γbe the union of the (K, <)-chain ((BΛ)ΛGω. As before, we may assume
that (Bcfi and each (Rn < α. In view of (2a) it suffices to show that (B <i CL
If this fails then there is some universal formula θ(x) and some bQB such that
(B f= θ (b) but d 1= -i θ (b). Again we may assume that b enumerates some Bn and
th&tp®n(x) includes the complete open diagram of (BΛ. But now by (2c) there
is some ά Q A realizingp®n(x) U {θ(x)}9 contradicting the genericity of (L

Theorem 3.2 is the result in the general smooth case that corresponds to The-
orem 2.5, with (2b) being the correct generalization of the condition that K is a
large subclass of K{T). The presence of (2c) seems to be a defect in this result.
We do not know if this condition can be deleted.

The following example shows that 1-model completeness in the theorem
above cannot be improved, even when the language is nice and the types defin-
ing < are simply formulas and the theory of the generic is ω-categorical.

Example 3.3 A smooth class (K, <) in a finite, relational language whose ge-
neric has a theory that is ω-categorical but not model complete.

Let L = [E] and let Γbe the ω-categorical theory specifying that E is an
equivalence relation with at most two elements in each class, there are infinitely
many classes with two elements and infinitely many classes with only one ele-
ment. Let K - K(T) and for (B,C G K define (B < β if and only if (B c e and
β does not expand any (B-equivalence class. It is easy to check that the {K, < )-
generic structure is the countable model of Γand that Γis not model complete.

Theorem 3.2 is not entirely satisfactory as given a smooth class (K9 <) it may
be very hard to determine if the clauses of (2) hold. We obtain a more useful
characterization of saturation if we restrict both the language and the complex-
ity of the definition of <.

Suppose L is a finite language (i.e., has only finitely many nonlogical sym-
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bols). For any finite L-structure (B, fix an open formula θ®(x) so that for any
L-structure & and any a from A,

β t= θ®(a) if and only if the function/: a -> b is an isomorphism,

where b is a fixed enumeration of the universe of (B.
The proof of the following proposition is straightforward, but the result is

somewhat surprising as it applies to a large number of known examples of ge-
neric structures.

Proposition 3.4 Suppose L is a finite language and (K, <) is a smooth class
of finite L-structures such that for every (B E K the set of formulas p® defin-
ing < consists of a single universal formula ψ^.IfQis ( # , < ) -generic then β
is atomic.

Proof: Suppose a is any finite subset of A and choose ( β G ^ , ( B < β such that
ά c= B. It now follows from the genericity of & that tp(ά) is isolated by the for-
mula 3.y(0(B(x,y) Λ ̂ ®(Jt,.y))» where 0® and fa are defined relative to an enu-
meration of (B with a an initial segment.

In fact, it follows that Cϊ is the only model of Th((S) (up to isomorphism) that
can be written as a (K, < )-union. With the above proposition in hand we are now
able to give a nice characterization of when the (K, < )-generic structure is sat-
urated.

Theorem 3.5 Suppose that L is a finite language, (K, <) is smooth and for
every (B G K, p® consists of a single, universal formula ψ®. Assume further that
fi is (K,<)-generic. Then the following conditions are equivalent.
1. d is saturated.
2. Th(CE) is ω-categorical.
3. For all n there isNso that if a e nA then there isCReK with a c B, \ B\ <

N and (B < α.
4. For all n there is N so that for every (B e K and every b GnB there are (B*

and e in K with b c B*, \B* \ < N, (B < C, and (B* < C.

Proof: In light of Proposition 3.4, (1), (2), and (3) are easily seen to be equiv-
alent, and (3) => (4) is clear. Thus it suffices to prove (4) =» (3). So fix n and
let N be the bound given by (4). Fix a GnA and choose ΰίo< ΰί with a c Ao.
Now apply (4) to obtain (B* and β in K so that <z c 5*, (B* < C, β 0 ^ C, and
| £ * I < TV. As a is (ϋΓ, <)-generic, α 0 < d, and α 0 < β, there is 6 ' < Q and an
isomorphism/:Q-+& such t h a t / Γ Ao = id. So let (B =/((B*). Now (B <
Qf < β, so (B < β by transitivity and α = / ( ^ ) ^ 5, so (B is as desired in (3).

Fraisse's result, Theorem 1.1, is a consequence of Theorem 3.5 since condi-
tion (4) clearly holds in his context. We leave it to the reader to verify that the
requirement in 3.4 and 3.5 that the language be finite can be relaxed to the fol-
lowing:

• For each n there are only finitely many inequivalent quantifier-free «-types
realized among all elements of K.

Further, this is a generalization of the language being finite at least among classes
(K, <) where a generic structure exists.
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Our final example shows that even in the context of a finite, relational lan-
guage and < being definable by a single formula it is still possible for the (K, < )-
generic structure to have a complicated theory.

Example 3.6 A smooth class (K, < ) of finite structures in a finite, relational
language where, for each (B G K, p® consists of a single, universal formula yet
the theory of the (K, <)-generic is not small.

Let L = {£,<, P}, where E is ternary, < is binary, and P is unary. Let T =
Th((B), where B = ωUω2, P® = ω, <® is < on ω, and E® c ω x ω 2 x ω 2 is de-
fined by

E(k9f9g)*f(k)=g(k).

Thus, (E®(k, , ))jt€ω are cross-cutting equivalence relations, each with two
classes.

Let K = K(T) and define < on K x K by eι < C 2 if and only if both

1. ( P e 2 , < β 2 ) is an end-extension of ( P G l , < e i )
2. For every k G P e Λ P e i , all of Q is in the same EG2(k, , )-equivalence

class.

It is left to the reader to verify that (JEP) and (AP) hold for (AT, < ) so there
is a (K, <)-generic structure (2, which must be the prime model of Th(β), yet
Th((i) is not small.

We remark that Hrushovski's example [3] of a stable, K0-categorical pseu-
doplane satisfies the hypotheses of this theorem. By contrast, his example [4] of
a new strongly minimal set is (K, < )-generic where (K, < ) is smooth but p® is
not definable by a single formula, as can be seen by Theorem 3.4 since the ge-
neric is not prime.
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