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Abstract A general framework for studying self-referential languages is
given: by this is meant both a model theory and a complete set of axioms for
that model theory. The generality of the approach is shown by exhibiting the
wide range of pathological sentences it allows, and its model-theoretic com-
patibility with other approaches, such as semi-inductive ones. Philosophical
motivation for some of the new technical moves is given, and an appendix
supplies the completeness proof.

1 The most salient feature of the truth predicate is its apparent obedience to
Criterion 7. Criterion T, however, is so simple that one might have hoped that
a predicate axiomatically duplicating this property of truth could be easily added
to first-order logic much as equality has been. The Liar’s Paradox dashes any
thought that such a move is technically easy.

In any case, axiomatic treatments of the truth predicate have been largely ig-
nored as a possibility in the standard literature.! One reason for thinking such
approaches are ruled out is that it seems that a language cannot have a theory
of truth without some capacity to describe its own syntax. But even a fairly weak
syntactic capacity can breed incompleteness, and therefore (it seems) a theory of
truth cannot be axiomatized either.

This problem can be solved by relativizing the syntactic capacity of the lan-
guage to the model rather than fixing it once and for all for a class of interpreted
languages. By this I mean, e.g., that instead of fixing a canonical mapping of
constants to sentences (via a quotation function, say) that is to hold for all mod-
els of the language, one allows the constants to vary in what they are mapped
to from model to model. Doing so results in a theory of truth that is valuable
in two ways. First, it has been known since Tarski that syntactic theory and truth
theory do not sit comfortably together. But it is the details —exactly how much
syntax can sit together with exactly how much truth —that are of interest. There
are some results (see Gupta [5], pp. 183-194 for some examples), but an ap-
proach that gives a general framework to study this question exhaustively is de-
sirable. Such a framework should be one that contains a first-order theory of
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truth together with constraints on how it will interact with whatever capacity the
language has to describe its own syntax. The effects of this capacity on the the-
ory of truth can then be studied by singling out, either model-theoretically or
axiomatically, subcollections of interpreted languages with varied syntactic ca-
pacity.?

Second, a longstanding, although naive, objection to Tarski’s approach is
that the truth predicate in natural languages does not splinter into a hierarchy
of predicates. It is almost a fact that something like a hierarchy of languages is
unavoidable when “closed” languages are sought (Herzberger [8]), but perhaps
the blame can be placed on the theory of syntax rather than on the truth predi-
cate. It does seem, speaking naively again, that natural languages contain a the-
ory of truth; should a hierarchy of languages enter the picture with the
introduction of a (certain amount of) syntactic theory, this would not be as in-
tuitively objectionable.

I now go on to present the foundations of a theory of truth in the spirit of
the above paragraphs. I give a model theory and a set of axioms which are com-
plete vis-a-vis the model theory. Along the way, I also give indications of what
work has been left to do. But to motivate the technical moves of this theory, a
bit of philosophical scaffolding is called for, and we turn to that in the follow-
ing two sections.

2 The Liar’s Paradox offers technical obstacles to a theory of truth, but in
point of fact the less sensationalistic truth tellers do so as well. Should we ap-
proach a theory of truth by attempting to axiomatize a truth predicate via Tar-
ski biconditionals, they will become vacuous on truth tellers. It is this that gives
rise to the striking characteristic of a truth teller, that it is perfectly arbitrary what
truth value such a sentence is assigned, regardless of “how the world is”. That
is, truth tellers put pressure on our intuition that truth is “Tarski-reducible” ([5],
p. 196): that by specifying the truth values of all the sentences in which the truth
predicate does not occur, we have described enough to fix the truth values for
all sentences of the languages.?

The fact that lack of Tarski-reducibility is a characteristic of paradoxical sen-
tences as well as truth tellers helps motivate Kripke-style theories of truth. In-
volved in all of them are techniques for recognizing “problematical” sentences
by this lack and then neutralizing their effect on the theory of truth.* What
makes these techniques more than just elegant constructions is how they exem-
plify intuitions about Tarski-reducibility —in particular, the intuition that there
is something sematically wrong with a sentence that is not Tarski-reducible.

Truth tellers put pressure on the intuition that every sentence is Tarski-
reducible only in tandem with another philosophic intuition, sentential biva-
lence,’ the claim that every (open) sentence is either true or false (of an object)
but not both. For languages rich enough to contain truth tellers, there is consid-
erable tension between sentential bivalence and the constraint of Tarski-
reducibility. One or the other must go, and, as it turns out, the constraint of
sentential bivalence is the one that has yielded in Kripke-style truth theories.®

This is obvious in Kripke’s approach.” It may not be in the Gupta/
Herzberger approaches since they are explicitly two-valued. But what these ap-
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proaches actually offer is a collection of models in which the truth predicate is
bivalent. A philosophical interpretation of the role of this plethora of interpreted
truth predicates must be given. Herzberger suggests picking out one model on
the grounds that the construction used to derive the collection of models cycles
around it. This certainly preserves bivalent intuitions, but with the danger that
the criterion he uses to choose the model is arbitrary (Parsons [14], p. 264).
Gupta’s suggestion, by contrast, is really much more radical: truth should not
be seen as a concept with an application procedure, but rather one with a revi-
sion procedure—in learning the meaning of “true” what we learn is a rule that
enables us to improve on a proposed candidate for the extension of truth. Here
it is quite clear that bivalence — of the truth predicate at least —has been given
up, and given up in much the same spirit that it is given up in Intuitionism.?

There is no doubt that Tarski-reducibility is a very compelling intuition. This
helps explain why gappy approaches arose first, whereas glut approaches, al-
though technically similar, only arose later, and are still unpopular. But what
is behind the intuition? At work, certainly, are motivations similar to those which
drive philosophers away from bivalence. Quine [15] has noted that adopting biva-
lence saddles us with undecidables —and this is meant in the strongest sense pos-
sible. It is not merely that some human failing of time or energy prevents us from
evaluating whether something is in the extension of a particular predicate, for
often it is not even clear in principle how an idealized being could do the job,
and in mathematics it is provably the case that some facts regarding the exten-
sions of certain predicates are out of our hands, however idealized we make their
grip.

If sentential bivalence is taken to apply to the truth predicate of rich lan-
guages, Tarski reducibility’ must be given up, but only for a certain class of sen-
tences. Doing so has impact on several other intuitions about the truth predicate
which have played some role in the literature. I will illustrate this in the rest of
this section by discussing two commonly offered constraints on a theory of truth:
physicalism and Criterion 7, and showing their connection to Tarski reducibility.

Field [4] has noted that Tarski expressed support for a certain reductionist
doctrine, namely that there be no irreducibly semantic facts. This claim is just
part of a broader physicalist program where all notions are to be “reduced” to
notions of physics and set theory. Such a program has come under serious scru-
tiny in recent years and I don’t want to dwell on its drawbacks now. Suffice it
to say that bivalence about truth tellers amounts to jettisoning this program, at
least “around the edges”: the truth value of every sentence is fixed by what the
facts are, but only if irreducibly semantic facts are included among “the facts”.'°
Notice, however, that this is nothing more than a different way of describing how
Tarski-reducibility is being violated.

Let us now turn to Criterion 7. Criterion T is seen as so significant for truth
that it has sometimes been offered as a ful/l analysis of the meaning of “true”
(and, by assumption, consequently determining totally the extension of the truth
predicate). Of course it cannot be everything there is to say about the meaning
of truth, since redundancy theories of truth do not work in the context of quan-
tification. E.g., in Tarski-style definitions of truth, a great deal more than Cri-
terion T is necessarily involved. In any case, the intuitive power of Criterion T’
is not a brute fact of semantic nature, but something that can be analyzed into
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other intuitions which can be questioned. In particular, the intuitive sway that
Criterion T has over us lies partly!! in that it codifies Tarski reducibility. In lan-
guages that violate Tarski-reducibility, Criterion T is sometimes vacuous. What
this means, in turn, is that Tarski biconditionals cannot be seen as giving the
whole truth about the reference of “true”, even if they do give the whole truth
about the meaning of “true”.!? Rather, they must function (in principle) as de-
cision procedures for evaluating the truth values of certain (simple) sentences in
which truth predicates appear —and they just fail for truth tellers. Such sentences
have truth values, but there is no way for us (even in principle) to determine what
they are.

Let me sum up where we are. There are a couple of independent-looking in-
tuitions about theories of truth that seem quite compelling as a group, but ul-
timately owe much of their justification to Tarski-reducibility. Furthermore, there
is no easy argument for Tarski-reducibility, any more than there is for senten-
tial bivalence. The best thing to do would seem to be to design theories of truth
with one or another intuition in control and see which theories work better both
as far as applications to the phenomena observed in natural languages is con-
cerned, and in terms of their research value regarding self-reference.

3 What about the Liar’s Paradox? Tarski-biconditionals and sentential biva-
lence together force them to be both true and false. This is not acceptable. If we
go bivalent, therefore, we must make it plausible that Tarski biconditionals do
not force liar’s paradoxes to have both truth values.

We rejected the claim that Tarski-biconditionals exhaust the meaning of the
truth predicate, suggesting that the biconditionals, when they work, enable us
to read off the truth values of the sentences Ta, and Fa from the referent of a.
Let us say that a constant a transparently refers if it refers, and if the truth values
of the sentences Ta and —Fa agree with the truth value of S.'3 Now consider the
following argument: Let it be assumed that the term “(1)” refers transparently
to “(1) is false” in “(1) is false”. Then it follows that (1) is false if and only if (1)
is true. By reductio ad absurdum it follows that “(1)” does not refer transpar-
ently to “(1) is false” in “(1) is false”.

Bivalence requires a certain loss of extensionality. Consider a sentence Fa to
which a refers. We have already granted that Fa has a truth value, but since a
opaquely refers to Fa, it is not a truth value we can determine by looking at the
referent of a. This does not preclude, of course, another constant b referring
transparently to Fa. In that case, if, say, Fa is true, then although @ and b re-
fer to the same sentence, Fb will be false. Putting the matter another way, we
may understand the Tarski biconditionals as implying the condition of extension-
ality for truth and falsity predicates, and, on this approach, that condition some-
times fails.

We are not in a position to see that Tarski-biconditionals owe their intuitive
plausibility not just to the intuition of Tarski-reducibility. Another intuition
somewhat independent of Tarski-reducibility, is truth value compositionality: the
intuition that the truth value of a sentence is a function of its semantic structure
and the referents of the terms occurring in that sentence.'® This intuition gains
its strength from the fact that its scope is not restricted to sentences containing
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truth predicates, and it is this intuition that the above suggestions about liar’s
paradoxes violate.

Notice what is not being given up on this approach. Although it is clear that
the truth value of a sentence Fa does not turn directly on Tarski biconditionals
and what a refers to, this does not make the sentence a meaningless black box.
After all, its semantic structure enters into the recognition that the Tarski bicon-
ditionals fail for it; merely the further traditional move of allowing the compo-
sition of the sentence to determine its truth value has been disallowed: this is what
failure of extensionality comes to in this case.'®

There is a general assumption that ordinary language intuitions about a term
are somewhat binding on formal theories about such a term, especially if the for-
mal theory is going to be used in “descriptive linguistics” (e.g., see Salmon’s [16],
pp. 82-83). However, there is also a general assumption that naive theories about
a term, even if they are couched in natural languages, are not particularly binding
on formal theories, although they may serve as a guide for initial theorizing. The
reason is not hard to find. The former intuitions are raw data for any linguis-
tic theory, the latter are not.

Unfortunately, this crisp distinction more or less collapses when one turns
to languages (such as natural languages) which appear to be self-referential. Are
intuitions such as Tarski reducibility and truth-value compositionality part of na-
ive theories or actual semantic intuitions about the truth predicate in natural lan-
guages? Some of their tenacity as constraints for theories of truth is due to the
fact that they are taken to be raw semantic intuitions. But they may not be, and
we may make progress by dropping them as global constraints. !’

4 Let us explore the ramifications of the distinction between transparent and
opaque reference. Consider a Buridean Symposium:

(1) () is false
and
(2) (1) is true.

We must deny the transparency of either (1) or (2). Unfortunately, denying one
alone seems arbitrary and denying both seems redundant. This issue is resolved
by the following crude picture. Imagine that we name sentences in baptismal
ceremonies — ceremonies which can fail however. Although we always succeed
in referring in one sense (opaquely), we can fail to refer transparently; it can be
that the Tarski biconditionals cannot hold. Further, what particular baptismal
ceremonies succeed in giving us transparent reference often turns on what other
successful baptismal ceremonies we have already carried out. In this sense, the
baptismal ceremonies are holistic. For example, all things being equal, if we have
already baptized “(2) is false”, with the name “(1)”, but have not yet utilized “(2)”,
our reference to (1) is transparent. But if we go on to baptize “(1) is false”, with
“(2)”, “(2)” will not transparently refer. '8

It may be unclear how the analysis just given should be extended to quan-
tified liars. Consider a sentence of the form (3x)(Px & Fx), where x is an in-
dividual variable, F is understood to be the falsity predicate and P is a predicate
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holding of one item, namely the sentence (3x)(Px & Fx). How should a sentence
like this be handled? Recall that in standard model theory, the quantifiers man-
age to range over all the objects in the universe of the model via the variables.
More specifically, the variables are impressed into service as surrogate constants.
Let us call a mapping of the variables to the universe of the model an interpre-
tation. Since, in an interpretation a variable acts like a constant, we could ap-
ply the reductio used to show that the constant a in the liar’s paradox Fa does
not refer transparently, directly to the variables. That is, let x be a variable which
in a particular interpretation refers to (3x)(Px & Fx). Then by a reductio, it re-
fers opaquely, consequently the satisfaction conditions of Fx will not utilize what
x refers to, and therefore Fx (and (3x)(Px & Fx)) will be true or false via the
standard satisfaction clauses and the presence (nonextensionally determined) of
Fx in the extension of either the truth predicate or the falsity predicate.

Now for technical reasons, it is more appealing to use constants and go sub-
stitutional over the sentences of the language rather than use variables as
above.!® Thus, instead, we argue that (3x)(Px & Fx) is true if a constant @ may
be found such that (Pa & Fa) is true. But then a, as we have seen before, may
refer opaquely; and in those cases where (3x)(Px & Fx) is a liar’s paradox, it
is easy to see that every constant referring to it must do so only opaquely.

It is appealing to capture the kind of reasoning I have brought to bear on the
paradoxes in the object language itself. To this end, a new piece of syntax is in-
troduced. I call it an ostensive: /. It is a two-place item taking constants in its
first place, sentences in its second place, and its intuitive meaning is: the constant
occurring in its first place refers transparently to the sentence in its second place.
Necessary and sufficient conditions of its truth are: (a) that the constant, a to-
ken of which appears in its first place, is mapped by the model to the sentence,
a token of which appears in its second place, and (b) that the Tarski bicondi-
tionals hold.?® As an example of its application, let @ be a constant. Then
— (a/Fa) is true by the kind of reductio used above. That is, it is a theorem that
a can never refer transparently to Fa. Variables can appear in the first place of
an ostensive, and well-formed formulas which are not sentences can appear in
the second place. Quantification binding such variables is understood substitu-
tionally. The ostensive encodes that bit of metalanguage needed for the theory
of truth and, in fact, substitutional quantification into it supplies the minimal
amount of syntax the theory of truth needs.?!

5 Further discussion requires that I present the model theory. So, in what fol-
lows I give and motivate what I call O-model theory. An O-language (Ostensive-
language) is an extension of the predicate calculus to include designed predicate
constants: T, F, and the ostensive symbol: /.

Definition 1 A domain of an O-language A is a set of objects A which either
contains all the sentences of A, or none of the sentences of A.

This definition excludes certain peculiarities which would arise if domains
were admitted containing only some of the sentences of A.

The model theory is built in stages. First premodels are defined (the name
is self-explanatory):
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Definition 2 A premodel for an O-language A on a domain A of A is the set
containing:

(a) A mapping from the set of n-place predicates to the set of subsets of A”, for
each n such that
(i) T is mapped to a subset of the set of sentences in A, and
(i) F is mapped to the complement of T’s extension relative to the set of sen-
tences of A,
(b) a mapping from the set of constants to A.

Notice that it is perfectly arbitrary what sentences appear in the extensions
of the truth and falsity predicates, provided the extensions are disjoint and ex-
haust the sentences of A. We go on to define satisfaction for premodels and then
single out the desirable “honest premodels”, that is, those premodels in which
the extension of the truth predicate contains exactly those sentences which are
satisfied according to the definition.

Now recall that quantified liars are to be handled substitutionally; thus, in
defining satisfaction, we need to supplement the standard mappings of the vari-
ables onto the domain with an assignment of individual constants to the vari-
ables. An example will make it clear why.

Suppose we want to evaluate the satisfaction value of the wff Tx. Substitu-
tionally speaking, it will be satisfied by an interpretation . if a constant a is
mapped to the same sentence x is mapped to by ¢, and Ta is satisfied by (. But
because of the nonextensionality of the system, it is possible for two individual
constants, ¢ and b, to be mapped to the same sentence x is mapped to, and yet
Ta be satisfied by « while Tb is not. So to make sure the forthcoming definition
of satisfaction is well-defined, an interpretation not only ties a variable to an item
in the domain, but also ties it to some individual constant, should such exist,
mapped to that item.

Definition 3 An interpretation . on a premodel O is a mapping ¢’ from the
set of individual variables to the domain of O, and a partially defined choice
function N\ from the set of individual constants and individual variables to the
set of individual constants. For individual variable v, A selects a member from
the set of constants {a|©(a) = /'(v)}, and is defined on v provided the above set
is nonempty. On the set of individual constants \ is the identity function.

We also need the following:

Definition 4 If ¢ is an interpretation on a premodel 6, vy, ..., v, individual
variables, A(vy,...,v,) a wff, then if \, ’s choice function, is defined on all v;,
the sentence obtained by substituting A (v;) for v; free in A is an w-instance of A.

At last we can give the definition of satisfaction:
Definition 5 Let « be an interpretation on a premodel O.

(@) Pv,...v,, an n-place predicate variable followed by a string of length n of
individual variables and/or individual constants, is satisfied if the sequence
of items of A which are the images of the individuals under " and/or O re-
spectively in the order of v;,..., v, is in P’s extension.

(b) —A, where A4 is a wff, is satisfied if A4 is not satisfied.
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() (Av B), where A and B are wffs, is satisfied if either A or B is satisfied.

(d1) (a/A), where A is a wff and a is an individual constant, is satisfied if there
is an t-instance A’ of 4 which is assigned to a by O, and either Ta and A4’
are both in T’s extension or both in F’s extension.

(d2) (x/A), where x is an individual variable, and A is a wff, is satisfied if \ (x)
is defined, and ((A(x)/A) is satisfied.

(el) Ta, where a is an individual constant, is satisfied if there is a sentence 4
in T’s extension, and (a/A4) is in T’s extension; or A4 is a sentence assigned
by O to a, (a/A) is not in T’s extension, and either Ta is in T’s extension
or both Ta and Fa are in F’s extension.

(e2) Tx, where x is an individual variable, is satisfied if A\ (x) is defined, and
TA(x) is satisfied.

(f1) Fa, where a is an individual constant, is satisfied if there is a sentence A in
F’s extension and (a/A) is in T’s extension; or A is a sentence assigned by
O to a, (a/A) is not in T’s extension, Ta is not in T’s extension and Fa is
in T’s extension.

(f2) Fx, where x is an individual variable, is satisfied if \(x) is defined, and
FA(x) is satisfied.

(g) (3v)A, where v is an individual variable and A a wff, is satisfied if either
(i) there is an interpretation . * on A which disagrees with « on at most '(v)

and A (v) (if defined), and .* satisfies A with respect to © or
(ii) a is an individual constant and O satisfies the wff gotten from A by sub-
stituting a for all free occurrences of v in A.

Most of this is standard looking. Notice that the truth conditions (g) for
quantified statements are both substitutional and objectual. The point of clause
(d1) is precisely to give the truth conditions for ostensives we have attributed to
them above. Where x is a variable, (d2), (e2), and (f2) give the truth conditions
for wffs of the form Tx, Fx, and (x/A4) substitutionally in terms of A\ (x). Where
a is an individual constant, (el) and (f1) give the truth conditions of Ta and Fa
in terms of the Tarski biconditionals when ostensives are satisfied, and give them
in terms of their own presence in the extension of the truth or falsity predicate
otherwise. Finally, we want to rule out cases where, for a constant a, Ta and Fa
are both in T’s extension or in F’s extension. (e1) and (f2) rule these cases out
by preventing such premodels from being honest.

Definition 6 An honest premodel for an O-language A on a domain A is a
premodel for A on A which satisfies the additional condition: if the extension
of T or F is nonempty, the subset of sentences of A that T is mapped to is the
set of all the sentences satisfied by the premodel.

A definition is not valuable if it fails to pick anything out. So we want to
know that honest premodels exist. More than that, if they are going to serve as
a basis for a model theory, we want to know that enough of them exist. The fol-
lowing theorem satisfies us on both counts:

Theorem 7 Suppose A is an arbitrary domain of an O-language A, and let
©’ be a mapping from the set of constants into A and from the set of n-place
predicate variables to the set of subsets of A". Then there is an honest premodel
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O on A which agrees with © on its mappings of the individual constants and
predicate variables into A.

Theorem 7 tells us not only that honest premodels exist but that the extra
structure they contain does not make the model theory forthcoming any less gen-
eral than the model theory of the standard predicate calculus. This means that
honest premodels contain no hidden restrictions on how much syntactic self-
description is compatible with honesty. In fact, Theorem 7 coupled with the fact
that the axioms and rules of derivation of the standard predicate calculus are
valid in O-model theory, will show that we have a conservative extension of the
standard predicate calculus.

6 This looks like a nice place to stop. The extension of the truth predicate
in honest premodels contains precisely the sentences satisfied by the model, and
the definition of honesty does not place any restrictions on how constants and
predicate variables may be mapped into an arbitrary domain. However, there are
two complications that make the choice of honest premodels not entirely satis-
factory for the model theory. We take the easier one first. Generally, the set of
models for a consistent set of sentences is supposed to be the set of possibilities
(set-theoretically construed) consistent with those sentences. In a situation where
the sentences of the language itself are among the items describable by a set of
sentences, one kind of possibility currently ruled out is that where the language
itself is augmented with additional vocabulary (individual constants). Thus it
seems desirable to increase the range of models to include those where the O-
language A has additional vocabulary.?? The next two definitions carry this out.

Definition 8 Let A and A* be two O-languages. We say that A* is at least as
articulate as A iff the set of individual constants of A is a subset of the set of in-
dividual constants of A*.

Definition 9 An O-model for an O-language A on a domain A is an honest
premodel on A for a language A* which is at least as articulate as A. A primary
O-model for an O-language A is an honest premodel of A.

Honest premodels are not entirely satisfactory for another reason. They do
not, as it were, force a name to refer transparently to a sentence if it can so re-
fer. For example, take a perfectly innocuous sentence such as Pa, where P is a
one-place predicate variable, and consider a constant b which refers to Pa. There
are honest premodels in which Pa is true but (b/Pa) is false, merely because Th
is in the extension of the falsity predicate while Fb is in the extension of the truth
predicate. Nothing so far rules out such honest premodels. Notice that how
“truthlike” the truth predicate is in an honest premodel turns exactly on how
many ostensives are satisfied in the models: Tarski biconditionals containing sen-
tences and constants mapped to such sentences do not hold if the ostensives con-
taining those sentences and constants are not satisfied.

Insofar as what is being offered here is a general axiomatizable framework
for studying languages with their own truth predicate, and the kinds of pathol-
ogy that such languages give rise to, this is not a drawback for two reasons. First,
the model theory being offered properly includes all the desirable models —if they
can be picked out easily then it is a simple matter of supplying additional con-
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straints (either model-theoretically or axiomatically) to honest premodels and
then studying the more restricted theory.?® Second, the purpose of this paper is
to supply a general axiomatizable framework for studying the theory of truth in
a sententially bivalent framework. I suspect that sharper characterizations of the
desirable models simply are not axiomatizable?*; more accurately, it may turn
out that what is offered here is maximally satisfactory in first-order terms; that
is, model-theoretic methods of restricting the class of honest premodels or ax-
iomatic restrictions on the class of models may cost us either axiomatizability or
model-theoretic generality.?® As before, should this be false, the framework here
is easily modified.

I shall illustrate exactly the worries of the last paragraph by offering one kind
of intuitively desirable restriction and showing what costs it involves. We noted
earlier that the truthlikeness of the truth predicate turns directly on the number
of ostensives satisfied. Why not then place a maximality constraint on honest
premodels? An honest premodel is not maximal if it is identical to another, ex-
cept for additional ostensives that are satisfied (and some shifting of the truth
values of sentences of the form Ta and Fa).

Definition 10 A maximally honest premodel © for an O-language A on a do-
main A is an honest premodel for A on A which satisfies the additional condi-
tion: let ©* be an honest premodel for A on the domain A which agrees with ©
on the mappings of the predicate variables and individual constants, and satis-
fies every ostensive sentence satisfied in ©. Then every ostensive sentence satis-
fied in ©* is satisfied in ©.

The maximal transparency condition, although intuitively plausible, may still
seem not to do enough. For consider an innocuous sentence such as Pa, and sup-
pose there is a model where b is mapped to Pa and Pa is true. Intuitively per-
haps (if we reject temporal priority for a kind of semantic priority), nothing
should stop (b/Pa) from being satisfied in that model. But should the sentence
(c/Fb v Fc) be satisfied in it, (b/Pa) will not be satisfied. Such models exist, and
further conditions must be stipulated to rule them out.?

But self-referential pathology does still more damage to the maximality con-
straint. We need to know that this constraint, and indeed any constraint we might
dream up, does not restrict the model theory in unacceptable ways. In particu-
lar, we want to know that a version of Theorem 7 holds for maximally honest
premodels. Unfortunately, it does not:

Theorem 11 There is an O-language A, a domain A, and a standard mapping
O on A such that there is no maximal primary O-model which agrees with © on
the mappings of the individual constants and predicate variables of A.

Proof sketch: Consider an O-language A with countably many constants and
countably many one-place predicate variables P;, and consider a domain con-
taining only the sentences of A. Single out a particular individual variable: x. A
nice sentence of A is a sentence of the form (3x)(P;x & Fx). A nice mapping is
a bijection of the set of constants of A onto the set of nice sentences. Now con-
sider the set M* of nice sentences. A nasty mapping is a mapping of the predi-
cate variables to the cofinite sets of sentences of M* so that each cofinite set has
one and only one predicate variable mapped to it and if P; is mapped to a
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cofinite set, then (3x)(P;x & Fx) is in that set. Such mappings can be easily
seen to exist.

Now prove that given this domain, a nice mapping of the constants to the
domain and a corresponding nasty mapping of the predicate variables to the do-
main, no maximally honest premodel exists which agrees with these mappings.
First notice that for any finite set of nice sentences, there is a primary O-model
agreeing with the nice and nasty mappings in which precisely the sentences of M*
containing those nice sentences are satisfied. Next, notice that in no primary O-
model agreeing with these mapping can a countably infinite collection of osten-
sives be satisfied. This gives us the desired result.?’

7 I now want to give the axioms, so a few definitions are needed. An implicit
terminological convention here is that for wff A, and individual variables and/or
individual constants vy, ..., U,, U1,..., U, A[#;:0;] is the result of free-substi-
tuting v; for u; in A, for all i.

Definition 12 Two wifs B(vy,...,v,) and A are alphabetic variants if
Uy,..., Uy, VUy,...0V,are individual constants and/or individual variables, A4 is
gotten from B by substituting u; for free v; in B, no instance of u; so substituted
is bound in B, and further for all i, not both u; and v; are individual constants

Definition 13 If uy,...,u, are individual variables then we call (Qu,) ...
(3u,) an existential prefix. We say that u,,...,u, occur in (3u;) ... (3u,).

Definition 14 If u and v are individual variables, By, ..., B, wffs, u;,...,u,
individual variables such that u; is u if B; does not contain u free, A;,...,A,
wffs in which u occurs freely, v,..., v, individuals which differ from u,
L,...,L, (possibly null) existential prefixes in which # does not occur, and
ri,..., I, existential prefixes such that u and v; do not occur in I} although v
does, then any wff of the form (u)(Tuv Fuv X(u/By) v...v E,(u,/B,) v
Li((v/A)) & (v/A[u:v ) v...v E,(vA,) & (V/A,,[u:v,]))) is a covering
wff.

These are called covering wffs. because no closure of any such wff can hold
in any model in which an item (sentence or otherwise) has no individual constant
mapped to it. This is simply because of the substitutional nature of the satisfac-
tion conditions for truth predicates and ostensives. Notice that the variable u;
in the closure of a covering wff may be captured either by the existential prefix
L, the quantifier (u), or by a closure quantifier, depending on what it is. Cov-
ering wffs also require the domain to contain sentences, and in models satisfy-
ing the closure of a covering wff in which no ostensives are satisfied there can
only be sentences in the domain.

Definition 15 If u and v are individual variables, By,..., B, wffs such
that none of the B;’s contain u free, Ay,. .., A,, wffs in which u occurs freely,
U1,. - -, Uy, individuals which differ from u, £, ..., X, (possibly null) existential
prefixes in which u does not occur, and Li,...,L;, existential prefixes such
that u and v; do not occur in I} although v does, then any wff of the form (u)
(—Tu & —Fu)vE((u/By) v...v Z,(u/B,) v Ei((v/A,) & (VA [u:v])) v...v
L. ((v/A,) & (vV/A,,[u:v,]))) is an uncovering wff.
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These are called uncovering wffs because in models containing sentences, and
in which the closure of such a wff is satisfied, most of the sentences in the do-
main cannot have constants mapped to them. Notice that closures of uncover-
ing wffs are trivially satisfied in models containing no sentences.

We can now give the axioms and inference rules.

Inference rules:

(R1) For wffs A and B, if a closure of A and closure of (4 = B) are the-
orems, then any closure of B is a theorem.

(R2) For wffs A and B and individual variable v, from any closure of (4 =
B) we may deduce any closure of ((3v)A = B), provided that v does not occur
free in B.

Axioms proper:

(A1) If A is a closure of a tautology-substitution instance, then A is an
axiom.

(A2) For an individual variable v, and wffs A and B such that B differs from
A in that every free occurrence of v has been replaced by an individual constant
or individual variable u, and further, A has the same number of free occurrences
of variables as B if u is an individual variable, then any closure of

B= (3v)A

is an axiom.

(A3) If A is a wff and v is an individual variable then any closure of
(v)((v/A) = ((Tvv Fv) & (Tve= A)))

is an axiom.

(A4) If v is an individual variable then
(v) — (Tv & Fv)
is an axiom.

(AS) If v is an individual variable, A and B distinct wffs which are not al-
Dbhabetic variants of each other, then any closure of

(v) — (v/A) & (v/B))
is an axiom.
(A6) If u and v are individual variables, u,, . .., u,, n individual variables
and/or individual constants among which u occurs, vy,.., U,, n individual vari-
ables and/or individual constants among which v occurs, and the u;’s and v;’s

such that for all u; which are not u, u; is v; and for u; which are u, v; is either u
or v, A is any wff, and P is any n-place predicate variable, then any closure of

(u/A) & (v/A)) = (Puy...u,= Pvy...v,)

is an axiom.
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(A7 If A, B are wffs in which the individual variable u appears free, v and
w individual variables, T an existential prefix in which the variable x appears but
not v and w, then any closure of

Av)((w)(Alu:w] = E(x/Blu:w]) & (x/Blu:v]))) & —Alu:v]) = —(3u)A
is an axiom.
(A8) If A is a covering wff, and B is an uncovering wff, then any closure of

—(A & B)
is an axiom.

The meaning of the axioms, strictly speaking, must be read off the model the-
ory. Indeed, once the motivations for the model theory have been established,
and clearly understood, there should be no surprises in the content of the axioms.
One must keep in mind, of course, that quantification into ostensives or semantic
predicates must be understood substitutionally, since this contributes to the trick-
iness of interpreting the axioms. A substitutional reading is metalinguistic (the
constant that goes into the slot gets mentioned) but an objectual reading is not
(the constant that goes into the slot gets used). Let us take them one by one: (A3)
tells us that necessary conditions for any constant @ transparently referring to
a sentence A are: either Ta or Fa is satisfied, and the Tarski biconditional with
respect to @ and A must also be satisfied. (A4) tells us that nothing is both true
and false. (AS) tells us that no constant can transparently refer to more than one
sentence. (A6) gives us a version of Leibniz’s Law. It can fail, as already pointed
out, for ostensives and for semantic predicates, but it cannot fail otherwise.?®
(A7) looks more complicated. We decompose it as follows. Consider the clause
L((x/Blu:w]) & (x/Blu:v])), and consider it free only for w. Then it is satisfied
only for those interpretations where the constant substituted for w is the same
as that substituted for v. Thus the clause (3v) (W) (A[u:w] = E(x/Blu:w]) &
(x/Blu:v]))) & —A[u:v]) tells us that A[u:w] will be satisfied at most by
interpretations where the same constant is substituted for w as is substituted
for v. The entire axiom therefore says that if A[u:w] is not satisfied by such a
constant, then it cannot be satisfied by anything. (A8) is self-explanatory given
the glosses for Definitions 14 and 15.

These axioms suffice to single out those sentences true in every O-model:

Theorem 16 Let an O-language A be given. Inference rules (R1) and (R2) are
truth preserving with respect to O-model theory, and each instance of axioms
(A1)-(A8) hold in any O-model of A.

Theorem 17 If Q is a consistent set of sentences of A with respect to (R1),
(R2), (A1)-(AB), then there is an O-model © such that every sentence of A is satis-
fied in ©.

What these axioms do not do (nor have they been designed to do) is char-
acterize honest premodels relative to premodels.?® That is, there are premodels
which are not honest in which all the axioms (A1)-(A8) are satisfied. This is sim-
ply because the satisfaction conditions only connect membership in the seman-
tic predicates with satisfaction when ostensives are not satisfied, and the axioms
are largely concerned with the circumstances under which ostensives are satisfied.
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But therefore the following corollary follows from Theorem 17:

Corollary 18 If © is a premodel in which all instances of axioms (A1)-(A8)
are satisfied, then there is an O-model ©' which is elementarily equivalent to ©.

8 An ideal hinted at in Kripke’s approach and more or less adhered to by oth-
ers in the field is a kind of representation requirement on a theory of truth. If
one constructs a framework for self-referential languages, it seems that it should
be possible to represent the full array of “peculiar” sentences in that framework.
Not to be able to do so is prima facie evidence that the theory is self-referential
only in a Pickwickian sense.

There are two sides to this issue for our approach. First, there is the model
theory. That certain kinds of pathology are representable must be shown by con-
sistency theorems — by showing that certain kinds of models exist. But in addi-
tion, the ostensives supply a bit of metalanguage in the language itself, and using
them we can represent the kind of reasoning involved when pathology (or just
certain kinds of virtuous circular reasoning) is present. I am going to focus on
both kinds of phenomena here, although since consistency theorems are a bit
more involved, I will tend to assert without proof the existence of models of var-
ious kinds.

Let us start with the Liar. I have stated that no constant & can refer trans-
parently to Fa. This follows from the axioms:3°

(1) (a/Fa)= ((Tav Fa) & (Ta< Fa)) (instantiation of a for v

in (A3))
2) —(Ta & Fa) (instantiation of @ for v in (A4))
(3) —(a/Fa) (application of tautology, m.p. to (1) and (2))

Liar’s cycles are also popular examples of pathology. These are constructed
with n constants ay,...,a, where each a;, i < n, refers to T}, ,a;,,, a, refers
to T}a;, and where for each i, T} may be either F or T. If an even number
of T?Ps are F’s, the sentence ((a,/T3a2) &...& (a,/Tia,)) is consistent, oth-
erwise, using reasoning similar to that applied to the Liar, we can show that
—((ay/T3a;) &...& (a,/T}a;)) is a theorem. Furthermore, it can be shown
that for any n — 1 of the ostensives, there is a model in which they are all satis-
fied although, of course, the remaining ostensive is not.

Contingent liars also occur here. For example, (a/(Fa v (3x)Px)) will be
satisfied in some O-models?! where something is a P and will not be satisfied in
any model where nothing is a P.

Truth tellers are a phenomenon which are studied entirely through consis-
tency proofs. There are models in which ((a/Tae) & Ta) is satisfied and mod-
els in which ((a/Ta) & —Ta) is satisfied. Similarly, there are models satisfying
the infinite set of sentences: {(a,/Ta,),...,(a,/Ta,.,),...} where, for all i,
Ta; are all true or all false.

Finally, let us review Gupta’s puzzle:*? imagine that John is not running al-
though Peter is running, and consider two sets of claims:

R’s claims: (a) John is running.
(b) All of the claims made by P are true.
(c) At least one of the claims made by P is false.
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P’s claims: (d) Peter is running.
(e) At most one of the claims made by R is true.

Now Gupta has observed that we normally reason as follows. First, since (b)
and (c) contradict each other, at most one can be true. Further, since (a) is false,
(e) must be true. Finally, therefore, (c) is false, and (b) is true. To see how my
approach treats this case, let us use “a”,...,“e” as names, and assume the fol-
lowing ostensives are satisfied: (a/Rj), (b/(Td & Te)), (c/(Fd v Fe)), (d/Rp),
(e/((Ta & Fb & Fc) v (Fa & Tb & Fc) v (Fa & Fb & Tc)).*? The point of
course is that the intuitive reasoning described above takes it for granted that
there is no problem with transparent reference to any of these sentences by the
constants chosen. If we let A through E indicate respectively each of the osten-
sives above, then

(1) (A&...& E & —Rj & Rp) = (Tb & Fc & Te) is a theorem,
and
2) (A &...& E & —Rj & Rp) is consistent.

What is nice is that the intuitive reasoning described by Gupta can be closely
imitated by the proof of (1), suggesting that the axioms of the system are quite
natural.

9 I have claimed above that O-model theory provides a general framework
in which one can study the consequences of a variety of approaches to the logic
of truth. On the other hand, it might seem that the ostension operator is too com-
plicated and idiosyncratic (vis-a-vis other approaches) for this to be true. In point
of fact, my claim is that the model theory is general enough to contain (pretty
much) all the desirable classes of interpreted languages containing their own truth
predicate in the classical setting. As an indication of this fact, I go on to sketch
how the technique used in the Gupta/Herzberger approach can be employed here
to pick out a natural subclass of O-models. Their approach turns on exploiting
the differences between the set of sentences satisfied in a model and the set of
sentences in the extension of the truth predicate in that model. Since O-models
do not have this property, we cannot directly apply the semi-inductive construc-
tion to O-models. Instead we define a mapping from a suitably modified class
of Gupta/Herzberger models to O-model theory.

Arbitrary premodels in O-model theory allow the predicates and the con-
stants to be mapped to the sentences of the language in any way at all. In this
sense, O-model theory is impredicative. But since the Gupta/Herzberger ap-
proach does not employ the ostensive, we will consider syntactic theories, and
truth theories which exclude the ostensive:3

Definition 19 A predicative premodel for an O-language A on a domain A
is defined similarly to a premodel except condition (b) is replaced by:

(b’) A mapping from the set of constants to A such that no constant is mapped
to any sentence containing an ostensive. We call a mapping of this sort from
the set of constants to A a predicative mapping.
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Notice that this effectively bars the language from semantic recognition of
sentences containing ostensives even though the truth predicates still (and must)
contain such sentences. This is because all semantic reference occurs substitution-
ally via the constants. Since predicative premodels are a strict subclass of the class
of premodels, the other definitions can remain the same.

Predicative O-model theory can be characterized by two additional axioms:

Definition 20
(A9) If A is a covering wff then any closure of
—A
is a predicative axiom.

(A10) If uis an individual variable, and A4 is any wff containing ostensive sym-
bols then any closure of

—(Ju)(u/A)
is a predicative axiom.

(A9) is necessary because whenever any sentences of an O-language are in the
domain, all of them are. But in predicative O-models, no constants are mapped
to the sentences containing ostensives and so covering wffs are never satisfied
in such models. (A10), of course, just states that transparent reference to sen-
tences containing the ostensive operator never holds.

We have the following:

Theorem 21 Let an O-language A be given. Each instance of Axioms (A9)
and (A10) holds in any predicative O-model.

Theorem 22 If Q is a consistent set of sentences of with respect to (R1), (R2),
(A1)-(A10), then there is a predicative O-model © such that every sentence of
Q is satisfied in ©. Furthermore, © can be taken to be maximal.

Notice the following. Although O-languages have the capacity to recognize
when a constant transparently refers to a sentence in a domain, they have no ca-
pacity (on pain of contradiction) to mark out when a constant is merely mapped
opaquely to a sentence in a domain. Consequently, although axioms (A9) and
(A10) hold in predicative O-models and a completeness result regarding such
models holds, it is not that case that every O-model in which such axioms hold
is predicative. For example, there are honest premodels in which a constant a is
mapped to an ostensive S (and a is the only such constant to be mapped to a sen-
tence containing an ostensive operator) but (a/S) is not satisfied. (A9) and (A10)
are satisfied in such a model. The proof of Theorem 22 therefore implies the fol-
lowing:

Corollary 23 Let © be an O-model in which all instances of Axioms (A9) and
(A10) are satisfied. Then there is a predicative maximal O-model ©' such that
O and ©’ are elementarily equivalent.

There are several differences between O-models and the Gupta/Herzberger
models that have to be ironed out before anything like an embedding theorem
can be shown. First, since the truth predicate is substitutional in O-models, O-
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model theory will not recognize a sentence if it does not have a constant mapped
to it. So we are only going to pay attention to those O-models in which every sen-
tence without an ostensive has at least one constant mapped to it:’

Definition 24 A well-covered predicative premodel for an O-language A on
a domain A is defined similarly to a predicative premodel except that condition
(b’) is replaced by:

(b”) A mapping from the set of constants to A such that no constant is mapped
to any sentence containing an ostensive, although every other sentence of
A has at least one constant mapped to it.

Because of two largely notional matters, well-covered predicative O-models
are still not quite right for embedding the models generated on the Gupta/
Herzberger approach. First, as the constructions are presented, a separate fal-
sity predicate is not used —rather, “—T” suffices. Clearly, the construction can
easily be modified to accommodate a falsity predicate. But there is an additional
complication. Since either all sentences of the O-language are contained in
the domain or none of them are, all predicative O-models act as if they contain
nonlinguistic items.3¢ Consequently we consider a slightly modified Gupta/
Herzberger approach where: (a) two semantic predicates are defined: T and F,
and (b) the domains contain a countable number of items which are in neither
the extension of the truth predicate or the falsity predicate.

With these caveats, we have the following theorem:

Theorem 25 Let A be a language without ostensives, but with the predicates:
T and F. Let © be a model generated at any stage utilizing any semi-inductive
construction in the Gupta/Herzberger approach, where © contains a countable
number of nonsentences in its domain and where every sentence has at least one
constant mapped to it. Then there is an O-model ©' which has the same domain
as ©, and which agrees with © on its mappings of the constants and the predi-
cates (including the truth predicates) to the domain.

Proof Sketch: We need only expand the extension of the truth predicates to con-
tain sentences with ostensives. This is done by defining the extension of the truth
predicate along the lines of the satisfaction clauses in Definition 5.

We'll call the Gupta/Herzberger models mentioned in the above theorem
GH-models and the O-models mentioned GH’-models. We make two observa-
tions:

(1) In general it is not the case that a sentence is satisfied in a GH-model ©
iff it is satisfied in the GH’-model ©’. This is simply because every sen-
tence in the extension of the truth predicate of an O-model is satisfied,
whereas this is not true, in general, in a GH-model. However, in GH-
models © which are best candidates (see Gupta’s [5], p. 221), it is true
that every stable sentence is satisfied in O iff it is in the truth predicate
of 6. Furthermore, it is true that every stable sentence in O is transpar-
ently referred to in ©’. Actually, in general, usually a much larger class
of sentences than the stable set of sentences is transparently referred to
in ©'.
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(2) One might have hoped for a result something like this: For © a best can-
didate, ©’ in Theorem 25 may be taken to be maximal. Unfortunately,
slightly modifying the proof of Theorem 11 shows that this is not true.

10 It is time to give an overview of what has been done here and draw a few
tentative conclusions. Ultimately, I am interested in the grand project of provid-
ing formal models of self-referential languages. I understand such languages to
be ones which can (largely) describe their own semantics and syntax. What such
languages can look like, what restrictions must be placed on them, is completely
open. What has been done here is something quite a bit narrower: the more
manageable project of providing formal models for languages with their own
truth predicates has been tackled instead. A broad framework (a model theory)
and axioms that are complete with respect to the framework have been supplied.

How does this relate to the broader project? Those who like to use the stan-
dard predicate calculus as a base on which to build additional structure will find
this approach congenial. Those who do not may still find much of interest here
since it is possible that moves made here may be grafted onto approaches quite
different otherwise.

How significant is the fact that the model theory is axiomatizable? At one
time the answer would have been regarded as obvious, but in the current model-
theoretic atmosphere, it is sometimes almost suggested that for a mathematical
structure to be axiomatizable is a weakness.

Perhaps this is true here. But let us recall that it has been argued that there
is a difference between a subject matter which is complete and one which is
incomplete —and that this marks where logic ends and mathematics begins.>” It
has also been claimed that if our theorems for a subject matter are outrun by the
subject matter, there is a sense in which we do not have a full grasp on what we
are talking about.

Be that as it may, let me suggest a weaker position. Perhaps it is controver-
sial to draw the border between Jogic and something else on the basis of com-
pleteness or incompleteness, especially if higher-order principles are employed
in “reasoning”. Nevertheless, the distinction marks something important and
rather natural — perhaps the boundary line for concepts totally accessible to us
(epistemologically), and certainly it could be that the concept of truth is simple
enough to belong among these concepts. As I pointed out in Section 1, this pos-
sibility can be explored only if the capacity of a language to describe its own syn-
tax is relativized to a model.3® So, for example, it is not required that in every
model every sentence can be referred to. But this requirement really is indepen-
dent of the theory of truth: often self-referential reasoning involving truth
presupposes only limited capacity to refer to sentences, e.g., the reasoning in-
volved in Gupta’s puzzle holds in models in which only the five sentences rele-
vant are referred to. The point, of course, is not that such description is called
for sometimes; rather, it is that the theory of truth does not presuppose it. This
suggests that truth really is part of logic. The theory fits comfortably with stan-
dard logic and actually, it and the small bit of metalanguage it requires can be
regarded as a natural extension of the first-order predicate calculus.>®

It may actually be that no natural language has a built-in capacity for total
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syntactic self-description. If so, this can supply further motivation for the broad-
ening of the model theory to include models with strictly richer vocabulary than
that of the language they are models of. When needed, we forge additional vo-
cabulary. We may even make assertions now that only hold if our language is
augmented with additional vocabulary. In this odd sense natural languages may
be regarded as openended. But none of this affects the truth predicate.

It might be argued that crucial to truth is the capacity for semantic ascent,
and on this approach, precisely this natural element has been eliminated. For,
in general, one needs to know that transparent reference to a sentence succeeds
before one can make assertions about its truth. That is, if the sentence S is named
by the constant a, one needs to assert not only Ta, but (a/S) as well. This in turn
implies that the truth of sentences can only be asserted one at a time, and pro-
vided the sentences are listed explicitly.

In fact there are two issues that have been jumbled together in the above ob-
jection and they should be separated carefully. First off, there is the question of
whether the respective notions of “stable”, “grounded”, and “transparently re-
ferred to by a constant” are expressible in the language. Generally, if the language
is strengthened so that not only can a sentence’s truth value be asserted, but also
its unproblematic status, one faces the spector of the strengthened liar. For
example, on Kripke’s approach, one needs to know that one’s assertions are
grounded, but only if the object language is very weak can such a predicate be
explicitly introduced into it (Gupta and Martin [6]). Similarly, on the Gupta/
Herzberger approach, one needs to know that one’s assertions are stable. Such
a predicate can be introduced into the object language and treated much as truth
is, but it will have problems similar to those that motivate us to introduce the
predicate itself in the first place. With ostensives, one can assert the un-
problematic status of sentences in the object language itself but only on an in-
dividual basis. Strengthening matters will result in inconsistency just as on other
approaches. For example, it is easy to see that if a semantic predicate TR were
introduced impredicatively, where TRa held only if @ referred transparently to
some sentence, then the resulting system would be inconsistent. Once one accepts
languages which contain (something like) their own truth predicate, the world
has been made unsafe for semantic ascent. Asserting facts about truth can get
us in trouble (force us to assert problematical sentences).

But there is another point to be made here. Both the Gupta/Herzberger ap-
proach and Kripke’s approach make semantic ascent safe insofar as, if one has
managed somehow to get his hands on a (possibly infinite) collection of un-
problematic sentences (grounded, stable, etc.), one can then go on to assert other
sentences about the truth values of the definable*® subclasses of these sentences
and such sentences will be unproblematical as well. Of course, as I have noted
immediately above, this kind of fact is not generally expressible in the language
itself, but it is true for all that. However, in O-model theory, this fact is not true
simply because it need not be the case that the additional sentences are transpar-
ently referred to.

As I have said before, O-model theory is a general framework, and I have
resisted any further specific structural constraints on O-models simply because
I am unsure which approach to this kind of problem is the best one. Certainly
I have already (in Section 9) given indications that O-model theory is rich enough



THEORY OF TRUTH 471

to supply sufficient models for more restricted model theories (such as those gen-
erated on the Gupta/Herzberger approach). But whether that is the best way to
go here, and what proof theoretic properties such restricted model theories have
is still open.*!

As far as the value of O-model theory for research is concerned, I have al-
ready pointed out that O-model theory is a framework that supplies a variety of
tools for studying the results of further constraints on primary O-models. This
is simply because research can proceed along two fronts: axiomatically and model
theoretically. This offers a variety of classification schemes for possible models.

I should also remind the reader that O-models also turn out to be quite gen-
eral in two other respects. First, there is the matter of syntax,*? and, secondly,
there is the nonextensionality of the system. Regarding the second point, it is
worth noting that perhaps the primary O-models corresponding to the best can-
didates on the Gupta/Herzberger approach are not the most interesting to be
found in O-model theory. First of all, the theory of syntax in such a model does
not recognize the existence of ostensives. Secondly, the truth predicate in such
models is extensional, and generally the class of problematical sentences is smaller
when the truth predicate is not extensional. On the other hand, they may be the
broadest class of primary O-models where: (i) the truth predicate is extensional,
and the syntax does not recognize ostensives, but where (ii) local determinabil-
ity is not violated for unproblematical sentences.*®
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NOTES

1. However, I should add that Herzberger has taken some steps in the direction of
codifying the laws the truth predicate obeys on his approach (see [7]). Also, more
recently, Michael Kremer has offered a logic of truth based on Kripke’s approach
(see [11]).

2. See Note 42 below, where I discuss this explicitly. Of course, the incompleteness of
syntax is hardly the only obstacle to an attempt to axiomatize the truth predicate.
If one does not fix the syntactic capacity of all the interpreted languages in advance,
then one must have some way of expressing in the interpreted language itself some-
thing like the connection between the names in a model and the sentences they are
names of (without, of course, landing in paradoxes as a result) so that, for exam-
ple, one can express Tarski biconditionals. E.g., a look at Gupta’s Definition 1 on
p. 180 of [5] shows that he does not fix in advance the capacity of an interpreted
language to describe its own syntax, but as a result a straightforward axiomatiza-
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tion of, say, the best candidates, if possible, might not reveal anything particularly
interesting about the truth predicate. There are also other complications pertaining
to axiomatizibility which I discuss further in Sections 6, 9, and 10.

I have described Tarski-reducibility intuitively, and consequently, vaguely. In point
of fact, the term “fix” can be cashed out in any number of ways which are not equiv-
alent. For example, in certain languages without quantification, a redundancy the-
ory of truth will do the job. Otherwise, if the language’s capacity to describe its own
syntax is sufficiently restricted, Tarski’s approach will do. For still stronger lan-
guages, both the minimal and the largest intrinsic fixed points of Kripke’s approach
exemplify the intuition by excluding the sentences which violate Tarski reducibility.
The latter fixed point focuses on the arbitrariness of the truth values (vis-a-vis the
nonsemantic facts) of the sentences to be excluded whereas the former focuses on
the largest class of sentences whose truth values are forced on them by a certain con-
struction and the nonsemantic facts.

On Kripke-type approaches, the intuition of Tarski-reducibility can be saved by
recasting it as applying to all sentences of the language that “express propositions”.
Similarly, intuitions about bivalence may be saved by recasting them in terms of
propositions. See Notes 5 and 7 below.

. For the moment, I include under the rubric “Kripke-style”, Gupta and Herzberger’s

approaches as well as Kripke’s. I am being very sketchy in my discussion of all three
approaches since they are so amply discussed elsewhere (e.g., Kripke’s [12], Gupta’s
[5], Herzberger’s [7] and [9], Parsons’ [14], Yablo’s [21], etc., etc.).

. Several kinds of bivalence come into play here. First there is sentential bivalence and

propositional bivalence, both taken in a narrow sense. They are to be distinguished
in that the truth bearers are sentences in the former, whereas the truth bearers are
propositions in the latter. However, I prefer to take sentential bivalence in the
broader sense as Quine understands it in [15], that is, as requiring the satisfaction
conditions on open sentences to be two-valued. Notice that it is easy to think of
weird semantic rules which make any language that obeys them sententially biva-
lent in the broad sense, but not in the narrow; although this is impossible if the lan-
guage contains its own truth predicate. Since I am concerning myself with the truth
predicate alone, I speak of sentential bivalence in the text in the narrower sense but
help myself to Quine’s position, which applies, strictly speaking, to sentential biva-
lence construed widely.

. Notoriously, Tarski sidestepped the issue by fiat. His languages, at least as tradi-

tionally construed, are both sententially bivalent and composed entirely of Tarski-
reducible sentences. Of course, this is relative to the metalanguage.

. An important caveat is necessary here. I have been arguing here that truth tellers ex-

ert pressure to give up either Tarski-reducibility or sentential bivalence in the clas-
sical setting. Nothing in the discussion here should suggest that doing so is sufficient
to solve the Liar’s Paradox, as the existence of the Strengthened Liar and the fact
that the paradox is derivable in intuitionistic or minimal logic makes clear.
These facts show more, of course. They show that it is relevant how expressively
complete the languages is (vis-a-vis the set of truth value functions). This is no sur-
prise since problems with the Liar’s Paradox emerge via a derivation (of some sort).
Sometimes this point is described in terms of possible restrictions on negation, but
due to the (in general) holistic interplay of the connectives in derivations, this is not
quite accurate. In any case, one may acquiesce in syntactic restrictions but still re-
gard the semantics of the language as bivalent. This point clearly applies to what I
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have said in the text about Kripke’s approach. First, I have laid the stress on sen-
tential bivalence, but in doing so I am only being a kneejerk Quinean. If we take
groundedness in Kripke’s approach as criterial for propositionhood, it is doubtful
that bivalence (in the serious philosophical sense) is lost. What value sentential biva-
lence has over propositional bivalence is a largely technical question which is still
open. Second, sentential bivalence can be captured in Kripke’s approach by “clos-
ing off” fixed points. There are objections to this, largely turning on the deviation
of the resulting system from bivalent intuitions, but I forgo details since they are am-
ply supplied in the literature (see, e.g., Parsons [14] and Gupta [5]).

. It is odd, and worth noting, that Gupta’s technical construction does not quite

match the philosophical motivation he offers for it. The revision procedure really
is a construction of a set of models in which the truth values of one set of sentences
are eventually fixed while the truth values of the remaining sentences are left to cy-
cle as long as the construction is continued. Notice how this is in striking contrast
to, say, Intuitionism, where the provability concept is genuinely open to revision.

Gupta, of course, is aware of this and seems to hang on to the revision picture
anyway because of the appearance of the technique used to construct the desirable
set of models. But perhaps the desirable models can be characterized in some other
way, and in that case there really is no reason to regard the concept of truth as lack-
ing an “application procedure”.

Philosophically I think there are roughly two options in interpreting these kinds
of constructions. We can regard the resulting models as genuinely gappy (or vague),
but nicer in certain respects than the Kripke models, or we can kick the question of
which model “really” captures the truth predicate out of semantics and into episte-
mology, as I argue we should. Doing so does “result in a loss of connection between
truth and assertion” as Gupta argues ([S], pp. 229-230), but only on the problem-
atical sentences. There seems to be no gain in regarding the truth predicate as in-
herently vague on problematical sentences instead, nor does doing the latter result
in a simpler semantics if it is not a requirement on the semantic rules for truth to
supply a rule that picks out the “real” model in cases where Tarski-reducibility fails.

I should say that I am not the only one to make this kind of move. For very differ-
ent reasons, Schiffer in [17] argues that what amounts to Tarski reducibility (he
never uses the term) must be given up for propositional attitude sentences. See es-
pecially Chapter 6.

There is irony in the fact that pressing hard for the constraint of sentential bivalence
in the context of self-referential languages forces one to give up this version of phys-
icalism. By the way, this point runs fairly deep philosophically. I discuss it elsewhere
[1]. I should also add that Barwise and Etchemendy’s approach in [2] violates the
reducibility constraint just as mine does by including “semantic facts” as possible
elements in the model —and then making sure that the models containing semantic
facts obey versions of the Tarski biconditionals as much as they can be made to.
Here the resemblance ends. Truth bearers on their approach are propositions which
contain as “constituents” the objects they are about (e.g., themselves, should they
be self-referential). Although there are intuitions at work motivating this picture of
propositions and even the nonstandard set theory used to construct them, there is
no justification given for why semantic facts are included in the models. This is not
to say, of course, that a justification could not be given. For example, motivation
via bivalence, as in my approach, is not foreclosed for them (as it is for many who
“solve” the paradoxes via a proposition-bearing theory of truth) since, e.g., liar’s
sentences do express propositions on their approach.
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Criterion T draws its strength from the fact that it is the result of at least two pow-
erful intuitions. I discuss the second one in Section 3.

In general, I understand the meaning of “true” to ultimately be given by the model
theoretic apparatus, not by certain logical truths containing the truth predicate
which are singled out because of their intuitive plausibility. But this caveat does not
help since the apparatus does not, in general, single out a unique extension for the
truth predicate either. Whatever we take as giving the meaning of the truth predi-
cate will not determine its extension uniquely, except under certain extremely “nice”
circumstances.

Let me say that I will use the term “opaque reference” to describe the relationship
a term has to its referent when it does not refer transparently to that referent. Al-
though my terminology is similar to talk of “transparent” and “opaque” contexts,
and although the phenomenon described certainly is similar, my usage of “transpar-
ent” and ‘opaque” should not be confused with that terminology (where, for exam-
ple, a belief context is “opaque” —not opaque with respect to certain constants,
although not necessarily with regard to others). Here, it is the term that can have
opaque or transparent occurrences, not the context which is transparent or opaque
(see, for example, p. 236 of Kaplan’s [10] for a discussion of the distinction in an-
other context). Also notice that here opaque reference is a necessary condition for
transparent reference.

Of course this reductio is bogus. I have conveniently fixed the truth values of other
assumptions to enable me to derive it. E.g., I assume sentential bivalence, e.g., I as-
sume every sentence expresses a proposition, and, e.g., I assume any number of
other assumptions that others in the literature have denied to “solve” the Liar’s Para-
dox. That every name transparently refers in the context of a truth predicate is still
another assumption that can be denied.

Notice that the reductio is very similar to one Parsons gives on p. 16 of [14]. If
what I subsequently call “truth value compositionality” is taken to be a necessary
condition on a sentence’s expressing a proposition, then my reductio can be taken
to be quite similar in spirit to his. This is not an unnatural way to understand what
I am up to, although, of course, my approach deviates seriously when we turn to
quantification. Notice that on this version of my view, although liar’s paradoxes do
not express propositions (they do not get their truth values compositionally), that
does not prevent them from being truth bearers. Incidentally, I am not sure what
Parsons takes the philosophical significance of this reductio to be.

On some views there is redundancy in my formulation; in any case, what is clear is
that no other factors should be involved than the ones I mentioned. Notice that al-
lowing nonsemantic facts “in the world” allows a version of truth-value composi-
tionality to be satisfied even if Tarski-reducibility is not.

When Russell propounded his theory of descriptions to account for sentences of
the sort: “The present King of France is bald”, he was motivated, as has been
remarked, by the desire to keep a sententially bivalent logic. But the intuitions we
have been discussing were at work too: because of Tarski-reducibility, he did not
feel comfortable claiming that “The present King of France is bald” is either true
or false, but undetermined by the nonsemantic facts. Similarly, because of truth-
value compositionality, he did not feel comfortable claiming the sentence has a truth
value without giving an analysis of its meaning which enabled him to read off what
its truth value should be. These are very natural assumptions, of course, and it is
only the systematic gains vis-a-vis truth that drive me to give them up “around the
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edges”. But once the apparatus is in place for handling truth the way I intend to,
something similar may be done for the sentences Russell was concerned with. I can-
not go further into the matter now.

A quick comparison with Skyrm’s approach [18] is instructive here. He also suggests
making the truth predicate nonextensional. But he also eschews bivalence. This en-
ables him to honor truth-value compositionality. Thus, in self-referential languages,
the presence of sentential bivalence forces truth-value compositionality to imply the
extensionality constraint on the truth predicate.

Quine, early and late, has stressed the global aspect of meaning over the local. He
has done so both in stressing the sentence over its parts, and in stressing the theory
over the sentences which make it up. It has seemed to some, however, that Quine
has made his epistemological insights do work in semantics where they do not be-
long. In fact, regimented languages on Quine’s view do not look semantically global
in any sense at all, for their semantics are strictly Tarskian. The global aspect comes
in only in the process of regimentation, and it does so in much the same way that
it does in theory construction. Once the epistemological points have been separated
from the semantic ones, it begins to look perfectly wild to suggest that a sentence
could have priority (semantically speaking) over its parts, or a theory over its sen-
tences. Worse, it looks perfectly incoherent. What could such a theory look like?
What kind of semantic rules could it possibly have? As it turns out, something like
this idea is not incoherent at all. First, I will shortly give perfectly coherent semantic
rules for the truth predicate which violate the truth-value compositionality. Second,
the theory of truth here is made somewhat independent of a theory of syntax as I
have already pointed out. In particular, the capacity to refer to whole sentences is
called for, if the theory of truth is to do any work, but the capacity to refer to the
parts that make them up is generally absent and unnecessary for semantic ascent.

The order in which opaque reference is established need not be a temporal one. We
can imagine certain restrictions being placed upon constants so that certain ones are
guaranteed transparent reference in cases of conflict. See Section 6 for further com-
ments on this issue.

The approach I am not taking would call for extending the truth and falsity predi-
cates (under an interpretation) to contain open sentences. I would also allow sen-
tences of the form (3x)(Px & Fx) and (3y)(Py & Fy) to differ in truth value for
distinct x and y. This, although perfectly understandable given that the variables act
like constants, does violate intuitions about bound variables, and also complicates
things quite a bit.

Is there anything like an ostensive in natural languages? This kind of question is ul-
timately hard to evaluate on its own. But certainly demonstratives occur, and the
ostensive is pretty much a demonstrative pointing to the items within its parentheses.

I should also add that the ostensive is designed to solve the problem mentioned
in Note 5.

See Section 7 below where I give a reading of the axioms in English; this reading
runs both a metalinguistic and a straight reading off the quantifier when the quan-
tifier binds a variable occurring both in an ostensive and in a predicate outside an
ostensive.

I should add that substitutional quantification here has only a metalingustic in-
terpretation. No sneaky moves to avoid ontological commitment are being contem-
plated.
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22. Of course, I have a technical motivation for this move: the resulting model theory
is axiomatizable. Whether such a motivation is desirable is something I discuss be-
low. But it is of interest that a very natural and independent intuitive justification
can be given for this move in the context of self-referential languages.

23. There is an analogy here to the characterization problem for total recursive func-
tions. We are characterizing a broader, and consequently more manageable class of
interpreted languages which, more or less, contain their own truth predicates, and
hoping thereby to provide a framework for studying the narrower class.

24. I should add that Kremer’s recent work [11] axiomatizing Kripke’s approach sug-
gests that there might be problems with finer characterizations of the desirable mod-
els. His approach takes as the models of the theory a/l fixed points, not just, say,
intrinsic fixed points, or minimal fixed points, etc.

25. An example of what I have in mind as a model-theroretic restriction is defining a
version of “grounded sentence” in this context and then giving such sentences pri-
ority over others or over each other according to a groundedness index. Another ex-
ample which I discuss explicitly below is the notion of “maximally honest premodel.”
An example of an axiomatic restriction is to focus our attention on sets of models
that satisfy certain collections of ostensive sentences so that every sentence (or ev-
ery sentence obeying certain nice properties) is transparently referred to in such
models.

26. What Gupta ([5], p. 196) calls local determinability is violated by maximally honest
premodels. However, they are superior over honest premodels in that if transpar-
ent reference fails it must do so because of vicious reference elsewhere, not merely
because the model misplaces sentences of the form Ta and Fa.

27. Of course, this is hardly the last word on the matter. The counterexample is pretty
bizarre, especially in how the mappings of the individual constants onto the domain
are restricted. In particular, it is not yet clear to me whether maximally honest
premodels present much of a restriction in cases where the syntax is more standard
looking. Thus, whether an interesting more restricted version of Theorem 11 for
maximal models is true is still open.

28. Naturally enough, the nonextensionality of the system will emerge more strikingly
when equality is added to the system. But all it will amount to are additional axioms
which are perfectly natural when the metalinguistic interpretation for substitutional
quantification is kept in mind. Of course, my approach is nof conservative with re-
spect to the predicate calculus with equality, except in the sense that all instances of
the axioms of equality, in which ostensives or semantic predicates are not involved,
hold.

29. To attempt this, of course, one would have to describe the conditions of satisfac-
tion for sentences of an O-language in the O-language itself and connect these con-
ditions axiomatically to the truth predicate. Since I am explicitly working in a more
general setting where it is not presupposed that the language itself has enough syn-
tactic resources to describe satisfaction, this move is ruled out. But as I point out
in a slightly different context, one can decide to study that subclass of honest
premodels which do have enough resources to describe satisfaction: O-model the-
ory is a general framework for all such studies. I cannot pursue this topic further
now.

One can also modify the satisfaction clauses so that presence in the truth or fal-
sity predicate is necessary for satisfaction, e.g., (c) would read: “(A v B), where A
and B are wffs, is satisfied if (A v B) is in the extension of T and either 4 or B is
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satisfied”. Doing so would not change much except to rule out the possibility of any-
thing but honest premodels satisfying the axioms. My approach takes up less ink.

Of course I am only giving a proof sketch. Let me add that a common (naive) re-
action to the Liar is to claim it is a contradiction. Perhaps this can be taken to be
intuitive recognition of the inconsistency of (a/Fa).

Provided, of course, there are no other pathological sentences which, due to viola-
tions of local determination, force the ostensive to be false.

[5], p. 210. I use a version due to Barwise and Etchemendy, [2], pp. 23-24.

I am avoiding representing these by means of quantification simply because it makes
illustrating the point much harder. But the system treats the quantified version of
the puzzle the same way.

This restriction is for illustrative purposes. The semi-inductive construction is eas-
ily modified to apply to languages containing an ostensive operator.

Of course we could also modify the satisfaction clauses used in the Gupta/
Herzberger construction so that the truth predicate is substitutional there as well.

I briefly considered broadening the model theory so that arbitrary subsets of the lan-
guage could be contained in the domain. Naturally, this simplifies the axiom sys-
tem: i.e., (A8) is false in this context. Also, it makes embedding the models of the
Gupta/Herzberger construction a little more direct. But these really are notational
gains. On the other hand, (A8) does not pick out (in this context) only the O-models
which contain at least all the sentences of the O-language they are models of —which
are the only models we are interested in. This is for the same reason that we have
Corollary 23 above: no O-language can describe the relation between constants and
the items they are mapped to.

Herzberger (in conversation) suggested I eliminate the falsity predicate in my ap-
proach to facilitate comparison of the two approaches. I have resisted this for the
(perhaps shallow) reason that in O-models the distinction between sentence and non-
sentence would be lost without additional apparatus.

Of course it has also been suggested that the distinction is artificial at best. See Bar-
wise and Feferman’s [3], Chapter 1.1.

The desire for a language to be able to describe its own syntax completely is not such
a strange desire, but it really introduces irrelevancies when the logic of “truth” is at
issue.

Notice that Tarski gave the metalanguage the capacity to exactly specify the syntax
of the object language and his doing so turns on his desire to define the truth predi-
cate. Why is a definition so important as opposed to an axiomatization of it as a
primitive? One possible reason I have already mentioned in Section 2. Otherwise,
Tarski’s answer ([20], pp. 405-406, [19], pp. 154-163) is that introducing a primi-
tive predicate “true”: (1) involves technical problems with either (a) intensional con-
texts, or (b) the fact that Convention T cannot be given as an axiom in the particular
case when a name of a sentence does not enable us to indicate the sentence (e.g.,
“The first sentence which will be printed in the year 2000”), and (2) makes the ques-
tion of the consistency of the resulting semantical system harder to answer. Our ap-
proach here may be taken as an attempt to overcome these difficulties.

Notice I am not making the grander claim that the semantics of the truth predicate
as a whole is a natural extension of the first-order predicate calculus. What is be-
ing claimed here is that the reasoning involving truth is first order.
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“Definable” here is relative to the resources of the language to describe its own syn-
tax of course.

For example, the primary O-models corresponding to the best candidates on the
Gupta/Herzberger approach are all extensional, that is, Ta has the same truth value
as Tb if a and b are mapped to the same item in the domain. But there is reason to
believe that “intensional” approaches have advantages. See the last paragraph of this
paper.

Another approach to the problem of semantic ascent more in spirit with the added
power of O-model theory can be described briefly: consider that restriction of O-
model theory to those models where each n-place predicate P has associated with
it an n-place predicate P*, where P* holds of every n-tuple n* that P holds of pro-
vided that every sentence contained in n* is referred to transparently by some con-
stant. Let (P < P*) stand for the sentence that says that P and P* hold of exactly
the same objects. What it amounts to is the claim that every sentence in the exten-
sion of P (and P*) is transparently referred to. If S is a sentence containing only
the predicates P and P* then the sentence (P < P*) = (3x)(x/S) asserts that S is
referred to transparently if every sentence in the extension of P (and P*) is referred
to transparently. Now consider the class of models in which all sentences of the
above sort (suitably generalized) are satisfied. This class of models satisfies the con-
straint that sentences about classes of sentences transparently referred to are them-
selves transparently referred to.

To be explicit, one way of measuring the effect a language’s capacity to describe its
own syntax has on its theory of truth is by considering what effects the mappings
of the constants and predicate variables onto the domain has on the class of osten-
sives forced to be unsatisfied. So, for example, consider the set of axioms (3x)(x/S),
for all sentences S. It is obvious that not every mapping of the constants to the do-
main, and the n-place predicate variables onto the Cartesian nth product of the do-
main can correspond to an O-model in which these axioms hold. E.g., in any model
in which the predicate P is mapped to the unit set of the sentence (3x)(Px & Fx),
the above set of axioms is violated. The class of models in which these axioms hold
characterize the amount of syntax compatible with a globally applicable theory of
truth. Notice that these axioms do not rule out all cases of vicious reference. What
they rule out are cases of vicious reference where the sentences in question cannot
be transparently referred to by other constants, a somewhat more delicate matter.
To study models ruling out all example of vicious reference, one must turn to sys-
tems with equality. I cannot go further into the matter now.

There are two complications in verifying this hunch. First, it is not at all easy to de-
fine local determination. Second, the notion of unproblematic sentence is hopelessly
intuitive. At this point there is no intertheoretic notion; we have various notions:
stable, grounded (in various senses), etc. This makes it hard to evaluate the signif-
icance of such a result.
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APPENDIX The proof of the completeness of Axiom System R1, R2, Al-
A8 with respect to O-model theory.

Al Preliminaries An O-language A has the standard vocabulary: (, ), —, v,
3, &, =, < (where the latter three symbols are defined notation), m-place predi-
cate variables, Py, ..., P,,... for each m, individual constants, a;,...,a,,...,
individual variables, x;,...,X,,. .., two one-place predicates T, F, and the sym-
bol /. We will speak of the predicate constants and predicate variables, in gen-
eral, as predicates, and the individual constants and individual variables, in
general, as individuals. Italicized versions of the individuals and predicate vari-
ables are generally metalinguistic variables for the syntactic category of their
unitalicized counterparts. Where so used, implicit quasiquote conventions are in
force to prevent use/mention errors. To avoid subscripts and superscripts other
letters are occasionally used. Higher-order objects such as sets of sentences will
be represented by terms such as “0”, “®”, “A”, etc.

To the standard inductive clauses defining a well-formed formula (wff), we
add:

Definition AP1 If A is a wff and v is an individual then (v/4) is a wff.

Given individual variables vy, ..., v, and a formula 4, whenever we use the
notation A(vy,...,V,), we are implicitly assuming that the only variables that
may have, and do have, free occurrences in A are the ones displayed: vy, ..., v,.
The formula obtained by free-substituting wy,...w, for vy,..., v, in the same
order, and where the w; may be individuals, is denoted by A[v,: wy,...,
U,:w,], or sometimes by A[v;: w;], when unambiguous. In a case where all
the w; are individual constants, we call A[v;:wy,...,v,:w,] an instance of
A(vyy...,Up).

Definition AP2 We understand Axiom System AP2 to be the Axiom System
R1, R2, A1-A8. We understand Axiom System AP2* to be Axiom System AP2
without Axiom AS.

Definition AP3 Two wffs B(vy,...,v,) and A are the same predicate-type
if uy,...,u,, v,...v, are individuals, 4 is B[v;:u;], and further, no instance
of u; substituted for v; is bound in B.

Definitions AP4 Let = be a set of axioms. E-derivation and E-theorem are
defined as one expects. A sentence A is E-consistent if —A is not a theorem of 5.

Definition AP5 If a sentence W is of the form
(3v)A = Blv:a]

where a is a constant, and (3v)A is a sentence in which a does not occur, then
we call W an 3-formula. We say that W is an 3-formula with respect to a.

Definition AP6 An 3-form is a maximal collection of 3-formulas which have
the same antecedent modulo the bound variables of the antecedent.

Definition AP7 If a sentence W is of the form
—(3vy) ... (v,)(w/A)
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where A(vy,...,v,) is a wff without individual constants, and w is an individ-
ual distinct from the v;, then we call W an O-formula (also O-sentence, where
w is an individual constant, or O-wff otherwise). We say that W is an O-formula
with respect to w and A.

Definition AP8 An O-form is a maximal collection of O-formulas which dif-
fer at most in their variables free in A.

Definition AP9 Let a be a constant. If a sentence W containing a is of the
form

—(30y) . .. (Jv,) (W/A)

where A4 is a wff containing either no constants or the constant @, and w is ei-
ther a or one of the variables v;, then we call W an a-formula.

Definition AP10 An A-form is a maximal collection of a-formulas which dif-
fer at most in their variables free in (w/A4).

Definition AP11 Let = be a set of axioms and A an O-language. A set of sen-
tences of A is maximally E-consistent if it is Z-consistent and is not contained
properly in an E-consistent set of sentences of A.

Two reminders about the axiom (A5) are necessary now. Recall that (AS) is
meant to convey the fact that a constant cannot refer to more than one sentence
in a model. The alphabetic variant restriction (take note: the nomenclature is
somewhat nonstandard here) on the substitution instances of the axiom prevents
sentences like “(x)(»)(z) — ((z/Px) & (z/Py))” from being instances of (AS5),
since such instances are not valid.

But this restriction complicates the completeness proof forthcoming since
constants consequently do not behave in derivations quite as they do in the stan-
dard predicate calculus. In particular, from “(a/Pb)” we can derive “— (a/Pc)”
using (AS) but we cannot derive “(x) — (a/Px)” from “(a/Pb)”. We must work
around this restriction in the completeness proof and we do so by discharging
as assumptions all uses of (A5) in any derivation. Thus the special version of the
lemma immediately below and the complicated form axioms (A7)-(A8) take.

Lemma AP12 If Q is a set of sentences in which a constant a does not oc-
cur, then if there is a derivation ¥ from Q0 of a sentence W, where any instance
of (AS) containing a in ¥ does not contain two ostensive formulas of the same
predicate type in which a occurs in one formula while a different constant occurs
in the other in place of a, then there is a variable v and a derivation from Q of
the sentence (vV)Wla:v].

Lemma AP13 (Deduction Theorem) Suppose Q is a set of sentences and A
and B are sentences. Then there is a derivation of B from A and Q iff there is a
derivation of (A = B) from Q.

Overview We are working our way toward Theorem AP29 below. We essen-
tially use a Henkin proof. We give two procedures for constructing maximally
consistent sets out of O-consistent sets and show our results by judicious use of
these procedures.
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The first procedure (a Henkin 1procedure) can be carried out on a set of sen-
tences if they do not require that every item in the domain have a constant
mapped to it. (For example, “(x)(Tx v Fx)” holds only in models in which ev-
ery object in the model has a constant mapped to it, and in fact, only in mod-
els containing only sentences.) Several complications arise in carrying out the
proof. First, the standard move of supplying 3-sentences with fresh constants to
witness existential claims cannot be simply applied: in general it is false that
(3Ix)A(x) = A(a) is consistent with a set of sentences not containing a. So we
must supply a messy case-by-case analysis. Secondly, the domain cannot merely
contain constants as it can in the standard predicate calculus; to satisfy osten-
sives it may have to contain senfences. In a 1procedure, in general, it can be re-
quired for many of these sentences not to have constants mapped to them; but
then using constants to witness them with 3-sentences creates problems since if
x is mapped to a sentence which no constants are mapped to, neither Tx nor Fx
is satisfied, but otherwise one of them is. We circumvent this by utilizing non-
standard ‘nice’ satisfaction clauses for these special constants and then deleting
the constants to construct the model we want.

Definition AP14 A partner function is a partial 1-1 mapping from the set of
sentences in a language A into the set of individual constants of that language.
We call the individual constant a sentence is mapped to the partner of it.

Definition AP15 Suppose Q is an AP2-consistent set of sentences. Then the
following is a Henkin 1procedure.

Let A* be a language at least as articulate as A but containing in addition a
countable number of new individual constants. Divide the new constants into a
countable collection of countable sets of constants: &;,...,&,,..., and consider
the collection of sublanguages of A*: Ag,...,A,,..., where Aqis A, and the set
of symbols of each A; contains £; plus the union of the sets of symbols of A; for
Jj<li.

We now construct a sequence of sets of sentences x; of the language A; as
follows: (Note: 2 is xq)

Step n (where n is odd): Let A;,...,A4,,..., be all sentences of A, which
do not appear in the second place of an ostensive sentence in x. For the sake of
notational simplicity, call x,, x,, + [ao]. We define x,, + [a;] inductively. Give
each A; a partner g;, of £,,, and add —Ta;, —Fa;, and one member from every
a;-form to x, + [a;_,]. Call the resulting set x, + [a;]. Call the union of x, +
[a;] for all i, x,41.

Step n (where n is even): First take x, and maximize it (as is done standardly
in Henkin completeness proofs) with respect to the language A,,. Call the result
x,- Then, let g, ; be some ordering of all the 3-forms of A, ;. Let 7; be the ith
a-form in g, ;. We define x,;; for i inductively:

(1) Xno is Xn-

(2) Suppose the antecedent (3v)B; of 7; is not in x,;. Then x,; is x5 (i—1)-

(3) Suppose a member of 7;, (3v)B; = B;[v:a], with respect to a constant
a of An is in X:. Then X:, is X:(i—l)'

(4) Suppose the antecedent (3v)B; of 7; is in x,, although for no constant a
is B;[v:a] in x,. Suppose further that for some constant b;, where j <
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iand B;[v:b] is in xu;, —B;[v: b;] is not consistent with x,; ;1. Then
Xni 18 Xn(i—1) Plus B;[v: b;].

(5) Suppose the antecedent (3v)B; of 7; is in x,; but no member of 7; is
in Q. Suppose further that for every j < i, ~B;[v:b;} is consistent
with x,;—1y. Then choose a constant b; of £,,, which has not been
used before and let x,; be x(;—1) plus —B;[v:b;] for every j < i, and
B;[v:b;].

Let x,™ be the union of x,; for all i, and Henkin maximize it with respect to
A, .1 as usual. Call the result x,,4.

Let x be the union of the above sets, and let ¢ be the partner function de-
fined above. We call the pair {x, ¢) the result of a Henkin 1procedure. Some-
times we will speak loosely of x alone being the result of a Henkin 1procedure.

Theorem AP16 Let {x, ¢) be the result of a Henkin 1procedure. Let u and
v be individual variables. Let A,,. .., A, be a set of existential generalizations
of ostensive formulas in which u, and u only, occurs free. Suppose also that no
constants appear in any of these ostensive-formulas. Let By, . . ., B,, be a set of
wffs with at least u free, and let ¥,,...,%L,, be existential prefixes, where for
each L;, v and all the free variables of B;, except u, occur in it. Let by, ...,b,
be individual constants. Then if no sentence of the form (*): )

(u)(TuvFuvAyv... vA,vE (v/By) & (v/Bi[u:b:)) v...v E,,(v/B,,)
& (v/B,,[u:b)))

JSollows from x,, + a,,] for all m and n, x is a maximally AP2-consistent set of
sentences of A*.

Proof: We first show that every x; is consistent by induction. Certainly xg is.
For n even: suppose x,; is not consistent. Let b; be the earliest constant
with respect to which applying the procedure described in Step » results in an in-
consistent set. Clearly we need only concern ourselves with Case 5, since x,;—1)
is O-consistent. Call the union of x,(;_;) with —B;[u: b;] for all j < i, x . No-
tice that x ~ is AP2-consistent by assumption. It is easy to show in the standard
way, using Lemma AP12, that x,, is AP2*-consistent. Since it is not AP2-con-
sistent, there is a sequence of instances of Axiom (A5): Ci,...,Cy, so that
Bi[u:b;]= —(C, &...& C,,) is AP2*-derivable from x ~. Now notice that if
it is the case that none of the conjuncts contain two ostensives of the same predi-
cate type with the constant b; occurring in the second place of one ostensive
while some distinct constant ¢ occurs in the same place of the other ostensive (and
notice that the notion “same place” is well defined here since the two ostensives
must be of the same predicate type), then use Lemma AP12 (and the alphabetic
variance condition on (AS5)), and note that (¢#)(B;= —(C, &...& C,,) [b;: u]l
follows from x,,. But every conjunct of the consequent is still an instance of
(AS5) and this violates the fact that (3u)B; is in x, and x ~ is AP2-consistent.
Next, notice that for sentences Dy, . ..,Dp, Bilu:b;] = (D, v...v D)) iff
(Bi[u:b;] = D) v...v (B;[u:b;] = Dp). So consider one disjunct —Cy. Let
Wi,..., W, be individual variables among which is w, and let E be some wff in
which u is free, so that —C, without loss of generality is of the form — (w)...
(wo,) — (W/E[u:b;]) & (w/E[u:c])). Since, by assumption, (3u)B; and
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—Blu:c]arein x 7, if (u)(B;= (Iw;)....(Iw,)(W/E) & (W/E[u: c])) is AP2*-
consistent with x =, we have, by the standard predicate calculus and (A7), x~
AP2*-inconsistent contrary to assumption.

For n odd: Suppose that x,,; is not consistent. Let a; be the earliest constant
with respect to which the addition of @;-sentences, —Taq;, and —Fgq; yields an in-
consistent set. Then from x, + [a;_;], we may derive, using Lemmas AP12 and
AP13, a sentence of the form (*).

Since each x; is consistent, it is easy to see that x is a maximally AP2-con-
sistent set of sentences.

Lemma AP17 (O-maximality lemma) Any maximal AP2-consistent set x of
sentences has the following properties:

(1) For any sentence A, x does not contain both A and —A.

(2) For any sentence A, x contains either A or —A.

(3) For any sentences A and B, if A and (A = b) are in x, then B is in x.

Definition AP18 Let {x, ¢) be the result of a Henkin 1procedure. Suppose
the domain A of a model O of the standard predicate calculus is the union of all
the sentences of A* which do not contain any individual constants which are
partners, and all constants of A* which are defined by Clause 4 immediately be-
low. Suppose the mappings of the individual constants, predicate variables, and
predicate constants of A* are defined by the following clauses:

1. Any constant a is mapped to a sentence A if (a/A) is in x.

2. Any constant @ which does not appear in the first place of an ostensive-
sentence in x, and for which either the sentence Ta or Fa is in ¥, is
mapped to Fa.

3. Order the constants which are partners. Any constant which is a partner
is mapped to the sentence of which it is a partner

i. provided none of the clauses above have procured the sentence a re-
ferring constant already,
ii. provided the sentence it is a partner of is in A, and
iii. provided no constant earlier in the ordering is mapped to the same
sentence it is.

4. Any remaining constants are mapped to themselves.

5. Each n-place predicate variable P is mapped to that set of n-tuples (p,,
...,p,) such that Pa, .. .a, is in x and g; is mapped to p; by the above
mapping for constants.

6. The predicate T is mapped to the set of sentences contained in the inter-
section of x and the domain A, and F is mapped to the remaining sen-
tences of A.

Then we say that O is a standard model for {x, ¢). We extend the notion of
interpretation to standard models in the natural way.

Definition AP19 Let O be a standard model for the result {x, ¢) of a Henkin
Iprocedure. Consider the language A~ gotten from A* by deleting the partners
from the alphabet of A*, and the premodel 6’ of A~ gotten from O by deleting
the mappings for the partners, taking the extension of T in O’ to be the exten-
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sion of T in O intersected with A~, and similarly for F. We call ©’ a nice
premodel for x.

Definition AP20 Let W be a wff and « an interpretation on a standard model
©. We say that « satisfies W nicely with respect to O iff “satisfies nicely” obeys
Clauses (a)-(c), (d2), (e2)-(g) of Definition 5, and

(dl') Wis (a/A), where a is a constant which is not a partner, A4 is a wff, there
is an -instance A’ of 4, A’ is a sentence assigned by O to a, and either Ta
and A’ are both in T’s extension or both in F’s extension.

(el’) Wis Ta, ais a constant, there is a sentence A in T’s extension, and (a/A4)
is in T’s extension; or A is a sentence assigned by O to a, (a/A) is not in T’s
extension, and either: (i) Ta is in T’s extension, or (ii) a is not a partner and
both Ta and Fa are not in T’s extension.

Lemma AP21 Let {x, ¢) be the result of a Henkin 1procedure, let © be a
standard model of {x, ¢) and ©' the nice premodel gotten from ©. Let W be a
wff of A* and let ay, . . ., a, be all the individual constants of W which are in A*
but not in A~. Let vy,...,v, be individual variables new to W. Let . be any
interpretation on ©. Let .* be that interpretation on ©' such that .* agrees with
v on all variables except perhaps for vy, ...v, and for any variable v, \,(v) is
A+ (v) wherever \«(v) is defined. .* maps each v; to whatever © maps a; to.
Given the above conditions, W is satisfied nicely by . if Wla;: v;] is satisfied
nicely by .*.

Proof: This is shown by induction on the length of a wff.

Theorem AP22 Let {x, ¢) of A* be the result of a Henkin 1procedure, © a

standard model of {x, ¢), and ©’ the nice premodel gotten from ©. Then

(1) If W is a sentence of A*, W is satisfied nicely by © iff it is in x.

(2) If W is a sentence of A~, W is satisfied nicely by ©’ iff it is satisfied by ©".

(3) If W is a sentence of A=, W is satisfied nicely by © iff it is satisfied nicely
by ©'.

Proof: These are shown by induction. Use Lemma AP21 for (3).

Theorem AP23 Let ©' be a nice premodel for the result of a Henkin 1pro-
cedure. Then ©' is an honest premodel in which every sentence of x is satisfied.

Proof: This follows from Theorem AP22.

Corollary AP24 Let x be the result of a Henkin 1 procedure which is max-
imally AP2-consistent. Then there is an O-model © which satisfies every sentence

of x.

We now carry out a Henkin 2procedure for consistent sets of sentences which
require that every item of the domain have a constant mapped to it.

Definition AP25 Suppose Q is an AP2-consistent set of sentences. Then the
following is a Henkin 2procedure.

Let A%, &;, A; be as in a Henkin 1procedure. As before, we define a sequence
of sets of sentences x; of the language A; as follows (Note that Q is xg):

Step n (where nis odd): Let A;,...,A,,..., be all sentences of A, such that
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no A; appears in the second place of an ostensive sentence in x,, and no 4; has
a partner from an earlier stage. As before, we define x, + [a;], for all i. Give
each A; a partner q;, of £, and add Taq; (or Fa;, if the former is not consistent
with x,, + [a;_;]), and one member from every O-form with respect to a; to
X» + [a;_;]. Call the resulting set x, + [«;]. Call the union of x,, + [a;] for
all i Xn+1-

Step n (where n is even): do as in the even steps of Definition AP15.

Let x be the union of the above sets, and let ¢ be the partner function de-
fined above. We call the pair {x, ¢) the result of a Henkin 2procedure. Again,
we sometimes loosely refer to x alone as being the result of a Henkin 2procedure.

Definition AP26 Let u and v be individual variables. Let By, ..., B, be wffs
without constants in which u does not appear free, A, ..., A, wifs in which at
least u occurs freely, vy,..., v, individual variables, X, ..., I, existential pre-
fixes such that Z; contains all and only the free variables of A4;, and Xi,...,L;,
existential prefixes such that I} contains v and all the free variables of A;, ex-
cept for u, and such that I} does not contain v;. We call closures of wffs of the
following sort wffs of type (1):

(Avy)....0,) (W) (=TuvFuvi(u/By)v...vE,(u/B,)vE(v/A;)
& (VA(lu:v])) v...vE,(vA,) & (VA [u:v,]);

and we call closures of wffs of the following sort wffs of type (2):

(3vy) ... Auy)(u)(—=Tuv —Fu v X,(u/By) v...v E,(u/B,) v E1((v/A,) &
(A [u:v ) v...vE,(vAR) & (VA [u:v,]).

Theorem AP 27 If {x, ¢) is the result of a Henkin 2procedure and either no
sentences of type 1 are derivable from any x,, + [a,,] or no sentences of type 2
are derivable from any x,, + la,,], then x is a maximally AP2-consistent set of
sentences.

Proof: We first show that every x; is consistent by induction. Certainly xq is.
For n even: this is the same as the analogous case for Henkin 1procedures.
For n odd: Suppose that x,. is not consistent. Let a; be the earliest constant

such that the addition of O-formulas with respect to a;, plus either Taq; or Fa;,

yields an inconsistent set. Then from x,, + [a;_;], we may derive, using Lemmas

AP12 and AP13, a sentence of type 1 and a sentence of type 2.

Since each y; is consistent, it is easy to see that x is a maximally AP2-con-
sistent set of sentences.

Theorem AP28 Let x be the result of a Henkin 2procedure which is max-
imally AP2-consistent. Then there is an honest premodel © of A* which satisfies
every sentence of x.

Proof: We let the domain A be the union of all the sentences A*, and all the in-
dividual constants of A* which are defined by Clause 5 immediately below. We
define the mappings of © as follows:

1. Any individual constant @ is mapped to a sentence A if (a/A) is in x.

2. Any individual constant a: (1) which does not appear in the first place of
an ostensive-sentence in x, (2) which is not a partner and (3) for which
either the sentence Ta or Fa is in x is mapped to Fa.
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3. Consider the following sequence of sets of constants: T, is the set of
partners of sentences to which constants are mapped by Clause 2. T,
is the set of partners of sentences of the form Fa where ¢ is in T,,. Let T*
be the union of T,, for all n. Map each constant @ of T* to the sentence
Fa.

4. Any constant which is a partner is mapped to the sentence of which it is
a partner, provided none of the clauses above have already mapped it to
something else.

5. All remaining constants are mapped to themselves.

6. Each n-place predicate variable P is mapped to that set of n-tuples
(01,...,p,) such that Pa;...a, is in x and a; is mapped to p; by the
above mapping for constants.

7. The predicate T is mapped to the set of sentences of x, and F is mapped
to the remaining sentences of A*.

It easy to see that the above clauses define a premodel. Easy inductions on the
length of a wff show that O is honest and that a sentence is satisfied in O if it
is in x.

Theorem AP29 If Q is AP2-consistent, then there is an O-model © such that
every sentence of } is satisfied in ©.

Proof: We start by applying the Henkin 1procedure to Q. Either it yields us a
maximally consistent set containing 2, and we are done, or we are able to con-
struct an AP2-consistent set of sentences containing Q from which may be de-
rived a sentence of type (*) as described in Theorem AP16. Now take this set and
apply the Henkin 1procedure to it. If this procedure does not yield a maximally
consistent set then at a certain point we have constructed an AP2-consistent set
of sentences from which we are able to derive sentences of both types 1 and 2.
But then it is easy to see, using (A4), that this violates (A8) and therefore the
AP2-consistency of €.





