Notre Dame Journal of Formal Logic Volume 32, Number 3, Summer 1991

Some Independence Results Related to the Kurepa Tree

RENLING JIN

Abstract By an ω_1 -tree we mean a tree of power ω_1 and height ω_1 . Under the assumption of *CH* plus $2^{\omega_1} > \omega_2$ we call an ω_1 -tree a Jech-Kunen tree if it has κ many branches for some κ strictly between ω_1 and 2^{ω_1} . We call an ω_1 -tree being ω_1 -anticomplete if it has more than ω_1 many branches and has no subtrees which are isomorphic to the standard ω_1 -complete binary tree. In this paper we prove that: (1) It is consistent with *CH* plus $2^{\omega_1} > \omega_2$ that there exists an ω_1 -anticomplete tree but no Jech-Kunen trees or Kurepa trees; (2) It is independent of *CH* plus $2^{\omega_1} > \omega_2$ that there exists a Jech-Kunen tree without Kurepa subtrees; (3) It is independent of *CH* plus $2^{\omega_1} > \omega_2$ that the exist a Kurepa tree without Jech-Kunen subtrees. We assume the existence of an inaccessible cardinal in some of our proofs.

Let T be a tree. For an ordinal α , T_{α} is the α -th level of T and $T \mid \alpha = \bigcup_{\beta < \alpha} T_{\beta}$. Let ht(T), the height of T, be the smallest ordinal λ such that $T_{\lambda} = \emptyset$. By a branch of T we mean a linearly ordered subset of T which intersects every nonempty level of T. Let $\mathfrak{B}(T) = \{B: B \text{ is a branch of } T\}$. For a $t \in T$ let $T(t) = \{s \in T: s \text{ and } t \text{ are comparable}\}.$

Let T be a tree. We recall that:

T is an ω_1 -tree if $|T| = \omega_1$ and $ht(T) = \omega_1$. Without loss of generality we sometimes assume that $\langle T, \leq_T \rangle = \langle \omega_1, \leq_T \rangle$ with unique root 0 if T is an ω_1 -tree.

An ω_1 -tree T is called a *Kurepa tree* if $|T_{\alpha}| < \omega_1$ for any $\alpha < \omega_1$ and $|\mathfrak{B}(T)| > \omega_1$.

An ω_1 -tree T is called a Jech-Kunen tree if $\omega_1 < |\mathfrak{B}(T)| < 2^{\omega_1}$.

T' is a subtree of *T* if $T' \subseteq T$ and $\leq_{T'} = \leq_T \cap T' \times T'$ (*T'* inherits the order of *T*). For an ordinal λ we call $\langle 2^{<\lambda}, \subseteq \rangle$ a standard λ -complete binary tree. A tree is called a λ -complete binary tree if it is isomorphic to $\langle 2^{<\lambda}, \subseteq \rangle$. A subtree *T'* of *T* is called closed downward if for any $t' \in T'$, $\{t \in T: t <_T t'\} \subseteq T'$.

An ω_1 -tree T is called an ω_1 -anticomplete tree if $|\mathfrak{B}(T)| > \omega_1$ and T has no ω_1 -complete binary subtrees.

Received August 8, 1990; revised January 29, 1991

448

Facts

- (1) Both Kurepa trees and Jech-Kunen trees are ω_1 -anticomplete trees;
- Under CH and 2^{ω1} > ω2, a Jech-Kunen tree is also a Kurepa tree if every level of it is countable;
- (3) Under CH and 2^{ω1} > ω2, a Kurepa tree is also a Jech-Kunen tree if it has fewer than 2^{ω1} many branches.

The independence of the existence of Kurepa trees was proved by Silver (see [5]). In [2], Jech constructs a model of *CH* plus $2^{\omega_1} > \omega_2$, in which there is a Jech-Kunen tree. In fact, it is a Kurepa tree with fewer than 2^{ω_1} branches. The independence of the existence of Jech-Kunen trees under *CH* plus $2^{\omega_1} > \omega_2$ was given by Kunen in [4], in which he gave an equivalent form of Jech-Kunen trees in terms of compact Hausdorff spaces. The detailed proof can be found in [3], Theorem 4.8.

The technique used by Silver and Kunen to kill Kurepa trees and Jech-Kunen trees is to show that if an ω_1 -tree T has a new branch in an ω_1 -closed forcing extension, then T should have an ω_1 -complete binary subtree. So in their models all ω_1 -anticomplete trees are also killed.

In this paper we discuss two questions: (1) Assuming CH plus $2^{\omega_1} > \omega_2$, can we kill all Kurepa trees and Jech-Kunen trees without killing all ω_1 -anticomplete trees? (2) How different are Kurepa trees and Jech-Kunen trees? For background in trees see Todorčević [6]; for background in forcing see Kunen [5]; and for Generalized Martin's Axiom see Weiss [7], §6. By an *inaccessible cardinal* we mean a strongly inaccessible cardinal.

Before proving theorems we need more notation of posets (partially ordered sets with largest elements). We always let $1_{\mathbb{P}}$ be the largest element of a poset \mathbb{P} .

Let *I*, *J* be two sets and λ be a cardinal.

 $Fn(I, J, \lambda) = \{f: f \text{ is a function}, f \subseteq I \times J \text{ and } |f| < \lambda\}$

is a poset ordered by reverse inclusion. We omit λ if $\lambda = \omega$.

Let *I* be a subset of an ordinal κ and λ be a cardinal.

$$Lv(I,\lambda) = \{f: f \text{ is a function}, f \subseteq (I \times \lambda) \times \kappa, |f| < \lambda \\ \text{and } \forall \langle \alpha, \beta \rangle \in \text{dom}(f)(f(\alpha, \beta) \in \alpha) \}$$

is a poset ordered by reverse inclusion.

In forcing arguments we let \dot{a} be a name for a and \ddot{a} be a name for \dot{a} . We always assume the consistency of ZFC and let M be a countable transitive model of ZFC.

Theorem 1 Assume the existence of an inaccessible cardinal. Then it is consistent with CH plus $2^{\omega_1} > \omega_2$ that there exists an ω_1 -anticomplete tree but there are neither Kurepa trees nor Jech-Kunen trees.

We need a lemma from Delvin [2].

Lemma 1 Let \mathbb{P} , \mathbb{P}' be two posets in M such that \mathbb{P} has c.c.c. and \mathbb{P}' is ω_1 -closed in M. Let $G_{\mathbb{P}}$ be a \mathbb{P} -generic filter over M and $G_{\mathbb{P}'}$ be a \mathbb{P}' -generic filter over $M[G_{\mathbb{P}}]$. Let T be an ω_1 -tree in $M[G_{\mathbb{P}}]$. If T has a new branch B in $M[G_{\mathbb{P}}][G_{\mathbb{P}'}] - M[G_{\mathbb{P}}]$, then T has a subtree T' in $M[G_{\mathbb{P}}]$, which is isomorphic to the tree $\langle 2^{<\omega_1} \cap M, \subseteq \rangle$ (standard ω_1 -complete binary tree in M).

Proof: First we work within M. In the proof we always let i = 0, 1. Without loss of generality we can assume that

 $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (1_{\mathbb{P}'} \Vdash_{\mathbb{P}'} (B \text{ is a branch of } \dot{T})).$

Claim 1 Let $\alpha < \omega_1$ and $q \in \mathbb{P}'$. Then there is a $q' \leq_{\mathbb{P}'} q$ such that $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha, q', \dot{T}, \ddot{B}))$, where

$$\Phi(\alpha, q, \dot{T}, \dot{B}) =_{df} (\exists y \in \dot{T}_{\alpha}) (q \Vdash_{\mathbb{P}'} (y \in \dot{B})).$$

Proof of Claim 1: See [1], Lemma 3.6.

Claim 2 Let $\alpha < \omega_1$, $q \in \mathbb{P}'$ and $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha, q, \dot{T}, \ddot{B}))$. Then there is a $\beta < \omega_1$, $\beta > \alpha$ and $q^i \leq_{\mathbb{P}'} q$ such that $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Psi(\alpha, \beta, q, q^0, q^1, \dot{T}, \ddot{B}))$, where

 $\Psi(\alpha, \beta, q, q^0, q^1, \dot{T}, \ddot{B}) =_{df} [if \ x \in \dot{T}_{\alpha} and \ q \Vdash_{\mathbb{P}'} (x \in \ddot{B}), then there are$ $x^i \in \dot{T}_{\beta}, \ x^0 \neq x^1 and \ x <_T x^i such that \ q^i \Vdash_{\mathbb{P}'} (x^i \in \ddot{B})].$

Proof of Claim 2: See [1], Lemma 3.6.

Claim 3 Let δ be an ordinal below ω_1 . Let $q_\gamma: \gamma < \delta$ be a decreasing sequence in \mathbb{P}' and $\langle \alpha_\gamma: \gamma < \delta \rangle$ be an increasing sequence in ω_1 such that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha_\gamma, q_\gamma, \dot{T}, \ddot{B}))$ for all $\gamma < \delta$. Let $\alpha_\delta = \sup\{\alpha_\gamma: \gamma < \delta\}$. Then there is a $q \leq_{\mathbb{P}'} q_\gamma$ for all $\gamma < \delta$ such that $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha_\delta, q, \dot{T}, \ddot{B}))$.

Proof of Claim 3: Since \mathbb{P}' is ω_1 -closed in M, there is a $q' \in \mathbb{P}'$ such that $q' \leq_{\mathbb{P}'} q_{\gamma}$ for all $\gamma < \delta$. By Claim 1 there is a $q \leq_{\mathbb{P}'} q'$ such that $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha_{\delta}, q, \dot{T}, \ddot{B}))$. This ends the proof of Claim 3.

We now prove the lemma. We construct a subset $\mathbb{P} = \{p_s : s \in 2^{<\omega_1}\}$ of \mathbb{P}' and a subset $O = \{\alpha_s : s \in 2^{<\omega_1}\}$ of ω_1 in M such that

- (1) the map $s \mapsto p_s$ is an isomorphic imbedding from the standard ω_1 -complete binary tree to \mathbb{P}' .
- (2) $\forall s, t \in 2^{<\omega_1} (s \subseteq t \text{ and } s \neq t \rightarrow \alpha_s < \alpha_t).$
- (3) $\alpha_{s^{\wedge}(0)} = \alpha_{s^{\wedge}(1)}$ for all $s \in 2^{<\omega_1}$.
- (4) $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha_s, p_s, \dot{T}, \ddot{B}))$ for all $s \in 2^{<\omega_1}$.
- (5) $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Psi(\alpha_s, \alpha_{s^{\uparrow}(0)}, p_s, p_{s^{\uparrow}(0)}, p_{s^{\uparrow}(1)}, \dot{T}, \dot{B}))$ for all $s \in 2^{<\omega_1}$.

Let $\alpha_{\langle \rangle} = 0$ and $p_{\langle \rangle} = 1_{\mathbb{P}'}$. Assume that we have α_s and p_s for all $s \in 2^{<\omega_1}$.

Case 1: $\alpha = \gamma + 1$.

Let $s \in 2^{\gamma}$. Since $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha_s, p_s, \dot{T}, \dot{B}))$, then there is a $\beta < \omega_1, \beta > \alpha_s$ and $q^i \leq_{\mathbb{P}'} p_s$ such that $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Psi(\alpha_s, \beta, p_s, q^0, q^1, \dot{T}, \ddot{B}))$ by Claim 2. Let $\alpha_{s^{\wedge}(i)} = \beta$ and $p_{s^{\wedge}(i)} = q^i$. (Note that q^0, q^1 are incompatible by Claim 2.)

Let G be any P-generic filter over M. Then $M[G] \models [\Phi(\alpha_s, p_s, T, \dot{B})]$. Hence in M[G] there is an $x \in T_{\alpha_s}$ such that $p_s \Vdash_{\mathbb{P}'} (x \in \dot{B})$. Since $M[G] \models [\Psi(\alpha_s, \alpha_{s^{\wedge}(0)}, p_s, p_{s^{\wedge}(0)}, p_{s^{\wedge}(1)}, T, \dot{B})$ and $x \in T_{\alpha_s}]$, then there are $x^i \in T_{\alpha_{s^{\wedge}(i)}}$ such that $p_{s^{\wedge}(i)} \Vdash_{\mathbb{P}'} (x^i \in \dot{B})$ in M[G]. This implies that $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha_{s^{\wedge}(i)}, p_{s^{\wedge}(i)}, \dot{T}, \ddot{B}))$.

Case 2: α is a limit ordinal below ω_1 .

Let $s \in 2^{\alpha}$. Since $\langle \alpha_{s|\beta} : \beta < \alpha \rangle$ is increasing in ω_1 , $\langle p_{s|\beta} : \beta < \alpha \rangle$ is decreasing in \mathbb{P}' and $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha_{s|\beta}, p_{s|\beta}, \dot{T}, \dot{B}))$ for all $\beta < \alpha$, then there is an

 $\alpha_s = \sup\{\alpha_{s|\beta}: \beta < \alpha\}$ and a $p_s \leq_{\mathbb{P}'} p_{s|\beta}$ for all $\beta < \alpha$ such that $1_{\mathbb{P}} \Vdash_{\mathbb{P}} (\Phi(\alpha_s, p_s, \dot{T}, \ddot{B}))$ by Claim 3.

We now work within $M[G_{\mathbb{P}}]$ to construct a subtree $T' = \{t_s : s \in 2^{<\omega_1} \cap M\}$ of T such that

the map s → t_s is an isomorphic imbedding from (2^{<ω1} ∩ M,⊆) to T.
t_s ∈ T_{αs} and p_s ⊩_{P'}(t_s ∈ B) for all s ∈ 2^{<ω1} ∩ M.

Let $t_{(i)} = 0$, the root of T. Assume that we have t_s for all $s \in 2^{<\alpha} \cap M$.

Case 1: $\alpha = \beta + 1$.

Let $s \in 2^{\beta} \cap M$. Since $p_s \Vdash_{\mathbb{P}'} (t_x \in \dot{B})$ and $\Psi(\alpha_s, \alpha_{s^{\wedge}(0)}, p_s, p_{s^{\wedge}(0)}, p_{s^{\wedge}(1)}, T, \dot{B})$ is true, there are $t^i \in T_{\alpha_{s^{\wedge}(0)}}$ such that $t <_T t^i, t^0 \neq t^1$ and $p_{s^{\wedge}(i)} \Vdash_{\mathbb{P}'} (t^i \in \dot{B})$. Let $t_{s^{\wedge}(i)} = t^i$ for i = 0, 1.

Case 2: α is a limit ordinal below ω_1 .

Let $s \in 2^{\alpha} \cap M$. Since $\Phi(\alpha_s, p_s, T, \dot{B})$ is true, there is an $x \in T_{\alpha_s}$ such that $p_s \Vdash_{\mathbb{P}'} (x \in \dot{B})$. Since $\forall \beta < \alpha \ (p_s \leq p_{s|\beta})$, then $p_s \Vdash_{\mathbb{P}'} (t_{s|\beta} \in \dot{B})$. Now $t_{s|\beta} <_T x$ because $\alpha_s > \alpha_{s|\beta}$ for all $\beta < \alpha$.

Let $t_s = x$.

We have now finished construction and T' is just the required subtree of T.

Proof of Theorem 1: Let κ be an inaccessible cardinal, $\mathbb{P}_1 = Lv(\kappa, \omega_1)$, $\mathbb{P}_2 = Fn(\kappa^+, 2, \omega_1)$ and $\mathbb{P}_3 = Fn(\omega_1, 2)$ in M. Let G_1 be a \mathbb{P}_1 -generic filter over M, $M' = M[G_1]$, G_2 be a \mathbb{P}_2 -generic filter over M', $M'' = M'[G_2]$, G_3 be a \mathbb{P}_3 -generic filter over M'' and $M''' = M''[G_3]$. We want to show that $M''' \models [CH, 2^{\omega_1} = \omega_3]$ and there exists an ω_1 -anticomplete tree but there are neither Kurepa trees nor Jech-Kunen trees].

We list some facts first:

- (1) $M' \models [CH, 2^{\omega_1} = \omega_2 = \kappa$ and there are no Kurepa trees]. The proof can be found in [5], p. 261.
- (2) M" ⊧ [CH, 2^{ω1} = ω3 = κ⁺ and there exist neither Kurepa trees nor Jech-Kunen trees]. See Juhász [3], Theorem 4.8, for the proof.
- (3) $M''' \models [CH, 2^{\omega_1} = \omega_3].$

Claim 1 There exists an ω_1 -anticomplete tree in M'''.

Proof of Claim 1: Let T be an ω_1 -complete binary tree in M''. We want to show that T is an ω_1 -anticomplete tree in M'''. Since in M''', $|\mathfrak{B}(T)| \ge |(\mathfrak{B}(T))^{M''}| = \omega_3$, it suffices to show that T has no ω_1 -complete binary subtrees in M'''.

Suppose that is not true. Then T has an ω_1 -complete binary subtree $T' = \{t_s : s \in 2^{<\omega_1}\}$ in M'''. Since $T' \mid \omega$ is countable and $T' \subseteq T = \omega_1$, then there is a $\delta < \omega_1$ such that $T' \mid \omega \in M''[G_3 \cap Fn(\delta, 2)]$. Let $f \in 2^{\omega}$ be a new function in $M''' - M''[G_3 \cap Fn(\delta, 2)]$. Then $C_f = \{t_f \mid n : n \in \omega\}$ is not in $M''[G_3 \cap Fn(\delta, 2)]$. But $C_f = \{t \in T' \mid \omega : t <_T t_f\}$ which is in $M''[G_3 \cap Fn(\delta, 2)]$. This contradiction ends the proof of Claim 1.

Claim 2 There exist neither Kurepa trees nor Jech-Kunen trees in M^{'''}.

Proof of Claim 2: Let T be an ω_1 -tree in M'''. Then there is a $\theta < \kappa$ and a subset $I \subseteq \kappa^+$ of power ω_1 such that

$$T \in M[G_1 \cap Lv(\theta, \omega_1)][G_2 \cap Fn(I, 2, \omega_1)][G_3].$$

Let $\mathbb{P}'_1 = Lv(\theta, \omega_1)$, $\mathbb{P}''_1 = Lv(\kappa - \theta, \omega_1)$, $\mathbb{P}'_2 = Fn(I, 2, \omega_1)$, $\mathbb{P}''_2 = Fn(\kappa^+ - I, 2, \omega_1)$. Then $\mathbb{P}_1 = \mathbb{P}'_1 \times \mathbb{P}''_1$, $\mathbb{P}_2 = \mathbb{P}'_2 \times \mathbb{P}''_2$ and all of these posets mentioned here are ω_1 -closed. Let $G'_1 = G_1 \cap \mathbb{P}'_1$, $G''_1 = G_1 \cap \mathbb{P}''_1$, $G'_2 = G_2 \cap \mathbb{P}'_2$ and $G''_2 = G_2 \cap \mathbb{P}'_2$. Then $G_1 = G'_1 \times G''_1$, $G_2 = G'_2 \times G''_2$ and

$$M''' = M[G'_1][G''_1][G''_2][G''_2][G_3] = M[G'_1][G'_2][G_3][G''_1][G''_2].$$

Since

 $M[G'_1][G'_2][G_3] \models [|\mathfrak{B}(T)| < \kappa],$

then there is a new branch of T in $M''' - M[G'_1][G'_2][G_3]$ if T has more than ω_1 many branches in M'''. Since \mathbb{P}_3 has *c.c.c.* and $\mathbb{P}'_1 \times \mathbb{P}'_2$ is ω_1 -closed in $M[G'_1][G'_2]$, then there is a subtree T' of T in $M[G'_1][G'_2][G_3]$, which is isomorphic to $\langle 2^{<\omega_1} \cap M[G'_1][G'_2], \subseteq \rangle$ by Lemma 1.

This is impossible if T is a Kurepa tree because $T' | \omega + 1$ is uncountable. This is also impossible if T is a Jech-Kunen tree because $2^{<\omega_1} \cap M[G'_1][G'_2] = 2^{<\omega_1} \cap M[G_1][G_2]$ and $|\mathfrak{G}(T)| \ge |\mathfrak{G}(T')| \ge (2^{\omega_1})^{M[G_1][G_2]} = \kappa^+ = 2^{\omega_1} \text{ in } M'''$.

Theorem 2 Assume the existence of an inaccessible cardinal. Then it is consistent with CH plus $2^{\omega_1} > \omega_2$ that there exists a Jech-Kunen tree which has no Kurepa subtrees.

Proof: Assume that κ is an inaccessible cardinal, $\mathbb{P}_1 = Lv(\kappa, \omega_1)$, $\mathbb{P}_2 = Fn(\omega_1, 2)$ in M. Let G_1 be a \mathbb{P}_1 -generic filter over $M, M' = [G_1], G_2$ be a \mathbb{P}_2 -generic filter over M' and $M'' = M'[G_2]$. Let $\mathbb{P}_3 = Fn(\omega_3, 2, \omega_1)$ in M'', G_3 be a \mathbb{P}_3 -generic filter over M'' and $M''' = M''[G_3]$. We want to show that $M''' \models [CH, 2^{\omega_1} = \omega_3$ and there exists a Jech-Kunen tree which has no Kurepa subtrees].

We list some facts first:

- (1) $M' \models [CH, 2^{\omega_1} = \omega_2 \text{ and there are no Kurepa trees}].$
- (2) $M'' \models [CH, 2^{\omega_1} = \omega_2 \text{ and every } \omega_1\text{-complete binary tree in } M' \text{ is an } \omega_1\text{-anticomplete tree}]$. This was proved in Theorem 1.
- (3) $M''' \models [CH, 2^{\omega_1} = \omega_3 \text{ and every } \omega_1 \text{-complete binary tree in } M' \text{ is a Jech-Kunen tree}]$. This is because an ω_1 -closed forcing extension does not add any new branches to an ω_1 -anticomplete tree.

Let T be an ω_1 -complete binary tree in M'. Then T is a Jech-Kunen tree in M''' by Fact (3). We now want to show that T has no Kurepa subtrees in M'''.

Suppose that there is a Kurepa subtree T' of T in M'''. Without loss of generality we can assume that T' is closed downward.

Since $\mathfrak{B}(T) = (\mathfrak{B}(T))^{M''}$, then $\mathfrak{B}(T') \subseteq (\mathfrak{B}(T))^{M''}$ in M'''. Since $T' \subseteq T$, there is a subset I of ω_3 in M'' such that $|I| = \omega_1$ and $T' \in M''[G_3 \cap Fn(I,2,\omega_1)]$. T' is still a Kurepa tree in $M''[G_3 \cap Fn(I,2,\omega_1)]$. Let $p_0 \in G_3 \cap Fn(I,2,\omega_1)$ such that

 $p_0 \Vdash (\dot{T}' \text{ is a Kurepa tree}).$

For any $B \in \mathfrak{B}(T')$ there is a $p_B \leq p_0$ such that $p_B \Vdash (B \in \mathfrak{B}(T'))$. Let

$$\mathfrak{C} = \{ B \in \mathfrak{G}(T) : \exists p \le p_0(p \Vdash (B \in \mathfrak{G}(T'))) \}.$$

Since T' is a Kurepa tree in $M''[G_3 \cap Fn(I,2,\omega_1)]$, then $|\mathfrak{C}| > \omega_1$ in M''. $|Fn(I,2,\omega_1)| = \omega_1$ because CH is true in M''. So there is a $p' \le p_0$ in $Fn(I,2,\omega_1)$ such that

$$\mathcal{C}' = \{B \in \mathcal{C} : p' \Vdash (B \in \mathcal{B}(\dot{T}'))\}$$

has power > ω_1 .

Let $T'' = \bigcup C'$ which is in M''. Then $p' \Vdash (T'' \subseteq T')$ and that implies every level of T'' is at most countable. Since $C' \subseteq \mathfrak{G}(T'')$, then T'' is a Kurepa tree and this contradicts that there are no Kurepa trees in M''.

Theorem 3 It is consistent with CH plus $2^{\omega_1} > \omega_2$ that there exists a Kurepa tree which has no Jech-Kunen subtrees.

The following proof is due to K. Kunen.

Proof: Let M be a model of CH. In M, let κ be a regular cardinal such that $\omega_2 < \kappa$ and $2^{\omega_1} \le \kappa$. Let $\mathbb{P} \in M$ be a partial order such that a condition $p \in \mathbb{P}$ is a pair $\langle T_p, l_p \rangle$, where T_p is a downward closed countable normal subtree of $\langle 2^{<\omega_1}, \subseteq \rangle$ of height $\alpha_p + 1$ for some countable ordinal α_p and l_p is a one-to-one function from some countable subset of κ into the top level of T_p . For two conditions $p, q \in \mathbb{P}, p \le q$ iff $T_p | ht(T_q) = T_q$, dom $(l_p) \supseteq \text{dom}(l_q)$ and for all $\xi \in \text{dom}(l_q), l_q(\xi) \subseteq l_p(\xi)$.

 \mathbb{P} is the partial order used in Jech [2] and [6] to force a Kurepa tree, where \mathbb{P} is shown to be ω_1 -closed and have ω_2 -c.c.

Let G be a P-generic filter over M, $T_G = \bigcup \{T_p : p \in G\}$ and $B(\xi) = \{t \in T_G : \exists p \in G(t \subseteq l_p(\xi))\}$. In M[G], CH holds, $2^{\omega_1} = \kappa > \omega_2$, T_G is a Kurepa tree with κ many branches and $\mathfrak{B}(T_G) = \{B(\xi) : \xi < \kappa\}$ (see [2] or [6] for the detail).

Claim There are no Jech-Kunen subtrees of T_G .

Proof of Claim: Let $T \subseteq T_G$ and $\mathfrak{B}(T) = \lambda < \kappa$ in M[G]. Without loss of generality we assume that T is closed downward. Let $\dot{T} = \bigcup \{\{s\} \times A_s : s \in 2^{<\omega_1}\} \in M^{\mathbb{P}}$ be a nice name for T (see [5], p. 208 for the definition of a nice name). Let $p_0 \in \mathbb{P}$ such that $p_0 \Vdash (\dot{T} \subseteq T_G \text{ and } |\mathfrak{B}(\dot{T})| = \lambda < \kappa)$. Since \mathbb{P} has ω_2 -c.c., then the set

$$S = \{\xi < \kappa : \exists p \le p_0 \ (p \Vdash B(\xi) \in \mathfrak{B}(T))\}$$

has the cardinality $\leq \omega_1 \lambda < \kappa$. Defining

$$\operatorname{supt}(T) = \{\xi < \kappa : \exists \langle s, p \rangle \in T(\xi \in \operatorname{dom}(l_n))\}.$$

Since $|2^{<\omega_1}| = \omega_1$ in M and for every $s \in 2^{<\omega_1}$, $|A_s| \le \omega_1$, then $|\operatorname{supt}(\dot{T})| \le \omega_1$. Now pick a $\xi_0 \in \kappa$ such that $\xi_0 \notin S \cup \operatorname{supt}(\dot{T}) \cup \operatorname{dom}(l_{p_0})$. Since $\xi_0 \notin S$, we have $p_0 \Vdash \dot{B}(\xi_0) \notin \mathfrak{B}(\dot{T})$.

Subclaim For any $\xi \in \kappa - (\operatorname{supt}(\dot{T}) \cup \operatorname{dom}(l_{p_0})), p_0 \Vdash \dot{B}(\xi) \notin \mathfrak{B}(\dot{T}).$

RENLING JIN

The claim follows from the subclaim because

 $p_0 \Vdash \mathfrak{G}(\dot{T}) \subseteq \{ \dot{B}(\xi) : \xi \in \operatorname{supt}(\dot{T}) \cup \operatorname{dom}(l_{p_0}) \}$

implies

$$p_0 \Vdash |\mathfrak{B}(T)| = \lambda \leq \omega_1.$$

Proof of Subclaim: We define an isomorphism *i* from \mathbb{P} to itself induced by π , a permutation of κ such that $\pi(\xi) = \xi_0$, $\pi(\xi_0) = \xi$ and $\pi(\alpha) = \alpha$ if $\alpha \in \kappa - \{\xi, \xi_0\}$. For any $p \in \mathbb{P}$, let $i(p) = \langle T_p, i(l_p) \rangle$, where

$$i(l_p) = \begin{cases} l_p & \text{if } \xi, \xi_0 \notin \operatorname{dom}(l_p) \\ (l_p - \{\langle \xi, l_p(\xi) \rangle\}) \cup \{\langle \xi_0, l_p(\xi) \rangle\} & \text{if } \xi \in \operatorname{dom}(l_p) \text{ and } \xi_0 \notin \operatorname{dom}(l_p) \\ (l_p - \{\langle \xi_0, l_p(\xi_0) \rangle\}) \cup \{\langle \xi, l_p(\xi_0) \rangle\} & \text{if } \xi_0 \in \operatorname{dom}(l_p) \text{ and } \xi \notin \operatorname{dom}(l_p) \\ (l_p - \{\langle \xi_0, l_p(\xi_0) \rangle, \langle \xi, l_p(\xi) \rangle\}) \cup \{\langle \xi_0, l_p(\xi) \rangle, \langle \xi, l_p(\xi_0) \rangle\} \\ & \text{if } \xi, \xi_0 \in \operatorname{dom}(l_p) \end{cases}$$

let i_* be a map from $M^{\mathbb{P}}$ to $M^{\mathbb{P}}$ induced by i (see [5], p. 222 for the definition of i_*). Then $i(p_0) \Vdash i_*(\dot{B}(\xi_0)) \notin \mathfrak{B}(i_*(\dot{T}))$. Since ξ and ξ_0 are not in $\operatorname{supt}(\dot{T}) \cup \operatorname{dom}(l_{p_0})$, then $i(p_0) = p_0$, $i_*(\dot{T}) = \dot{T}$ and $i_*(\dot{B}(\xi_0)) = \dot{B}(\xi)$, hence $p_0 \Vdash \dot{B}(\xi) \notin \mathfrak{B}(\dot{T})$.

Remark The author's original proof of Theorem 3 involves the existence of two inaccessible cardinals.

In next two theorems we show the negative sides of Theorem 2 and Theorem 3. Before that we should introduce some properties of poset and Generalized Martin's Axiom. We take the form of Generalized Martin's Axiom from [7] in which they call it $GMA(\aleph_1$ -centered).

Let \mathbb{P} be a poset. A subset Q of \mathbb{P} is called centered if every finite subset of Q has a lower bound in \mathbb{P} . A poset is called ω_1 -centered if it is the union of ω_1 many centered subsets. A poset is called countably compact if every countable centered subset of it has a lower bound.

GMA (Generalized Martin's Axiom) is the statement: Suppose \mathbb{P} is an ω_1 -centered and countably compact poset. Suppose $\kappa < 2^{\omega_1}$. If D_{α} is a dense subset of \mathbb{P} for each $\alpha < \kappa$, then there exists a filter G of \mathbb{P} such that $G \cap D_{\alpha} \neq \emptyset$ for all $\alpha < \kappa$.

We now define a poset in terms of a tree and its branches. Let T be a tree and \mathfrak{B} be a subset of $\mathfrak{B}(T)$. We let

 $\mathbb{P}(T,\mathfrak{G}) = \{\langle A, \mathbb{C} \rangle : A \text{ is a countable subtree of } T \text{ which is closed downward,} \\ \mathbb{C} \text{ is a nonempty countable subset of } \mathbb{G} \text{ such that for every } C \text{ in } \mathbb{C}, ht(C \cap A) = ht(A)\}$

be a poset ordered by:

 $\langle A_1, \mathfrak{C}_1 \rangle \leq \langle A_2, \mathfrak{C}_2 \rangle$ iff $\mathfrak{C}_2 \subseteq \mathfrak{C}_1$ and $A_1 | ht(A_2) = A_2$

for any $\langle A_1, \mathcal{C}_1 \rangle, \langle A_2, \mathcal{C}_2 \rangle \in \mathbb{P}(T, \mathcal{B}).$

Lemma 2 Let T be an ω_1 -tree and $\mathfrak{B} \subseteq \mathfrak{B}(T)$. Then

- (a) for any $\langle A_1, \mathbb{C}_1 \rangle$ and $\langle A_2, \mathbb{C}_2 \rangle \in \mathbb{P}(T, \mathbb{G})$, $\langle A_1, \mathbb{C}_1 \rangle$ and $\langle A_2, \mathbb{C}_2 \rangle$ are compatible if and only if either $A_1 | ht(A_2) = A_2$ and for each $C \in \mathbb{C}_2$, $ht(C \cap A_1) = ht(A_1)$ or $A_2 | ht(A_1) = A_1$ and for each $C \in \mathbb{C}_1$, $ht(C \cap A_2) = ht(A_2)$;
- (b) $\mathbb{P}(T,\mathfrak{G})$ is ω_1 -centered and countably compact if assuming CH.

Proof: (1): "⇐": Easy.

"⇒": Let $\langle A, \mathbb{C} \rangle \leq \langle A_1, \mathbb{C}_1 \rangle$ and $\langle A_2, \mathbb{C}_2 \rangle$. Assume $ht(A_1) \geq ht(A_2)$. Then $A_1 | ht(A_2) = (A | ht(A_1)) | ht(A_2) = A | ht(A_2) = A_2$ and for each $C \in \mathbb{C}_2$, $ht(C \cap A_1) = ht(A_1)$ because $ht(C \cap A) = ht(A)$ and $A | ht(A_1) = ht(A_1)$.

(2): For any $A \subseteq T$ such that A is countable and closed downward, let

$$\mathbb{P}_A = \{ \langle A, \mathbb{C} \rangle : \langle A, \mathbb{C} \rangle \in \mathbb{P}(T, \mathbb{G}) \}.$$

Then \mathbb{P}_A is a centered subset of $\mathbb{P}(T, \mathbb{G})$. We have only ω_1 many such A's if assuming CH. So $\mathbb{P}(T, \mathbb{G})$ is ω_1 -centered.

Suppose $\{\langle A_n, \mathcal{C}_n \rangle : n \in \omega\}$ is a centered subset of $\mathbb{P}(T, \mathcal{B})$. Let $A = \bigcup_{n \in \omega} A_n$ and $\mathcal{C} = \bigcup_{n \in \omega} \mathcal{C}_n$.

Claim 1: $\langle A, \mathfrak{C} \rangle \in \mathbb{P}(T, \mathfrak{K}).$

Proof of Claim 1: If there is a $C \in \mathbb{C}$ such that $ht(C \cap A) < ht(A)$, then there are $m, n \in \omega$ such that $C \in \mathbb{C}_m$ and $ht(C \cap A_n) < ht(A_n)$. Since $\langle A_m, \mathbb{C}_m \rangle$ and $\langle A_n, \mathbb{C}_n \rangle$ are compatible, if $ht(A_n) \le ht(A_m)$, then $ht(C \cap A_n) = ht(A_n)$ because $ht(C \cap A_m) = ht(A_m)$, a contradiction; if $ht(A_n) > ht(A_m)$, then $A_m | ht(A_n) \ne A_n$, hence $ht(C \cap A_n) = ht(A_n)$ by (1), also a contradiction.

Claim 2: $\langle A, \mathbb{C} \rangle$ is a lower bound of $\{\langle A_n, \mathbb{C}_n \rangle : n \in \omega\}$.

Proof of Claim 2: If there is an $n \in \omega$ such that $A | ht(A_n) \neq A_n$, then there is a $t \in A | ht(A_n) - A_n$. Let $t \in A_m$ for some $m \in \omega$. Since $\langle A_n, \mathbb{C}_n \rangle$ and $\langle A_m, \mathbb{C}_m \rangle$ are compatible, if $A_n | ht(A_m) = A_m$, then $t \in A_n$, a contradiction; if $A_m | ht(A_n) = A_n$, then $t \in A_n$, also a contradiction.

So $\langle A, \mathbb{C} \rangle \leq \langle A_n, \mathbb{C}_n \rangle$ for all $n \in \omega$.

By Claim 1 and Claim 2, $\mathbb{P}(T, \mathfrak{B})$ is countably compact.

Theorem 4 Assume GMA and CH plus $2^{\omega_1} = \omega_3$. Then every Jech-Kunen tree has a Kurepa subtree.

Proof: Let T be a Jech-Kunen tree with ω_2 many branches. Without loss of generality we can assume that $\forall t \in T$ ($|\mathfrak{B}(T(t))| = \omega_2$). (We can make this by throwing away all t's with $|\mathfrak{B}(T(t))| \leq \omega_1$.)

Let $\mathfrak{B} = \mathfrak{B}(T) = \{B_{\alpha} : \alpha < \omega_2\}$. For every $\beta < \omega_2$ let

$$D_{\beta} = \{ \langle A, \mathcal{C} \rangle \in \mathbb{P}(T, \mathcal{C}) : \mathcal{C} \cap \{ B_{\alpha} : \beta < \alpha < \omega_2 \} \neq \emptyset \}.$$

For every $\gamma < \omega_1$ let

$$E_{\gamma} = \{ \langle A, \mathfrak{C} \rangle \in \mathbb{P}(T, \mathfrak{G}) : ht(A) > \gamma \}.$$

Then D_{β} and E_{γ} both are dense subsets of $\mathbb{P}(T, \mathfrak{G})$ for all $\beta < \omega_2$ and $\gamma < \omega_1$. By GMA there is a filter G of $\mathbb{P}(T, \mathfrak{G})$ such that $G \cap D_{\beta} \neq \emptyset$ and $G \cap E_{\gamma} \neq \emptyset$ for all β and γ . Let

$$T' = \bigcup \{A : \langle A, \mathcal{C} \rangle \in G \}.$$

Then $ht(T') = \omega_1$ because $G \cap E_{\gamma} \neq \emptyset$ for all $\gamma < \omega_1$.

Claim 1 $|\mathfrak{G}(T')| = \omega_2$.

Proof of Claim 1: If $|\mathfrak{B}(T')| < \omega_2$, then there is a $\beta < \omega_2$ such that $\mathfrak{B}(T') \subseteq \{B_{\alpha} : \alpha \leq \beta\}$. But this contradicts that $G \cap D_{\beta} \neq \emptyset$.

Claim 2 $\forall \alpha < \omega_1(|T'_{\alpha}| \leq \omega).$

Proof of Claim 2: Assume this is not true. Then there is an $\alpha < \omega_1$ such that $|T'_{\alpha}| = \omega_1$.

Let $\langle A, \mathbb{C} \rangle \in G$ such that $ht(A) > \alpha$. Since A is countable, there is a $t \in T'_{\alpha} - A$. Let $\langle A', \mathbb{C}' \rangle \in G$ such that $t \in A'$. Since $\langle A, \mathbb{C} \rangle$ and $\langle A', \mathbb{C}' \rangle$ are compatible, then either $A \mid ht(A') = A'$ or $A' \mid ht(A) = A$. $A \mid ht(A') = A'$ is impossible because $t \notin A$. $A' \mid ht(A) = A$ is also impossible because $t \in A' \cap T'_{\alpha}$ and $\alpha < ht(A)$.

By Claim 1 and Claim 2, T' is a Kurepa subtree of T.

Theorem 5 It is consistent with GMA and $2^{\omega_1} > \omega_2$ that there exist Kurepa trees with 2^{ω_1} many branches and every Kurepa tree has Jech-Kunen subtrees.

We need a lemma to prove Theorem 5.

Lemma 3 Let *M* be a model of CH plus $2^{\omega_1} > \omega_2$. Let *T* be an ω_1 -tree such that for every $t \in T$, $|\mathfrak{B}(T(t))| \ge \omega_2$ and let $\mathfrak{B} \subseteq \mathfrak{B}(T)$ such that $|\mathfrak{B}| = \omega_2$ and for every $t \in T$, $|\mathfrak{B}(T(t)) \cap \mathfrak{B}| = \omega_2$. If *G* is a $\mathbb{P}(T,\mathfrak{B})$ -generic filter over *M* and $T_G = \bigcup \{A : \langle A, \mathfrak{C} \rangle \in G\}$, then T_G is a Jech-Kunen subtree of *T* in *M*[*G*].

Proof: Let $\mathfrak{B} = \{B_{\alpha} : \alpha < \omega_2\}$. Since

$$D_{\beta} = \{ \langle A, \mathbb{C} \rangle \in \mathbb{P}(T, \mathbb{G}) : \mathbb{C} \cap \{ B_{\alpha} : \beta < \alpha < \omega_2 \} \neq \emptyset \}$$

is dense in $\mathbb{P}(T,\mathfrak{B})$, then $|\mathfrak{B}(T_G)| \ge \omega_2$ by the proof of Claim 1 of Theorem 4. We now need to show that $|\mathfrak{B}(T_G)| = \omega_2$.

Suppose that is not true. Then there is a $B \in (\mathfrak{B}(T))^M - \mathfrak{B}$ such that $B \in \mathfrak{B}(T_G)$ in M[G] since ω_1 -closed forcing extension adds no new branches of T. Let $\langle A_0, \mathfrak{C}_0 \rangle \Vdash (B \in \mathfrak{B}(T_G))$. Since $B \notin \mathfrak{C}_0$, there is an $\alpha < \omega_1, \alpha > ht(A_0)$ such that B is different from C at α -th level for all $C \in \mathfrak{C}_0$. Let

$$A_1 = ((\bigcup \mathfrak{C}_0) \cup A_0) \cap (T \mid \alpha + 1).$$

Then $\langle A_1, \mathbb{C}_0 \rangle \leq \langle A_0, \mathbb{C}_0 \rangle$. Hence $\langle A_1, \mathbb{C}_0 \rangle \Vdash (B \in \mathfrak{B}(T_G))$. But if H is a P-generic filter over M such that $\langle A_1, \mathbb{C}_0 \rangle \in H$, then $B \notin \mathfrak{B}(T_H)$ in M[H] since $ht(B \cap A_1) < ht(A_1)$, a contradiction.

Proof of Theorem 5: Let M be a model of CH plus $2^{\omega_1} = 2^{\omega_2} = \omega_3$ and there are Kurepa trees with ω_3 many branches. (See [6], p. 282 for such a model.) Let \mathbb{P} be the ω_3 steps countable support iterated forcing poset for GMA in M and G be a \mathbb{P} -generic filter over M. We want to show that $M[G] \models [CH, 2^{\omega_1} = \omega_3,$ there are Kurepa trees with ω_3 many branches and every Kurepa tree has Jech-Kunen subtrees].

Let T be a Kurepa tree in M[G]. Without loss of generality we can assume that for every $t \in T$, $|\mathfrak{B}(T(t))| \ge \omega_2$. Let $\mathfrak{B} \subseteq \mathfrak{B}(T)$ such that for every $t \in T$, $|\mathfrak{B} \cap \mathfrak{B}(T(t))| = \omega_2$. Then $\mathbb{P}(T,\mathfrak{B})$ is ω_1 -centered and countably compact by

456

KUREPA TREES

Lemma 2. Let $\alpha < \omega_3$ such that T, \mathfrak{B} and $\mathbb{P}(T,\mathfrak{B})$ are in $M[G_\alpha]$, which is the initial α steps iterated forcing extension of M in M[G] and $\mathbb{P}(T,\mathfrak{B})$ is the poset used at α -th step forcing extension for GMA. Let H be the $\mathbb{P}(T,\mathfrak{B})$ -generic filter over $M[G_\alpha]$ such that $M[G_{\alpha+1}] = M[G_\alpha][H]$. Then

$$T_H = \bigcup \{A : \langle A, \mathcal{C} \rangle \in H\}$$

is a Jech-Kunen subtree of T in $M[G_{\alpha+1}]$. T_H is still a Jech-Kunen tree in M[G] because the poset for the rest of the forcing extension is ω_1 -closed in $M[G_{\alpha+1}]$.

Remark All the results in this paper about trees can be translated into the results about linear orders. Among them the one related Jech-Kunen tree is most interested.

Let L be called a Jech-Kunen continuum iff L is a Dedekind complete dense linear order with density ω_1 and power strictly between ω_1 and 2^{ω_1} . Assume CH plus $2^{\omega_1} > \omega_2$. Then there exists a Jech-Kunen tree iff there exists a Jech-Kunen continuum.

Acknowledgment – We thank Professor K. Kunen for his permission to present his proof of Theorem 3 in this paper.

REFERENCES

- [1] Devlin, K. J., "ℵ₁-trees," Annals of Mathematical Logic, vol. 13 (1978), pp. 267–330.
- [2] Jech, T., "Trees," The Journal of Symbolic Logic, vol. 36 (1971), pp. 1-14.
- [3] Juhász, I., "Cardinal functions II," pp. 63-110 in Handbook of Set Theoretic Topology, edited by K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984.
- [4] Kunen, K., "On the cardinality of compact spaces," Notices of The American Mathematical Society, vol. 22 (1975), p. 212.
- [5] Kunen, K., Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
- [6] Todorčević, S., "Trees and linearly ordered sets," pp. 235–293 in Handbook of Set Theoretic Topology, edited by K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984.
- [7] Weiss, W., "Version of Martin's Axiom," pp. 827-886 in Handbook of Set Theoretic Topology, edited by K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984.

Department of Mathematics University of Wisconson Madison, Wisconsin 53706