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On Cofinαl Extensions of Models

of Fragments of Arithmetic
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Abstract We present a model-theoretic proof of Motohashi's preservation
theorem for cofinal extensions, and examine various criteria for a model of
a fragment of PA to have a proper elementary cofinal extension. Using these
criteria we answer a question of Roman Kossak's, exhibiting for each n > 0
countable models M and TV of IΣn + exp + -ι2?ΣΛ+1 such that: (i) M has no
proper elementary cofinal extensions and (ii) N does have proper elementary
cofinal extensions.

Introduction Let £A be the usual first-order language of arithmetic with
nonlogical symbols 0 , 1 , + , , <, and let PA~ be the £A-theory of the nonnegative
parts of discretely ordered rings. The theories 7Δ0 + exp, IΣni and BΣn (n E IN)
are the usual fragments of Peano Arithmetic (PA). More specifically, IΣn is ax-
iomatized by PA~ together with the scheme of Σn-induction,

va(θ(0,a) ΛVx(θ(x,a) ->0(x+ ί9ά)) -• vxθ(x,a)),

for all Σn formulas θ(x, ά) (see Paris & Kirby [8]). The theory 7Δ0 + exp is 7Δ0

(=/Σ 0 ) together with a single axiom exp stating that the exponential function
xy is total (see Gaifman & Dimitracopoulos [2] for details in how this can be ex-
pressed in Jβyi). The theory BΣn is 7Δ0 together with the scheme of Σn-collection,

Vά9t(vx< tlyθ(x,y,a)-+3zvx< tiy < zθ(x,y9ά)),

for all Σn formulas θ(x,y, a) (see [8]). With a certain convenient abuse of nota-
tion, we will write 'M N IΣn + ^BΣn+ϊ

9 to mean 'M 1= IΣn and M % BΣn+1\
similarly for BΣn + ->/Σrt. Parsons [9] showed that IΣn+ι V BΣn+ι V IΣn for all
n > 0, and that models of IΣn + -^BΣn+ι exist for all n > 0; Paris and Kirby [8]
and (independently) Lessan [5] showed that models of BΣn + ~^IΣn exist for all
w> 1.

If M and N are models of PA~ and M c N we say M is cofinal in N9 M £ c f

N, iff Vα E N 36 G M (N1= b > a) N is an end-extension of M, M is an initial
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segment of N, M Qe N, iff Vα G Nvb G M (N\=a < b => a G M). One of the
most basic results on cofinal extensions is the theorem of Gaifman [1] which says
that if M and N are models of PA and M c c f N then M < N. Versions of this
result are also known for M and N satisfying certain fragments of PA (see Fact
3 below). However, despite the great amount of information Gaifman's theorem
gives us, many interesting questions concerning cofinal extensions are still un-
solved.

Roman Kossak has asked whether all countable models of IΣn + -^BΣn+ι

have proper elementary cofinal extensions, or indeed if any such models exist.
(It is known that, for each n > 1, every countable model M of BΣn + exp +
-ι/ΣΛ has a proper elementary extension K >cf M (see Kaye [4]). In this paper,

we answer Kossak's question by exhibiting a large class of models of IΣn +
-iBΣn+ι that do have proper elementary cofinal extensions, and also by provid-

ing for each n G N an example of a model M1= IΣn + -ιi?ΣΛ+1 without such an
extension. The problem of finding a nice alternative characterization of the
countable models M of PA~ having a proper elementary cofinal extension is still
unsolved. (The word 'nice' is important here: exact characterizations — albeit
rather unwieldy ones that give little extra information — can be obtained using
infinitary sentences.)

We shall also give a simple model-theoretic proof of the preservation theo-
rem for cofinal extensions in Motohashi [6].

The original motivation for this work was in trying to develop machinery to
solve certain questions left over from Kaye [4]. In particular, it was noted there
that if M < K (= IΣn is not cofinal then the unique initial segment I of K which
is a cofinal extension of M satisfies BΣn+i, and so if M < I then both M and K
also satisfy BΣn+ϊ. This suggests the following question:

Question Is there a countable model M1= BΣn+ϊ such that M # IΣn+i and
whenever K> Mthere is an intermediate modelIQKsuch that M <c f / c e K Ί

This question (and also several variations of it) is still open, but the construc-
tion of such M (if any exist) would seem to require detailed knowledge of for-
mulas preserved in cofinal extensions and also of the properties of models with
many elementary cofinal extensions.

The preservation theorem We now give our proof of Motohashi's preser-
vation theorem for models of PA~. (For convenience we shall state it for lan-
guages <£ extending £ A and models of PA~, although a similar result would hold
for any language containing < over a base theory that implies < is a linear or-
der with no greatest element (see Motohashi [6]).

Definition Let <£ ̂  <£A. The class 3cf of <£-formulas is the least class con-
taining all quantifier-free £-formulas and satisfying:

i. if φ(x), φ(x) G 3cf then φ(x) v φ (x), φ(x) Λ φ(x) G 3cf

ii. if φ(x,y) G i c f then 3yφ(x,y) G acf

Hi. if φ(x,y) G 3cf then Qyφ(x,y) G i c f , where Qyφ(x,y) is Vz3j>U < y Λ
φ(x,y)) for some suitable variable z not occurring elsewhere.

Dually, Vcf is the least class of ϋ-formulas containing all quantifier-free <£-
formulas and closed under Λ, V, V, and the quantifier Q*9 where Q*yφ(x, y) is
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3zVy(y > z -* Φ(x,y)) for some suitable new variable z. Notice that Vcf formu-
las are equivalent to negations of acf formulas, and vice versa.

It is easy to check that 3cf formulas are preserved upwards in cofinal exten-
sions and, dually, Vcf formulas are preserved downwards. In fact we have:

Theorem 1 Suppose T is an £''-theory, where <£' is a countable language,
<£' Ώ £ Ξ2 £A, and T h PA", and suppose M is a suitably saturated countable
£-structure (see below for a definition of'suitably saturated9) such that, for all
^-sentences σ G Vcf,

T\-σ=>M\=σ

then M has a cofinal extension TV h T.

Definition If M t= PA~ is an JE-structure, where <£ 2 £ A is a recursive first-
order language and Γ is a recursive class of <£-formulas, we say Mis T-tall iff for
any recursive sequence of formulas (φn(x, JOWIN from Γ and any ά G M, if

M¥Q*φn(x,a)
and

Mtvx(φn+ι(x,ά)^φn(x,a))

for all n G N then {φn(x, a) \ n G N} is realized in M.

Notice by the observation (known as "Craig's trick") that every r.e. set of for-
mulas is equivalent (in the predicate calculus) to a recursive set of formulas, if
Mis Γ-recursively saturated (i.e., any finitely satisfiable recursive set of formulas
p(x, a)QT with finitely many parameters a G Mis realized in M) and Γ is closed
under Λ, then Mis Γ-tall. Thus, countable Γ-tall ^-structures MbS exist for
any consistent theory S. In the theorem, 'suitably saturated' should be taken to
mean *VcΓtalΓ where, in the definition above, 'recursive' is replaced by 'recursive
in oracles for suitable Gόdel-numberings of £ ' , Gόdel-numberings of £-formu-
las (as a subset of those for <£'), and an axiomatization of T\ Thus, for most
applications where <£, £', and Γare all recursive, we may take 'suitably satu-
rated' to mean 'VcΓtall'.

Proof of Theorem 1: Let £(M), £\M) denote the languages £, £' respectively
with constants added for each a G M. We must find an ϋ^MJ-structure N f= T
satisfying φ(a) for all q.f. φ(ά) in £(M) that is true in M, and omitting the type

p(x) = {x> a\aEM}.

Thus, by the omitting types theorem, it is sufficient to find a complete consis-
tent £'(M) theory, Γ*, containing the above sentences, such that for all £'(M)-
formulas ^(A:)

Γ* h lxψ(x) => Γ* h 3JC < aφ(x)

for some a EM. We build such a T* as the union of finite extensions T+\(a)
of T. We say λ(ά) is extendible iff λ(<z) G £'(M) and

Γ+λ(α) \-σ(a) =>M\=σ(a)

for all σ(a) G Vcf in the language £(M). We shall prove that this notion of ex-
tendibility has the following two properties:
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Property 1 If \ (a) is extendible and b EM then λ(ά) Λ b = b is extendible.

Property 2 Ifλ(a) is extendible andφ(x9y) is any ^'-formula with the vari-
ablesshown, then either \(ά) Λ Vχ-*φ(x,a) is extendible or λ(a) Λ3Λ: < bφ(x, a)
is extendible for some b E M.

Proof of Property 1: \ϊb£ {a} and

T+ λ(ά) Λb = b\- σ(ά, b) G Vcf Π £ ( M ) ,

then

Γ + λ ( α ) h V j σ ( α , ^ ) G V c f Π £ ( M ) ,

since Vcf is closed under V. Hence M1= Vyσ(ά,y), and so M (= σ(ά, b).

Proof of Property 2: Suppose

Γ + λ(a) + Vx->φ(x,ά) bσ(a) evcfΓ)£(M)

and, for all b eM\{ά],

T+ λ(ά) + 3x<bφ(x,ά) \-τb(b,ά) G Vcf Π£(M),

but M # σ(ά) and M#τb(b,a) for all b G M\ [ά]. We define a sequence of £-
formulas as follows:

Po(*>y) =άefX = x

pi+i(χ,y) =defpi(χ,y)Λθ(χ,y),

if / is the Gόdel-number of a proof from the axioms of T of

vy(λ(J0 -> VΛ:(3Z < xφ(z,y) -• βUj?))

where β(x, j>) G V c f Π £ ; p / + 1 (x, j?) = d e f Pi(x,y) otherwise.
It is clear that each p, is Vcf and that the map i ~ ΓPi(x,y)~ι is recursive in

suitable oracles for T, £ ' , and £ . Also

T+ λ(ά) h Q*x(Pi(x,a) v σ(ά)) for each /,

since

Γ + λ(α) h ρ*Λ:(Vw-π<ί)(w, α) v 3z < Λ:0(Z, a));

hence

Γ + λ(ά) h Q*x(σ(a) v 3z < xφ(z9ά)).

Thus, as Vcf is closed under Q* and v, and as λ(ά) is extendible,

MY Q*x(Pi(x,ά) v σ(ά)) for each /.

But M1/ σ(ά), hence M N β*xp/(x, α) for each L Therefore, by the appropriate
notion of M being Vcf-tall, there is some b EM such that M1= /Λ,GINP/(^> ̂ )>
and without loss of generality we may assume b ί [a]. But then τ>(x, j>) is a
conjunct of some p, (x, j?), hence Ml=τό(&,fl),a contradiction. Hence Property 2
holds.
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Given Properties 1 and 2 we can construct our complete extension T* as fol-
lows: enumerate all £'(M)-formulas in one free-variable x as

Φo(*), Φi ( * ) , . . . , 0i (*),-. . ( / € N )

and define λ0 to be 3j>( y = y) (or any other trivially true £-sentence). Then
clearly λ0 is extendible, by our hypothesis on Γ. For each / E N define λz+i to
be either λ, Λ Vχ-ιφi(x) or λ, Λ 3x < bφι(x) for some ftGM,so that λ/+i is ex-
tendible. (Properties 1 and 2 show that we can always find such a λ,+i.) Then
T* = Γ + {λ, |/ E Nj is clearly complete, and does not disprove any £(M)-
sentence in the quantifier-free diagram of M (since Vcf contains all quantifier-
free <£-formulas and by the definition of extendibility), and has the required
form, so there is a model NYT* omitting the type/?(*), by the omitting-types
theorem.

Corollary 2 Let £ 5 £A be a complete first-order language, and T an £-
theory extending PA~. Then a formula φ(x) of Si is provably equivalent in T to
a 3Cf formula iff for all M <Ξcf TV both satisfying T and all ά E M, MY φ(ά) =>
NYφ(ά).

Proof: One direction is trivial. For the other, if φ(x) is not equivalent in Γto
any 3cf formula then the following theory in the language £ U [c] is consistent:

T+ [φ(c) E Vcf I Γ+ iφ(c) h ψ(c)) + φ(c).

Let (M, c) be a countable, suitably saturated model of this theory. By the the-
orem (M, c) \=φ(c) and M has a cofinal extension N\= T + -ιφ(c).

It follows from this corollary and Gaifman's result that every formula is
equivalent in PA to both a 3cf formula and a Vcf formula. (It would be interest-
ing to know if there are any other consistent theories extending 7Δ0 + exp with
this property.) In fact we have

Fact 3 If M c c f TV are both models of BΣn + exp, where n > 1, then
M<Σn+1N.

Proof: M <ΣιN, by the proof of the MRDP theorem in 7Δ0 + exp (see [2]).
M <Σn+ι N is proved by induction on n: if TV f= 3xvyψ(x,y, a) with φ E Σn_x

and a EM, then TV 1= 3x < b Vyφ (x, y, a) for some b E M. Hence TV ί= Vzlx <
bvy < zψ(x,y,ά). By BΣn_{ in TV this is equivalent to a Un formula, so by
M<ΣnN, MY Vzlx< bvy < zψ(x,y, a), hence by BΣn inM, MY 3JCV^(JC,y, ά).

Corollary 4 Every Σn+ι formula is equivalent in BΣn -I- exp to both a 3cf and
a Vcf formula.

It is a natural question to ask about the strength of the theories /Vcf and 73^
(= PA~ + induction on vcf or 3cf formulas, respectively.) This has a straightfor-
ward and slightly disappointing answer.

Theorem 5 /Vcf = 73 c f = PA.

Proof: 7vcf = 73cf, by an argument similar to that in Paris and Kirby [8] show-
ing IΣn = 7ΠΛ. From Kaye [3] we have 73^ h 73! h 7Σ1 ? hence 73^ h BΣ{. By
Corollary 4, every Σ2 formula is equivalent in BΣ\ to a 3Cf formula, so 73ςf h
7Σ2 \-BΣ2, and so on.



404 RICHARD KAYE

By contrast, /v;rf Φ PA, where /V f̂ is parameter-free Vcf-induction (since any
cofinal substructure of a model of true arithmetic satisfies /V^). It is not clear
how strong the theory of parameter-free 3cf-induction is, however.

Elementary cofinal extensions We now turn to elementary cofinal exten-
sions and Roman Kossak's question.

Theorem 6 Let M\= PA~ be countable and Σn-tall for all « G N . Then M
has a proper cofinal elementary extension.

Proof: Let £A(M) = £ A U Mand let oo be a new constant symbol. We say that
a sentence φ(oo,#) of £(M) = £A(M) U {00} is extendable iff there are infi-
nitely many b such that M t= φ(b9a). Clearly 6φ(oo,a) is extendable' implies
^(oo, a) Λ b = b is extendible' for each b GM.

Claim Ifφ(<χ>9ά)is extendable and

M\=W(φ(v,ά) -+lwθ(w9v,a))

for some £A(M)-formula θ(w9 v, a) then there is b G Msuch that φ(<χ>9 a) A
3iv < bθ(ϊv,00, a) is extendible.

Proof of Claim: Let ψn(x9a) be the formula

3t>l, V2, . , Vn( ffo Vi Φ Vj A fl\ φ(Vi9 fl)Λ3W< XΘ(W9 Vi9 ά) ) .
V iΦj i I

Then, since there are infinitely many b such that M 1= φ(v9a) and M 1=
w(φ(v9 a) -> 3ϊv0 (w, y, α)), M¥ Q*xψn(x, a) for each n G R Thus (by tallness)
there is some b such that Λf> ^ « G M Ψ « ( * » ^ ) » i e., Φ(o°,«) Λ 3w < &0(w,oo,ά)
is extendible.

Now enumerate all <£A(M)-formulas in the two free-variables x9y by

Φo(χ,y),Φi{χ,y), , Φi(χ,y),... (/ G N).

Let λ0(oo) be 'oo = oo'. (This is trivially extendible.) Assume λ, (oo) has been de-
fined, and is extendible; let λ/ + 1 (00) be λz (oo) Λ VΛ: -»Φ/(JC,OO), unless this is not
extendible, in which case there are only finitely many v GM such that

Af>X/(t;)AVx-i0/(x,i;).

Let this finite set of v's be A = \ax,..., ak]. Then clearly \^(00) Λ 00 ψ ax Λ Λ
00 ψ ak is extendible, since λ/(oo) is, and

Mt= w(\i(υ) AVΦaiA-' AvΦafc^ 3xφ/(x, v)).

Thus by the claim there is b G M such that

λ/(θθ) ΛOQφaιΛ- -ΛOQφakΛ3X< bφj(X9Oθ)

is extendible, and we let λ/+i(oo) be this sentence.
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When all the λ,s have been constructed, T = Th(M, a)aeM + (λ/(oo) | / G
IN} is a complete theory, TV oo ψ a for all a G M, and by the omitting types
theorem T has a model K> M omitting

p(x) = [χ> a\aEM]

i.e., A' >Cf M, as required.
It follows from this that any consistent extension T 2 PA~ has a model with

a proper cofinal elementary extension, in particular there are models M and TV
of IΣn + -»#£„+! such that M Qcf N and MφN, giving part of the answer to
Roman Kossak's question. The condition that Mis ΣΛ-tall for all n G N is not
necessary for the existence of proper elementary cofinal extensions, however,
since if MNPA + -.Con(PA), n > 1, and/ = Γ(M) = {xeM\ 3y eM\=x<
y and y is Σn-definable in M) then / N Un+ι - Th(M) and / 1= BΣn + exp +
-*IΣn (see [5]) so /has a proper elementary cofinal extension (see [4]), but /is

not ΣΛ+1-tall since

p(x) = {3y< *(vz-iβ(z) v θ(y)) \θeΣn]

is not realized in /. Reviewing the proof of Theorem 6, however, we see that it
actually shows that if M is Σ^-tall for all n G N and φ( oo, a) is ύwy extendible
sentence of £(M) then M has an extension K >cf M with oo G ΛΛM and # 1=
φ(oo,ά); this statement ί/oes have a converse, at least for theories extending
/Δo + exp.

Theorem 7 Zeί M N /Δo + exp όe countable. Then M is Σn-tallfor all n G N
ί#70/ ^ £>A-formulas φ(x, y) and all a G M

[v EM\M\zφ(υ,a)) is infinite

=> IK >cf M with b G K\Msuch that K N φ(Z>, α).

Proof: We have already proved one direction. For the converse, recall from Paris
and Dimitracopoulos [7] that for some carefully chosen Godel-numbering there
are Σn-complete formulas SatΣΛ( Γ0~\x) for each /iGN, such that /Δo + exp
proves Vx(θ(x) <-• Sat^^fl" 1,^))) for each θ G Σn9 where (x) denotes some
suitable function coding tuples as single numbers. Now if Mis nonstandard but
not Σπ-tall, suppose

[ψk(x9B)\keN)cΣn

witnesses this failure of ΣΛ-tallness.
By replacing n with n + 2 and each ψk(y, a) with Vx> y ψ/c(x, ά) if neces-

sary we may assume that

(1) M\=lyψk(y,ά),
(2) Af\*vx9y(ψk(y,δ)ΛX>y-+ψk(x9B))9and
(3) M\*vy(ψk+ι(y,B)-*ψk(y9B))

for all k G IN, and that no b G M satisfies M N /kk(ΞwΨk(b, α). Using the fact
that (ψk(x,α))keN is a recursive sequence, by an easy overspill argument there
is c G M such that

Mh(c)o=Γ\M*,.yΓ
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and

M\=(c)k=
 Γ ( C ) O Λ (c)ι Λ Λ (c)k-ιΛφk(x,y)~ι

for each k > 1, where (c)k is the &th element of the sequence coded by c. By
overspill again there is a nonstandard v EM such that

M t= Vr,5 < p(r <$•-• (c)Γ is a conjunct of (c)5);

hence

(4) Ml=v*,j;vr,s< ^(r < 5Λ SatΣ/ι((c)s,<Λ:,^»-> SatE / i((c) r,<x,^»).

By (1) and (3), the formula

φ(v9 a, c,v) = Όefv<vΛ a* SatΣΛ((c)y,<Λr, a})

is satisfied by infinitely many bEM(namely exactly those standard bEM). But
if K1= φ(b, a, c, *>) with N < 6 < v and ^ > c f M then

AΊ=SatE||((c)a,<rffS»

for some d ELK. Since K > M, from (4) we have

(5) K\=φk(d,ά)

for all A: G N. SinceϋΓ 2 c f Mthere iseSMwith e > d. But then by (2) and (5)

K\=φk(e,a)

for all <:GN; hence M N /AkG]NΨk(e> )̂> a contradiction.
Our last result completes the answer to Roman Kossak's question.

Theorem 81 For each « E N there is a countable model K J= IΣn + exp +
-^BΣn+ι with no elementary cofinal extensions.

Proof: We first recall the sequence of functions/„ from [4]:

fo(x) is xx, and, for n > 1,

Mx) = (μz)ivu,v < xvy(SatΣn(uΛv,y)) ^ 3y' <> zSatΣn(u,<v,y')))}.

It was shown in [4] that, for each n E N, there are Σ π + 1 formulas fn (x) = y and
fnZ)(x) = J such that IΣn + exp proves

vxllyfn(x) =y

vχ,χ',y,y'(χ ^ x' *fn(x) = y Λfn(χ') = y' -> y ^ y')

vχ,y,z,z\f{

n

y){χ) = z Af{nγ)(χ) =z'-+z = z')

vx/Γw=χ

VX,y,Z,W(f(

n

y)(x)=Z*fn(z) = W-+f(/+i)(x) = w)

and, whenever / c β M I = /ΣΛ satisfies α E / => 3δ G / such that M t=Λ (ύr) = b,
then / < Σ n M and /1= /ΣΛ + exp.
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Now let M1= PA + -«Con(PA), let a G M be the least proof of 0 = 1 from
PA (so a is nonstandard and Σi-definable in M) and let

/= {xeM\lyeM\=x<yAy=fjι

k)(a) for some k G N),

so / <Σn M and / N IΣn + exp. Now let K = Kn+ι (I) = the set of all Σn+ι-defin-
able elements of /. It is straightforward to check (using I \= IΣn + exp) that
K <Σn+ι I9K\= IΣn + exp, and that for all k G N

K\=b=Ak\a)~I\=b=Λk)(a)~M)rb=Ak)(a),

so \fnk\a) I k G N) Qcf K. We claim # has no elementary cofinal extensions.
Suppose K <c f / with w G J\K. Consider the formula θ(u,v) = d e f

3kib[b=fjι

kHa)Ab<vA3j<k(SeitΣn+ιU9u)Ay/x(SatΣn+ιU,x)^x = u))].

Thus,

1. K\= Vulvθ(u9 v),

2. ( « G K\K)rθ{u, v)} is finite for all v G AT, and

3. ΛΓhVι;,ι/,« (ι>< v'Λ0(w,t>)->0(w,i>')).

Now let c G / N 0(w, c) (c exists by (1) and / > K). By (3) and / ^ c f ̂  we may
assume without loss of generality that c G K. But w £ K so

card{xG/ |/ l=0(x ,c) } > card{*G ϋΓ|ϋ: N0(x,c)} G N

which contradicts J > K.

Problem The above example fails to satisfy the following necessary condi-
tion for M to have a proper elementary cofinal extension:

If θ(x,γ) is an £A-formula, possibly containing parameters from M, such
that M t= VxQ*yθ\x,y)9 then for some ceM {x G M | M h θ(x,c)} is in-
finite.

Is this condition also sufficient?

NOTE

1. Since writing the first draft of this paper, C. Dimitracopoulos has informed me that
Theorem 8 already appears in H. Lessan's thesis (Lessan [5]), and so should be at-
tributed accordingly.

REFERENCES

[1] Gaifman, H., "A note on models and submodels of arithmetic," Proceedings of the
Conference in Mathematical Logic, Springer Lecture Notes in Mathematics, vol. 255
(1970), pp. 128-144.

[2] Gaifman, H. and C. Dimitracopoulos, "Fragments of Peano's arithmetic and the
MRDP theorem," Logic and Algorithmic, LΈnseignement Mathematique, no. 30
(1982), pp. 187-206.



408 RICHARD KAYE

[3] Kaye, R., "Diophantine induction," Annals of Pure and Applied Logic, vol. 46
(1990), pp. 1-40.

[4] Kaye, R., "Model-theoretic properties characterizing Peano arithmetic," forthcom-
ing in The Journal of Symbolic Logic.

[5] Lessan, H., Models of Arithmetic, Unpublished Ph.D. thesis, Manchester Univer-
sity, 1978.

[6] Motohashi, N., "Preservation theorem and relativization theorem for cofinal exten-
sions," The Journal of Symbolic Logic, vol. 51 (1986), pp. 1022-1028.

[7] Paris, J. and C. Dimitracopoulos, "Truth definitions for formulae," Logic and Al-
gorithmic, LΈnseignement Mathematique, no. 30 (1982), pp. 318-329.

[8] Paris, J. and L. Kirby, "ΣΛ-collection schemas in arithmetic," Logic Colloquium
'77, North Holland, 1978, pp. 199-209.

[9] Parsons, C , "A number-theoretic choice schema and its relation to induction," in
Intuitionism and Proof Theory, edited by A. Kino et aL, North Holland, 1970,
pp. 459-473.

Jesus College
Oxford OX1 3DW
U.K.




