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Abstract We present a model-theoretic proof of Motohashi’s preservation
theorem for cofinal extensions, and examine various criteria for a model of
a fragment of PA to have a proper elementary cofinal extension. Using these
criteria we answer a question of Roman Kossak’s, exhibiting for each n = 0
countable models M and N of IZ, + exp + = BX,,, such that: (i) M has no
proper elementary cofinal extensions and (ii) N does have proper elementary
cofinal extensions.

Introduction Let £4 be the usual first-order language of arithmetic with
nonlogical symbols 0, 1, +, -, <, and let PA™ be the £ 4-theory of the nonnegative
parts of discretely ordered rings. The theories IAy + exp, IZ,, and BE, (n € N)
are the usual fragments of Peano Arithmetic (PA). More specifically, /X, is ax-
iomatized by PA™ together with the scheme of I,-induction,

va(6(0,a) Avx(0(x,a) - 0(x+ 1,a)) - vxb(x, a)),

for all £, formulas 0 (x, @) (see Paris & Kirby [8]). The theory IA, + exp is A,
(=IX,) together with a single axiom exp stating that the exponential function
x7 is total (see Gaifman & Dimitracopoulos [2] for details in how this can be ex-
pressed in £4). The theory BX,, is IA together with the scheme of X,-collection,

va,t(Vx < t3yd(x,y,a) —» Izvx < 13y < 70(x, y, a)),

for all £, formulas 6(x, y, @) (see [8]). With a certain convenient abuse of nota-
tion, we will write ‘M FIX, + ~BL,,,’ to mean ‘M FIX, and M ¥ BL, .,
similarly for BE, + —~IL,. Parsons [9] showed that /X, , | BX,,, F IL, for all
n =0, and that models of /X, + ~BLZ,, exist for all n» = 0; Paris and Kirby [8]
and (independently) Lessan [5] showed that models of BX, + —IL, exist for all
n=z1.

If M and N are models of PA~ and M € N we say M is cofinal in N, M S
N, iff vae N3ibe M (N kb > a); N is an end-extension of M, M is an initial
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segment of N, M €. N, iff va e Nvbe M (NFa < b= a € M). One of the
most basic results on cofinal extensions is the theorem of Gaifman [1] which says
that if M and N are models of PA and M = N then M < N. Versions of this
result are also known for M and N satisfying certain fragments of PA (see Fact
3 below). However, despite the great amount of information Gaifman’s theorem
gives us, many interesting questions concerning cofinal extensions are still un-
solved.

Roman Kossak has asked whether all countable models of /X, + ~BX,
have proper elementary cofinal extensions, or indeed if any such models exist.
(It is known that, for each n = 1, every countable model M of BL, + exp +
~IE, has a proper elementary extension K >+ M (see Kaye [4]). In this paper,
we answer Kossak’s question by exhibiting a large class of models of IX, +
- BL,, that do have proper elementary cofinal extensions, and also by provid-
ing for each n € N an example of a model M FI'E, + =B, without such an
extension. The problem of finding a nice alternative characterization of the
countable models M of PA™ having a proper elementary cofinal extension is still
unsolved. (The word ‘nice’ is important here: exact characterizations — albeit
rather unwieldy ones that give little extra information — can be obtained using
infinitary sentences.)

We shall also give a simple model-theoretic proof of the preservation theo-
rem for cofinal extensions in Motohashi [6].

The original motivation for this work was in trying to develop machinery to
solve certain questions left over from Kaye [4]. In particular, it was noted there
that if M < K EIE, is not cofinal then the unique initial segment 7 of K which
is a cofinal extension of M satisfies BX,,, and so if M < I then both M and K
also satisfy BL, ;. This suggests the following question:

Question Is there a countable model M E BX, such that M ¥ IX, | and
whenever K > M there is an intermediate model 7 € K such that M < I S, K?

This question (and also several variations of it) is still open, but the construc-
tion of such M (if any exist) would seem to require detailed knowledge of for-
mulas preserved in cofinal extensions and also of the properties of models with
many elementary cofinal extensions.

The preservation theorem We now give our proof of Motohashi’s preser-
vation theorem for models of PA~. (For convenience we shall state it for lan-
guages £ extending £, and models of PA™, although a similar result would hold
for any language containing < over a base theory that implies < is a linear or-
der with no greatest element (see Motohashi [6]).

Definition Let £ 2 £,4. The class 3¢ of £-formulas is the least class con-
taining all quantifier-free £-formulas and satisfying:
i. if ¢(%), ¥ (X) € 3¢ then ¢(X) v ¥ (X), #(X) A Y(X) € 3¢
ii. if ¢(X%,y) € 3 then Iyp(X, y) € 3¢
iii. if ¢(%,y) € 3, then Qyp(X,y) € 35, where Qyod(X,y) is VzIY(z < y A
¢ (%, y)) for some suitable variable z not occurring elsewhere.

Dually, v, is the least class of £-formulas containing all quantifier-free £-
formulas and closed under A, v, v, and the quantifier Q*, where Q*y¢ (%, y) is
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zvy(y > z— ¢(X, y)) for some suitable new variable z. Notice that Vs formu-
las are equivalent to negations of 3. formulas, and vice versa.

It is easy to check that 3. formulas are preserved upwards in cofinal exten-
sions and, dually, Vs formulas are preserved downwards. In fact we have:

Theorem 1 Suppose T is an £’-theory, where £’ is a countable language,
£ 2L 2 L4, and T+ PA™, and suppose M is a suitably saturated countable
L-structure (see below for a definition of ‘suitably saturated’) such that, for all
L£-sentences o € Vg,

Tto=>MEo
then M has a cofinal extension N E T.

Definition If M EPA™ is an £-structure, where £ 2 £, is a recursive first-
order language and I' is a recursive class of £-formulas, we say M is I'-tall iff for
any recursive sequence of formulas (¢, (x, 7)),en from I and any @ € M, if

MF Q*¢,(x,a)
and
M t: Vx(¢n+1(x’ d) - d’n(xa d))

for all n € N then {¢,(x,a) |n € N} is realized in M.

Notice by the observation (known as “Craig’s trick”) that every r.e. set of for-
mulas is equivalent (in the predicate calculus) to a recursive set of formulas, if
M is T'-recursively saturated (i.e., any finitely satisfiable recursive set of formulas
p(x,a) € I' with finitely many parameters @ € M is realized in M) and I' is closed
under A, then M is I'-tall. Thus, countable I'-tall £-structures M F S exist for
any consistent theory S. In the theorem, ‘suitably saturated’ should be taken to
mean ‘Vtall’ where, in the definition above, ‘recursive’ is replaced by ‘recursive
in oracles for suitable Godel-numberings of £’, Godel-numberings of £-formu-
las (as a subset of those for £’), and an axiomatization of 7. Thus, for most
applications where £, £’, and T are all recursive, we may take ‘suitably satu-
rated’ to mean ‘v ¢-tall’.

Proof of Theorem 1: Let £(M), £'(M) denote the languages £, £’ respectively
with constants added for each ¢ € M. We must find an £'(M)-structure NF T
satisfying ¢ (@) for all q.f. ¢(@) in £ (M) that is true in M, and omitting the type

p(x) ={x>alaeM].

Thus, by the omitting types theorem, it is sufficient to find a complete consis-
tent £'(M) theory, T*, containing the above sentences, such that for all £'(M)-
formulas ¢ (x)

T*Faxy(x) = T*Fax < ay(x)

for some @ € M. We build such a T* as the union of finite extensions 7'+ \ (&)
of T. We say \(a) is extendible iff \(a) € £'(M) and

T+ Na)tFa(a) = MFo(a)

for all ¢(@) € V. in the language £ (M). We shall prove that this notion of ex-
tendibility has the following two properties:
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Property 1 If \(Q) is extendible and b € M then \(a) A b = b is extendible.

Property 2 If \(a) is extendible and ¢(x, y) is any £'-formula with the vari-
ables shown, then either \(a) A VYx ¢ (x, @) is extendible or \(@) AIx < bo(x,a)
is extendible for some b € M.
Proof of Property 1: If b & {a} and

T+Naab=blo(ab)evsN L(M),
then

T+ N(a) Fvyo(a,y) € Vi N £L(M),

since V. is closed under V. Hence M F Vyo(a, y), and so M Eo(a, b).

Proof of Property 2: Suppose
T+ N(a) + Vx—¢(x,a) Fa(a) € Ve N £(M)
and, for all b € M\ {a},
T+ Na) +3Ix< bo(x,a) F1p(b,a) € Vs N L£L(M),

but M ¥ o(a@) and M ¥ 7, (b, @) for all b € M\ {a}. We define a sequence of £-
formulas as follows:

Po(X, J) =qet X = X
Pi+1(X, ¥) =daef pi(X,7) AO(x,7),
if 7 is the Godel-number of a proof from the axioms of 7 of
VI(A(F) = Vx(32 < x¢(z,¥) = 0(x, 7))

where 0(x, 7) € Ve N L5 pir1(X; ) =qer pi(x, ¥) otherwise.
It is clear that each p; is Vs and that the map i = " p;(x, ) " is recursive in
suitable oracles for 7, £’, and £. Also

T+ \a@) F Q*x(pi(x,a) v a(a)) for each i,
since
T+ Na) FQ*x(Yw-o(w,a) v 3z < x¢p(z, @));
hence
T+ Na)FQ*x(o(@) v Iz < xp(z,a)).
Thus, as V. is closed under Q* and v, and as A\(&) is extendible,
ME Q*x(pi(x,a) v o(a)) for each i.

But M ¥ ¢(a), hence M F Q*xp;(x, @) for each i. Therefore, by the appropriate
notion of M being V-tall, there is some b € M such that M F /N ;enp: (D, @),
and without loss of generality we may assume b & {a}. But then 7,(x, ) is a

conjunct of some p;(x, ), hence M F 7, (b, @), a contradiction. Hence Property 2
holds.
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Given Properties 1 and 2 we can construct our complete extension 7* as fol-
lows: enumerate all £'(M)-formulas in one free-variable x as

¢O(x)’¢l(x):'--ad)l(x)’-" (IEIN)

and define Ao to be 3y(y = y) (or any other trivially true £-sentence). Then
clearly A, is extendible, by our hypothesis on 7. For each i € N define A;; to
be either \; A ¥x—1¢;(x) or \; A 3x < bg;(x) for some b € M, so that \;, is ex-
tendible. (Properties 1 and 2 show that we can always find such a A\;;;.) Then
T* = T + {\;|i € N} is clearly complete, and does not disprove any £(M)-
sentence in the quantifier-free diagram of M (since V,; contains all quantifier-
free £-formulas and by the definition of extendibility), and has the required
form, so there is a model N F T* omitting the type p(x), by the omitting-types
theorem.

Corollary 2 Let £ 2 £, be a complete first-order language, and T an £-
theory extending PA~. Then a formula ¢(X) of £ is provably equivalent in T to
a 3¢ formula iff for all M S N both satisfying T and all a € M, M F ¢(a) =
NEo(a).

Proof: One direction is trivial. For the other, if ¢(X) is not equivalent in T to
any 3. formula then the following theory in the language £ U {¢} is consistent:

T+ {¥(C) € Y| T+ —¢(C) F Y (E)) + ¢(¢).

Let (M, ¢) be a countable, suitably saturated model of this theory. By the the-
orem (M, ¢) F ¢(¢) and M has a cofinal extension N F T + —1¢(¢).

It follows from this corollary and Gaifman’s result that every formula is
equivalent in PA to both a 3 formula and a Vs formula. (It would be interest-
ing to know if there are any other consistent theories extending IA, + exp with
this property.) In fact we have

Fact 3 If M < ¢ N are both models of BX, + exp, where n = 1, then
M <5z N.

n+1

Proof: M <z, N, by the proof of the MRDP theorem in IA, + exp (see [2]).
M <g, ., Nis proved by induction on n: if N F axvyy (x, y,a) with ¢ € Z,_,
and @ € M, then Nk 3x < b vyy(x, y,a) for some b € M. Hence N E vzix <
bvy < zy(x,y,a). By BL,_; in N this is equivalent to a II, formula, so by
M <y N, MFVzix < bVy < zy(x,y,a), hence by BL,in M, M E3axvyy(x, y,a).

Corollary 4 Every ¥, formula is equivalent in BE,, + exp fo both a 3 and
a Vg formula.

It is a natural question to ask about the strength of the theories Iv,; and I3
(= PA™ + induction on V¢ or 3.+ formulas, respectively.) This has a straightfor-
ward and slightly disappointing answer.

Theorem 5 IV = I3 = PA.

Proof: IV, = I3, by an argument similar to that in Paris and Kirby [8] show-
ing I'L, = ITl,. From Kaye [3] we have I3 - I3, F I'L,, hence I3 | BE;. By
Corollary 4, every I, formula is equivalent in BZL, to a 3.; formula, so /3 I
IX, + BX,, and so on.
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By contrast, IV # PA, where IV is parameter-free V¥ ¢-induction (since any
cofinal substructure of a model of true arithmetic satisfies v ). It is not clear
how strong the theory of parameter-free 3-induction is, however.

Elementary cofinal extensions We now turn to elementary cofinal exten-
sions and Roman Kossak’s question.

Theorem 6 Let M E PA™ be countable and L,-tall for all n € N. Then M
has a proper cofinal elementary extension.

Proof: Let £4(M) = £4 U M and let o be a new constant symbol. We say that
a sentence ¢(o0, @) of L(M) = Lo (M) U {0} is extendible iff there are infi-
nitely many b such that M F ¢(b, @). Clearly ‘¢ (o, @) is extendible’ implies
‘p(o0,a) A b = b is extendible’ for each b € M.
Claim If ¢(oo, @) is extendible and
M Evu(o(v,a) - IwW0(w, v, a))
Jor some £ (M)-formula 0 (W, v,a) then there is b € M such that ¢(o0,a) A
Iw < b (w,, @) is extendible.
Proof of Claim: Let y,(x, a) be the formula
3V, V2. -0y v,,</X\ v # 0 A A\ (v, @) AIW < XB0(W, v,-,d)).
i#j i

Then, since there are infinitely many b such that M F ¢(v,a) and M E
vu(o(v,a)— Iw0(w, v,a)), ME Q*xy,(x, a) for each n € N. Thus (by tallness)
there is some b such that M E N\ ,en¥n (b, @), i.e., d(,a) A IW < b(W, 0, a)
is extendible.

Now enumerate all £4 (M)-formulas in the two free-variables x, y by

b0(X%,¥),01(%,),...,0i(x,»),... (i€N).

Let Ag(o0) be ‘o0 = oo’. (This is trivially extendible.) Assume \;(o0) has been de-
fined, and is extendible; let \;,; (o) be \;(o) A VX —1¢);(x,00), unless this is not
extendible, in which case there are only finitely many v € M such that

M EN;(v) A VX9 (x, v).

Let this finite set of v’s be A = {a,...,a;}. Then clearly \;(c0) Ao £a; A---A
o # a; is extendible, since \;(o0) is, and

MEYUN (V) AV FEay A+ - AU # ag— IxP;(x, V).

Thus by the claim there is b € M such that
Ni(@) A0 Eay AN #EapAIx < bo;(x,)

is extendible, and we let \;; ; (o) be this sentence.
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When all the \;s have been constructed, T = Th(M, a),ep + {Ni() |i €
N} is a complete theory, T} c # a for all @ € M, and by the omitting types
theorem 7T has a model K > M omitting

p(x) ={x>a|a€ M)

i.e., K >, M, as required.

It follows from this that any consistent extension 72 PA™ has a model with
a proper cofinal elementary extension, in particular there are models M and N
of IX, + - BL,,, such that M S N and M # N, giving part of the answer to
Roman Kossak’s question. The condition that M is I,-tall for all » € N is not
necessary for the existence of proper elementary cofinal extensions, however,
since if M F PA + =Con(PA), n=1,and I=I"(M) = {xEM|IyEMFx <
y and y is L,-definable in M} then I FII,,.; — Th(M) and I F BL, + exp +
—IL, (see [S]) so I has a proper elementary cofinal extension (see [4]), but [ is
not X, -tall since

p(x) = {3y <x(vz-0(z) vO(y)) |0 € L,}

is not realized in 1. Reviewing the proof of Theorem 6, however, we see that it
actually shows that if M is I,-tall for all n € N and ¢ (o0, @) is any extendible
sentence of £(M) then M has an extension K > M with .o € K\M and K k
¢ (o0, a); this statement does have a converse, at least for theories extending
IAj + exp.

Theorem 7 Let M E IAy + exp be countable. Then M is X,-tall for alln € N
iff for all £x-formulas ¢(x,7) and all a € M

{ve M|ME ¢(v,a)} is infinite
= 3K > M with b € K\M such that K E ¢(b, a).

Proof: We have already proved one direction. For the converse, recall from Paris
and Dimitracopoulos [7] that for some carefully chosen G6del-numbering there
are I,-complete formulas Saty ("6, x) for each n € N, such that JA, + exp
proves Vx(8(x) < Satg ("0"',(x))) for each § € L,,, where (¥) denotes some
suitable function coding tuples as single numbers. Now if M is nonstandard but
not X,-tall, suppose

(Vi (x,@) |k EN) S I,

witnesses this failure of I, -tallness.
By replacing n with n + 2 and each Y, (3, @) with vx > y ¥, (x, @) if neces-
sary we may assume that

1) MEay(y,a),

2 MFEvVx,y(Yx(),a@) Ax >y Yi(x,a)), and

3) MEVY(Yrs1(1,a) = Y (3, a))

for all k € N, and that no b € M satisfies M F A\ ren ¥« (b, @). Using the fact

that (¥ (x,@))ren is a recursive sequence, by an easy overspill argument there
is ¢ € M such that

ME (c)o="Yo(x, 7))
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and
ME(©)k="(c)oA (€)1 A+ A (g1 A Y, 7))

for each k = 1, where (c); is the kth element of the sequence coded by c. By
overspill again there is a nonstandard » € M such that

MEvrs <v(r<s— (c),is a conjunct of (c),);
hence
@ MFEvx,pvrs <v(r <sASatg,(()s,{x, 7)) = Satg, ((¢),,{x, 7))).

By (1) and (3), the formula
6(v,a,¢,v) = per v < » A 3x Saty, ((€),,{x, @)
is satisfied by infinitely many b € M (namely exactly those standard b € M). But
if KEo(b,a,c,v) with N< b <»and K > M then
K E Satg, ((¢)5,{d, @)
for some d € K. Since K > M, from (4) we have
(5 KFy(d,a)
for all kK € N. Since K 2 M there is e € M with e > d. But then by (2) and (5)
KEyi(e a)
for all k € N; hence M F /A ren ¥« (e, @), a contradiction.

Our last result completes the answer to Roman Kossak’s question.

Theorem 8! For each n € N there is a countable model K E IL,, + exp +
~BX, .1 with no elementary cofinal extensions.
Proof: We first recall the sequence of functions f,, from [4]:
Jo(x) is x*, and, for n = 1,
Jn(x) = (pz) {vu,v < xvy(Satg,(u,{v, y)) > 3y’ < zSatg, (u,{v, y")))}.

It was shown in [4] that, for each n € N, there are £, ; formulas f,(x) = y and
{2)(x) = y such that IL, + exp proves

vx3yfu(x) =y

VXX DY (XS X A fu(X) =Y Afu(X) =y 5y <))
v, 0,2, 2 ([ x) =z2afP(x) =2 2 z2=272")
vxf O (x) = x

VX 3,2, WD (X) =2A fo(2) = wo fP2 (x) = w)

and, whenever I =, M E I'L, satisfies a € I = 3b € I such that M E f,,(a) = b,
then I <y, M and I FIX, + exp.
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Now let M EPA + —Con(PA), let a € M be the least proof of 0 = 1 from
PA (so a is nonstandard and I;-definable in M) and let
I= [xeMlayeMFxsyAy=f,§k)(a) for some k € N},

s0 1<y, Mand IFIZ, + exp. Now let K = K"*1(I) = the set of all £, ,-defin-
able elements of I. It is straightforward to check (using I F IZ, + exp) that
K<;,,, I, KFIL, + exp, and that for all k € N

KEb=fF(@)=sTEb=fP(a) s MEb=f"(a),

so { Fi) (a) | k € N} S K. We claim K has no elementary cofinal extensions.
Suppose K <. J with w € J\K. Consider the formula 6 (u, v) =ger

3k, b[b=f(a) Ab<vAdj<k(Satg,, (j,u) AVx(Satg,,, (j,Xx) > x=u))].
Thus,

1. KFvuivl(u,v),
2. {u € K|K E0(u,v)} is finite for all v € K, and
3. KEvy,v,u (v=0v' A0(u,v)->0(u,v')).

Now let c € JEO(w, ) (cexists by (1) and J > K). By (3) and J 2. K we may
assume without loss of generality that ¢ € K. But w ¢ K so

card{x e J|JEO(x,c)} > card{x€ K|KF0(x,c)} €N
which contradicts J > K.

Problem The above example fails to satisfy the following necessary condi-
tion for M to have a proper elementary cofinal extension:

If 6(x, y) is an £4-formula, possibly containing parameters from M, such
that M F vxQ*y0(x, y), then for some c € M {x € M|M F 6(x, c)} is in-
finite.

Is this condition also sufficient?

NOTE

1. Since writing the first draft of this paper, C. Dimitracopoulos has informed me that
Theorem 8 already appears in H. Lessan’s thesis (Lessan [5]), and so should be at-
tributed accordingly.
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