147

Notre Dame Journal of Formal Logic
Volume 32, Number 1, Winter 1991

Relevance and Paraconsistency —
A New Approach.
Part Ill: Cut-Free Gentzen-Type Systems

ARNON AVRON*

Abstract The system RMI is a purely relevance logic based on the intuitive
ideas of relevance domains and degrees of significance. In this paper, we
show that unlike the systems of Anderson and Belnap, RMI has a corre-
sponding cut-free, Gentzen-type version. This version manipulates Ayperse-
quents (i.e. finite sequences of ordinary sequents), and no translation of those
hypersequents into the language of RMI is possible. This shows that RMI is
multiple-conclusioned in nature and hints on possible applications of it to the
study of parallelism.

I Introduction and background The systems RMI and RMI,,;, are power-
ful, purely intentional relevance logics that were introduced in [4]. Semantically
they correspond to the algebraic structures which have been developed in [3] fol-
lowing the intuitive ideas of relevance domains, relevance relations, and degrees
of reality (or of significance). Our main goal in this paper is to show that, un-
like the systems of Anderson and Belnap in [1], RMI and RMI,;, have cor-
responding cut-free, Gentzen-type versions. The existence of such versions is
significant from the proof-theoretical point of view and has obvious importance
for the task of developing automated reasoning systems that will be sensitive to
considerations of relevance and paraconsistency. Even more important, perhaps,
is the fact that in the case of RMI, the corresponding Gentzen-type version
manipulates hypersequents (i.e., finite sequences of ordinary sequents) rather
than ordinary sequents. Unlike the case of RM (which we pursued in [5] using
similar techniques), in the present case no translation of hypersequents into sen-
tences of the language is possible. Together with the results of section E of [4]
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this shows that RMI is inherently multiple-conclusioned in nature. This fact
might hint on possible applications (of the kind suggested in [7] for Linear Logic)
of RMI to the study of parallelism in computer science (such applications of
hypersequential systems in general is the topic of a forthcoming paper).

For the reader’s convenience we review now the main notions and results
from [4] and [2] that we shall need.

The system RMI
Primitive connectives: ~,—,A,V.
Defined connectives:
A+ B=p(~A—-B)
R*(A,B) =p; (A— A) + (B— B)
RMA,B) =ps (A~ A) A (B— B)
ADB=psBv(A—B).

Axioms:

Al A->(A4-A)

A2 (A-B)-»>(B-C)—>(A-0)
A3 (A->(B-QC)—- (B> (A-0)
Ad (A-(A->B)—~(A—-B)

A5 ~~A-A4

A6 (A- ~B)— (B— ~A)

A7 AAB-A

A8 AAB-B

A9 (A->B)A(A->C)-»(A-BArO)
Al0 A-AvB

All B->AvVB

Al12 (A-C)A(B—-C)->((AvB)-O0).

Rules of inference:
RI A,A-BIB
RII R*(B,C),B,C+-BAC
RIII R*(B,C)FAA(BVC)>(AAB)V(AAC).

Some fundamental properties of RMI are summarized in the following prop-
ositions. The (easy) proofs can be found in [4].

Proposition 1
(1) In the above formulation Rule II can be replaced by:

(Re. Adj) A->B, A-CFA->BAC.
(2) Rule III can be replaced by the axiom:
(RD) RMNB,C)D[AAN(BVC)—> (AAB)v(AACQ)].

(3) As usual A v B is equivalent to ~(~A A ~B).
(4) The classical deduction theorem holds in RMI for D.
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Important subsystems:

(1) The system RMI,;, is RMI without Rule III.

(2) The system RMI 5 is the system in the {~,—} language with Axioms 1-6
and Rule RI.

For the case of RMI 5 the following Gentzen-type system was already pro-
vided in [2]:

The system GRMI -

m times n times

Axioms: p,p, ..., D= D,p,...,D (p atomic, m > 0, n > 0).

Rules of Inference: Exchange, contraction and the classical Gentzen’s logical
rules for negation (~) and implication (-).

The most important results from [2] concerning GRMI 5 are reviewed in the
next proposition. Their proofs in [2] are rather standard.

Proposition 2

(1) GRMI is closed under the following rules:
(a) Anticontraction:
A’r = A I'= A,A
A AT=A T'=>AA4,A

(b) Weak expansion:

I'=A I'=A
AT=A T=A,A4"

provided all atomic variables of A occur inT' = A.
(c) Relevant mingle:
I‘1 =A;,A 1"2 = AZ’A A,FI = A A’F2 = A2
I,Iy=A4,45,4 A,T,Ty = Ay, A,

(d) Relevant combining:

I'sA I'"= A
I\I"=AA

provided T = A and T = A’ share a variable in common.
(2) The cut-elimination theorem holds for GRMI 5
(3) RMI 5 and GRMI 5 are equivalent.
(4) The interpolation theorem: if RNII—I A — B then there is a sentence C having

only variables common to A and B such that RNII-I A—- Cand RNDI-I C-B.

II Gentzen-type formulations for RMI,,;, We start with RMI;;,. We
present two alternative Gentzen-type calculi for it:
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The system GRMIY),
Axioms: 4,A4,...,A=A,A,...,A (A-any sentence).

Rules of Inference:
(1) All rules of GRMI 5

(2) Cut
ATl =A BI'=A
3) (r=):
AANBT=A AABT=A
I'=A,A I'=A,B
@) (=n): — > AfT U A % ).

I'=>A,AAB

Note: In contrast to (+ =) or (— =), in (= A) the two premises should have the
same side formulas, and in contrast to the corresponding rule of the sequential
calculus for the system R without distribution, such side formulas must exist (i.e.,
from = A and = B we cannot infer = A4 A B).

Lemmal  GRMIYY is closed under the following rules:
(@)
I'=A,A I'=A,B
I'=A,AvBT=A,AVvB
ATl'= A BTI'=A

ifTUA
(v=) AVBI oA G(fT U A # Q)

(=v)

(b) Anticontraction (see Proposition 2 above).
(c) Relevant mingle (see Proposition 2 above).

Proposition 3 ~ RMI,;, and GRMIY, are equivalent.
The proofs are left to the reader.

Note: Using full r.d.s.’s (see [3]) it can be easily shown that GRMI{). is not
closed under weak expansion and under relevant combining. For example, al-
though AAnB=AArBand AAC= A A C are provable, A,AANB=AABand
AANB, AANC=ANAB, AAC are not.

The system GRMI{, has a major drawback: Cut-elimination fails for it.
For example: A A B= A, Bis provableinit (since = AAB—A,F= AAnB—>B
and since GRII;[ . C,C—- A, C— B> A,B), but it is easy to see that no cut-free

-

proof of this sequent is possible. We introduce therefore another version, for
which cut-elimination does obtain:

The system GRMI,,;,

Axioms: p = p (p atomic).

Rules: As in GRMI{) ; and in addition, also the two relevant mingle rules.

Lemma 2
1) oR }-I A = A for any sentence A.

min

(2) Anticontraction is an admissible rule of GRMI ;,.
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Proof: (1) By induction on the length of 4. (2) By a mingle of A,I' = A (or
I' = A, A) with itself, followed by contractions.

Proposition 4 GRMLI,,;, and GRMIY), are equivalent.

Proof: That GRMI,;, € GRMI{?, follows from Lemma 1. For the converse we
note that by Lemma 2 all axioms of GRMI{), are theorems of GRMI,;,. From
this our proposition immediately follows.

Theorem 1 The cut-elimination theorem is true for GRMI ;.

Proof: We start by showing that cut-elimination is equivalent in GRMI;, to
mix-elimination. That cut-elimination entails mix-elimination is obvious, because
of the rules of exchange and of contraction. For the converse the weakening rule
is usually used, but in the present case it is not available. Instead we use the rel-
evant mingle rule in the following way: Suppose FA,T'; = A; and T, = A,, A.
(Here ‘}’ means ‘G AI; ’.) We repeatedly apply mingles of both sequents with

min
n times

—
A = A (and contractions), until we derive 4,4,...,4, T, = A,,Aand A,T; =

m times

f__-Jh_\ . 5
Ay,A,...,A, where m and n are the number of times 4 occurs in A, and T},
respectively. A mix of both sequents, followed by exchanges, gives I';,T'; =
Ay A,.

It remains, therefore, to prove that every mix is eliminable. Applying the
usual method for this is not so simple, though, since the limitations on applica-
tions of the (= A) and mingle rules cause difficulties. For example: if =¢, ¢ =
A and ¢ = B are all provable, we can apply (= A) first and then a cut to obtain
=A A B. We cannot reverse the order of these steps, however, since from =4
and =B we cannot infer = A A B. (The mingle rules cause similar problems.) The
key for the solution of these problems is given in the following:

Definition By an A-supermix we mean the following rule of inference: From
I'y=A; T = A,;...; T = Ay, where k >0and A € NK, A;, and from I'] =
A Ty= A% .. .;T= A}, where n > 0 and A € N, T}, to infer: Ty,...,IYy,
re,..., T = ALLAS, ... AL AL, ..., A,, where T/*(AT) is T'/(A;) without
some (perhaps all) of its A’s.

Two other concepts that we need are defined as follows:

(1) The complexity of an A-supermix is the number of connectives occur-
ring in A.

(2) The rank of an A-supermix is the sum of the heights of its premises,
where the height of a sequent in a given proof is defined in such a way
that the height of a conclusion of an inference is greater than the sum
of the heights of its premises (the definitions exact details are not im-
portant).

We now prove by a double induction on the complexity and the rank of the
supermix the following:

Main Lemma If every premise of a given A-supermix has a mix-free proof,
then its conclusion has a mix-free proof too.



152 ARNON AVRON

Case a: The last rule applied in the proof of one of the premises (I'; = A], say)
is neither a logical rule having A4 as the principal formula, nor an axiom 4 = A.

In a case like this we usually apply first the Induction Hypothesis (I.H.) sep-
arately to each of the premises of I'{ = A containing A (together with the other
premises of the supermix). In this way we get one or two supermixes, each of
which has the same complexity as the given one, but a lower rank. We then ap-
ply the last inference in the proof of I'f = A to the conclusions of those super-
mixes. A problem arises, however, when this last step is no longer possible. This
may happen in the following two cases, and so another procedure is needed for
them:

Subcase a.1: T'{= A} was derived by a mingle fromI'] ; = A} ; and I'[ , = A} »
and A is the only sentence which makes this mingle possible.

In this case we apply the I.H. to the single A-supermix of I'{ ; = A} |, [, =
A’ > and the other premises of the given supermix (this new supermix has the
same complexity as the given one but a smaller rank, so the I.H. is indeed ap-
plicable). The conclusion of this supermix is identical to that of the given one.

Subcase a.2: T'{ = Aj has the form A,A,...,A = B A C (and its premises are
A,A,...,A=>Band A,A4,...,A = C), while the other premises of the super-
mix are of the form 4,4,...,A=and = A4,A4,...,A.

In this case we first apply the I.H. to 4,4,...,4 = B and to the other
premises of the given supermix. We get = B. From this = B, B follows by a rele-
vant mingle. =C, C can be obtained similarly from 4,A4,...,A4 = C. In addition,
we obtain =B, C by applying the .LH.to A4,A4,...,A=Band A4,4,...,A=>C
simultaneously (together with the other premises of the given supermix). All three
supermixes have a smaller rank than that of the given one. Now from =B, B and
=B, C we derive =B,B A C. =C, B A C is derived similarly. Applying (= A) once
more we get =B A C, B A C and then =B A C, as desired.

Case b: A is atomic and Case a does not obtain.
In this case all the premises of the given supermix are axioms of the form
A = A, which therefore is also the supermix’s conclusion.

Case c: A is not atomic and in all the proofs of the premises of the given super-
mix the last inference is logical with A as the principal formula.

There are many subcases to deal with in this case. As an illustration, we take
the most difficult of them, namely: A = B C.

Subcase c.1: A occurs in the succedent of one of the two premises of I'; = A,
(say). By applying then the I.H. separately to each of these premises (together
with the other premises of the given supermix), we get I' = A/ Band I' = A,C
(where I" = A is the conclusion of the given supermix). Suppose, for example,
that I'{ = A{ was inferred from B,I'{ = A{ (Where '} = B A C,I'{). We may as-
sume that 4 ¢ I'7 (otherwise we first apply a standard treatment of the kind
given in [6]). It follows that a B-mix of B,I'{ = Ajand of I' = A, B (followed by
some exchanges and contractions) gives I' = A (note that 'Y € T', A{ S A). Since
this mix has a smaller complexity than the given one, we can eliminate it by the
I.H.
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Subcase c.2: All the T'; = A; are of the form I'; = A}, A (where A € A}) and
were derived by = A from I; = Af,Band [; =A},C (and so T; U A} # @). 2k
mingles will then give I'y, ..., I\ = Al,AS,...,Af,Band Ty,... T\ = A}, ...,
A%, C (where UL TUUL AT+ @ and A = BAC & UL A}). Again we may
assume that each I/ = Aj(j=1,...,n) was inferred by A = from either B,I/ = A}
or C,I'/* = A}, where A & I'/*. We can apply, therefore, a B-supermix to all the
sequents of the form B,I/* = A} (if such exist) and to Iy, ... , I\ = AT ... A}, B.
A similar treatment, using a C-supermix, can be given to the premises of the form
C,I'/* = A/. Finally, by applying mingle to the two sequents obtained (if really
there are two), followed by some exchanges and contractions, we get I' = A (the
mingle is possible since U%_; T; U U%; A # @, and its sentences are common
to the two sequents involved).

Corollaries

(1) GRMlI,;, kas the subformula property.

(2) RMI,,;, is decidable.

(3) The interpolation theorem of Proposition 2.4 is true also for RMI;,.
(4) RMI,,;;, has the variable-sharing property with respect to +, —, and A.

Proof: The proofs of (1) and (2) are standard.

(3) By Maehara method (see [6]). We illustrate here the case of the mingle
rule. Suppose that C,I'{,I';,I'{, I'; = A{, A5, A7, AS is inferred from C,I';,T'{ =
Aj,Af and C,T'5,T'5 =A%, A5 by a mingle, and that T{ UT5 U Af U A3 # 0.
We show how to construct an interpolant for C,I'{,I'; = A{,A5 and I'{,T'; =
A7,A%. Without a loss in generality we may assume that I'{ U A{ # . By the
I.H. (applied to C,I'5,I'5 = A5, A%) there exists an interpolant A such that

() Formiy,, A.T1 = A7
(i) Formi,, CT1= ALA.

Now, if T'4 U A = &, then FC,I'5 = A5, and a mingle of this sequent and
of (ii) yields: +FC,I'{,I'5 = A1, Aj. Together with (i) this implies that A4 is an ap-
propriate interpolant.

If, on the other hand, I'; U A5 # & then by I.H. there exists an interpolant
B such that:

(i) FB,T% = A and
(iv) FC,T5= A5, B.

A mingle of (ii) and of (iv), followed by (= +) and an application of (+ =)
to (i) and (iii) together yield a demonstration that 4 + B is an appropriate in-
terpolant in this case.

(4) This follows immediately from (3) in the case of — and +. The case
of A follows from that of +, since F A A B— A + B (see the note after
Proposition 3). RMlmin

IIT A hypersequential formation of RMI  In this section we finally present
a Gentzen-type calculus for RMI. Although GRMI,;, is its “hard core”, this
new calculus is much more complex than GRMI,;,,, since it deals with finite se-
quences of sequents. The new calculus does not correspond directly to RMI, but
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rather to the stronger multiple-conclusioned version which we have introduced
in section E of [4].

Definition

(1) A hypersequent is a formal creature of the form: 'y = A VI, = A, V.- -V
T, = A, (n=0), where I'; and A; are finite sequences of formulas in RMI
language.

(2) WecallT;= A;(i=1,...,n) the components of the hypersequent I'; = A,V
I‘2= sz. . VI‘”= A,,.

Note: Our definition of a hypersequent allows a hypersequent with no compo-
nents. We call this hypersequent the empty hypersequent. This should be distin-
guished from the empty sequent.

Notation: We use L, K, G as metavariables for hypersequents.

The system GRMI
Axioms: p = p (p atomic).

Rules of inference:
(I) All the rules of GRMI,,;, (including cut) but with “side” hypersequents al-
lowed. For example, (+ =) takes the following form:

GIVA,FI':)A]VKI GzVB, I‘2=A2VK2
GIVG2VA +B,F1,F2 = Al,szKIVKZ

(I) External structural rules:

VL
(IL.1) 5(7;7\/{—\/—5 (External weakening)
A\ v
GV Fl = Al VK
. E 1 exch
(I1.2) GVT, = A,VT, = A, VK (External exchange)
v A I‘ v
(IL.3) GYr=A¥I=AvK (External contraction)

GVI'=> AVK
(III) Splitting:
GVFI,I‘2= Al,szK
GVI‘I =A‘\VI‘2=A2\VK

Definition We say that a sentence A is provable in GRMI (Fgrmp A) iff the
sequent = A is derivable in GRMI.

Theorem 2 Frmr ¢ i Formr ¢-

Proof: To show that gy ¢ implies Fgrwmr ¢ it suffices to derive all the axioms
in GRMI, and to show that the set of sentences provable in GRMI is closed under
RMTI’s rules. Now the axioms are easily derivable already in GRMI;,. Also
provable there is the sequent 4,4 — B = B. Hence it is obvious (using cuts) that
the above set is closed under M.P. for —.

Suppose now that Fgrmr A, Formr B and Fgrmr R (A4, B); we show Fgrmr
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A A B. Now Fgrmi RT(A, B) means (using cuts) that Fgrvg 4,B = A, B, and
thRMI A, I-GRMI B means that l-GRMI = A and |-GRMI = B. Using cuts and an-
ticontraction we can derive from these three sequents Fgrvy = A, B; Forvi =
A, A and Fgrwmr = B, B. From this Fgrymr = A A B,A A B (and then Fgrmr A A
B) easily follows.

For the third and last rule we must show that if Fgrm R (B, C) (equiva-
lently: if Fgrmr B,C = B,C) then Fgrmi A A (BVC) ». (AAB)v (A AC).
Denote the last sentence by D. The following is a proof in GRMI of =D. start-
ing from B,C = B,C:

B,C= B,C
(Splitting)

B=>CVC=>B B=B
(v=) |
B=>CYBvC=>B C=C
(v=) |
BvC=CYBvC=B A=A
(r=) |
AAN(BvVC)=>CVAAN(BvC)=>B An(BvC)=A

(=)

AANBVC)> AANCYAA(BVC)=AAB

(=v) |
ANBVC)=2 (AAB)V(ANC)VAA(BVC)= (AAB)V(AAO)
(=-) |
=DV =D
(External contraction)
=D.

For the converse, suppose Fgrmr = A. We show that Fgpap A. For this we asso-
ciate with every hypersequent G, not containing the empty sequent (=) as a com-
ponent, an interpretation, ¢, defined as follows: If I' = A is 44,...,4,, =
Bl,---an then OTr=A is ~A1 + ~A2 R o ~Am +B1 R o B,,. If G =
I‘l = A VeV Fk = Ay then G = Pri=a, V" "V Or,=A," (Note that 2] is a sen-
tence in the language of RMI.) We now show by induction that if Fgrmi G (G
as above) then Fryv ¢. From this our claim immediately follows. Now, for
the rules of group (I) we just need to use the fact that if A;,...,4, | B then
CvA,,CvA,,...,CvA, Frmi CV B (see the proof in [4] of the completeness
theorem for RMI). In the case of the cut rule the assumption that G does not
contain the empty sequent is essential for this. The rules of group II are also easy
to deal with. Finally, for splitting we use the above fact and the fact that Fgpy
(A+B)-> AvB.
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Note: It may happen that Fgymp ¢ but Fgrvi G. For example: Fryvp (2 D
q)v (gD p)but fgrmi=pPDqgV¥=qgDp.

Theorem 3 GRMI admits cut-elimination.

Proof: The proof is based, essentially, on that for GRMI,,;,, but the additional
rules (especially splitting and external contraction) cause new serious complica-
tions. In order to overcome these new difficulties, we introduce a new concept:
Let D be a proof of GYI' = AV K, and let I'° = T',A° € A. Then DFT3A%,
the history of T'° = A® in D, is defined as follows:

Case a: GVTI' = AV K is an axiom, or it results from G ¥ K by an external

weakening. Then DS % is TO = A°.

Case b: The indicated I" = A is not involved in the last inference of D, or this
inference is a splitting or an external exchange, or the sentences of I'® and A° are
not involved in this inference, or this inference is an internal exchange of a sen-
tence in I'? (or A®) with a sentence not in I'® (or A%). Then DIE;O/ T<AK is the
same as the history of I'° = A% in the subproof of D of that premise of the last
inference of D, from which the indicated I' = A comes.

Case c: D has the form:
D'{G¥TO;T, & A% A, VK
GYTO%T, = A%A VK
(where I'%T'! is some merge of I'° and I''). Then DS~ is:

D/G/I‘° I=4%;4,/K
T%=A°

re ='~ A°,
Case d: D has the form:

D,{GYTOT S ABAIVK,  Dy{Go¥TYTs S AL ALK,

GYI'= DVK
(w(l;/egeA(/i( GV G,, K=K VYK,, (T = A) = (I'%T{;T'4= A%A{;A%)). Then
D s
To=A
Dr,/r?,m:m.,A./K, Dgz/rg ;T5=A%;AL/K>
1r9=a$ 3=a3
%= A,

Case e: D has the form:

D'{GYT = A¥T = AVK
GVT = AVK

We have here two subcases to consider:

Subcase e. 1:

D/GvI‘=A/I‘=>A/K D/G/I‘=A/I‘=A¥K
T0=A0 T0=A0
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Then DSyT5*"% is identical to these two histories.

Subcase e.2: Not (e.1). Then DGTZAK is:

F0=AO
1GVT'=A/T=A/K D /T'=A/T=AVK
%0 Iro=A°
%= A%

G/T'=>A/K

By this we have finished defining D5 ™. It is easy to see that it has the

form of an ordinary GRMI;, proof of I'® = A, except that it may include rep-
etitions of the form:
I'sA I'=sA

N /

T'=s A,

it need not start from axioms, and instead of mingles it may include combinings
of the form:

=4 =4,
I, I;= 4,4, '

We next define the concept of a generalized A-supermix as follows: Suppose
D;(i=1,...,m) is a proof of:

G/ VYT;T) = A AJYGIVT;TF = A AFY- - ¥ GFVT;TH = A AR Y GF!

in which all the indicated I'; = A; have the same history in D;(i=1,...,m) and
A € NJZ A;. Suppose also that D/(j = 1,...,n) is a proof of:

Ly sl ALY NGNS T M e AT Y G It
G/ VTjT = A A Y- - VG YT, T/™ = A AWV Gf™

in which all the indicated I'; = Aj(j = 1,...,n) have the same history in D/ and
A € Nj=; Tj. Then the generalized A-supermix of these hypersequents is:

YTl = AlVT2 » A2V.. .y Th = AMYTL = ALY. . YT = Akey. . .y Tk
= AMPYTY = A Y- YT = A YTy, Ty, ... Ty, D55 - - T
= A, A% AL AL LA

Our main lemma is now: Every generalized A-supermix can be eliminated in
such a way, so that if I'y = A, is a subsequent of one of the components of the
result of this supermix, then it has in the new proof the same history it has in
the old one.

The proof of the main lemma is by a threefold induction on: (1) The com-
plexity of the supermix formula A4, (2) The sum of the lengths of the common
history of the T'; = A; (i=1,...,m) and that of the '} = A/(j=1,...,n), and
(3) the sum of the lengths of the proofs of the premises of the given generalized
supermix. Now, the definition of a generalized supermix makes the case of split-
ting trivial in this induction. Most of the other cases are not difficult either, but
a full presentation of them all is long and tedious. As an illustration we shall do
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the case of an external contraction (which was found to be the most problem-
atic one). To simplify notation, welet m =1, n =1, k, = 2, and m; = 1 (in the
definition of a generalized supermix). We have accordingly, two proofs D; and
Dy with the following form:

DG YTL,Ty = AL A, YTT, = AL A YTLT, = AL A, ¥ G,
G\VT},T = ALA VT T, = A2, A, VG,

DII {K] VI‘%;Pz = A%,AzVKZ

(where the two I'; = A,’s which are indicated in the conclusion of D; have the
same histories in D, —see the definition of a generalized supermix!). We now
show how to construct from D; and D a supermix-free proof D as requested.
For this we have two subcases to consider:

(i) In Dy all the three indicated I'; = A,’s have the same history (which is
identical to the one they have in D).

In this case we apply the I.H. to D{ and Dy and get a proof with the re-
quired properties of

GIVG VK VK, VT = AJYT? = A3VT? = A2VT? = A2VTL = ALV, TS
*
:Al,Az.

An external contraction of the I' = A%’s (which, by I.H., have the same history
in the new proof) yields D.

(ii) Not case (i). This means that the second and the third I'; = A;’s (in the
final conclusion of Dy") have there different histories, which are both shorter
than that of the first I'; = A; (which has in D{ the same history which the two
T'; = A,’s indicated in the conclusion of D; have there).

In this case we apply first the I.H. to D{ and D/, in order to eliminate the
first I'; = A;. We then get an appropriate proof, D3, of:

G VT2 T, = AL, A VT3 T, = AL A VG, VK VK, YT}
= AlVI) = AJVT, T3 = AL, A,.
(In this step we use the fact that Dy is shorter than D;.) We then apply the I.H.
to D; and Dy, and get a proof D, of:
G ¥T,Ty = AL A Y G VK VK, VT = ALV = ALY T, IS
= AT, A VK VK, Y2 = AZVTL = ALY, TS = A} A,.
In this step we use the fact that the common history in D; of the I'; = A’s is
shorter than that which the I'; = A;’s have in D;.) Now in D, all the indicated
identical components of the final conclusion have the same histories. We can ap-
ply therefore the I.H. once more, this time to D, and Dj. This yields (with the

help of some external exchanges and contractions which are history-preserving)
a proof D as desired.



RELEVANCE AND PARACONSISTENCY II1 159

An example Let RD™ be the following version of RD:
RD*: R*(B,C)D [AA(BVC)—> (AAB)v (AAQ).

We show now how the cut-free mechanism of GRMI works by presenting a cut-
free proof of RD™,
We start with the following theorem of GRMI 5 :

R*(B,C),R*(B,C),B,C = B,C.
From this we derive, using splittings and contractions:

(1) R*(B,C),B=CVC=B
@) R*(B,C),C=BYB=C
(3) R*(B,C),C= CYR*(B,C), B=B.

Two applications of = v, first to (1) and (3) and then to the resulting hyper-
sequent and to (2) yield (after some exchanges):

4 R*(B,C),BvC=CYR*(B,C),BvC=BYB=CVYC=B.

We now show that RD™ is derivable from each of the components of (4). It
follows that if we start from (4) we can prove =RD*VY=RD Y =RD*V=RD%,
and from this =RD™* follows, using external contractions.

Now, the proof of Theorem 2 includes a cut-free derivation of = A4 A (Bv
C)—> (AAB)v (AAC)from B= CVYC = B. From this =RD™ follows imme-
diately, using = v. This finishes the case of the third and fourth components of
4.

Next, we start from R*(B,C), Bv C = C (the first component) and infer
from it (by A =):

(5) R*(B,C), AN (BVvC)=C.

A relevant mingle of (5) and of the GRMI,;;,-theorem A A (Bv C), AA (Bv
C) = A, followed by a splitting, yields:

(6) RY(B,C), AN(BVC)=>AVAAN(BVC)=C.

Two applications of = A, first to (5) and (6), then to the result and to A A
(BvC) = A,yield: R*"(B,C), AN(BVC)=AACYAA(BVC)=AnC.
From this ® RD* V¥ = RD™ easily follows, using applications of = v and = —.

In a similar way, we can derive = RD* from the second component of (4).

Note: The idea of hypersequents, as well as the definition of the “history of
I'° = A% in D”, come from [5]. That paper includes a cut-free hypersequential
formulation, GRM, of RM. GRM is quite similar to GRMI in its formulation.
Yet the two systems radically differ with respect to the relations which exist in
them between their hypersequents and their sentences: The hypersequents of
GRMI cannot be faithfully translated into sentences of the language of RMI.
This is an easy consequence of theorem E.4 of [4] and the obvious correspon-
dence between GRMI and the multiple-conclusioned, Hilbert-type system which
is presented in section E of [4] (details can be easily supplied by any reader of
the two papers).
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We end this paper with a corollary of the cut elimination theorem. It was
proved already in [4] using semantical methods. The present proof, in contrast,
is purely syntactic and also constructive.

Proposition 5 RMI is a conservative extension of RMI .

Proof: Using induction on cut-free proofs, we can easily show that if I';,A; (i =
1,...,n) consist solely of sentences in the language of RMI 5, thenT'; = A, V
I'y=A,Y..-VT, = A, is provable in GRMI iff for some indexes iy, ..., (l <
i < <ip=n)Iy,Ty,....Ti = A;,A;,...,4; is a theorem of GRMI .
From this our proposition immediately follows.
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