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The Homogeneous Form of

Logic Programs with Equality

WILLIAM DEMOPOULOS*

Abstract Let P be a Horn clause logic program. We suppose that P is sym-
metric in the sense that if C is a clause in P whose head is s = t, then there
is a clause C* in P which is like C except for having the head t = s. The ho-
mogeneous form of a c lausep( t x , . . . ,tn) <- Bλ,..., Bq is p(xλ,..., xn) <-
Xι = tx,..., xn = tn, Bλ,..., Bq. The homogeneous form Pf of P is the set
of homogeneous forms of clauses of P. Let 7" be a set of axioms asserting the
reίlexivity, symmetry, transitivity, and congruence (with respect to the predi-
cates of P) of = . Then PUT is goal equivalent to P' U [x = x) i.e., for any
goal G, PU TU [G] is unsatisfiable iff P' U{x = x}U[G}is unsatisfiable.
The main interest of the paper lies in its construction of the Herbrand model
M and in the proof that Mis the minimal Herbrand model of both P U Γand
P'U {x = x}.

1 Introduction In their analysis of Prolog II van Emden and Lloyd [1] in-
troduce the notion of the homogeneous form of a Horn clause logic program.

Definition The homogeneous form of a clause p (t\,..., tn) <- Bx,..., Bq is

P(X\, . . . , Xn) <- Xι = t\, . . . , Xn = tn, B\, . . . , Bq

where xx,..., xn are distinct variables not appearing in the original clause.

Definition Let P be a program. The homogeneous form P' of P is the set of
homogeneous forms of the clauses in P.
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van Emden and Lloyd use the homogeneous form to provide a simple and
elegant characterization of the relation of Prolog II to standard Prolog. Their
results may be summarized as follows. Let E be the equality theory

(1) vχχ = χ

(2) VxVy χ = y->y = χ

(3) VxvyVzx = y Ay = z^x = z

(4) Vxr VXflVjv VyΛ(*i = JΊ) Λ Λ (xn = yn) ->/(* i , ,xn) =
/(JΊ> >yn)> f° r all function symbols/

(5) lxι 3x,fly\ lyk(xι = t\) Λ Λ (xn = tn), where the ΛΓ/'S are distinct
variables, the ί, 's are terms, and {JCI , . . . 9xn9y\> 9y/c) is the set of all
variables in the formula.

Let P be a logic program not containing the equality predicate, let P' be its ho-
mogeneous form, and let G be a goal (again, not containing =). Then van Em-
den and Lloyd's first proposition states that P U [G] is unsatisfiable iff P' U
{x = x] U {G) is unsatisfiable. And their second proposition tells us that Pro-
log II solves G only if P' U E U [G] is unsatisfiable. Thus Prolog II is sound
with respect to the first-order theory P' U E U {G}, while standard Prolog is
sound (and complete) with respect to the first-order theory P' U {x = x]U {G}.

In general, logic programming systems which differ from standard Prolog
only in their unification theory can be usefully analyzed within van Emden and
Lloyd's framework: one first applies the homogeneous form transformation to
the logic program in order to obtain a first-order theory; this theory is then com-
bined with an equality theory, such that the original programming system is
sound (and possibly complete) with respect to the combination, homogeneous
form plus equality theory. The equality theory specifies the conditions under
which two terms are unifiable.

Our interest in the homogeneous form of a logic program begins with the ob-
servation that the homogeneous form of a definite clause is itself a definite
clause. It is thus possible to view the homogeneous form of a set of clauses
as simply another logic program. We have found that when we lift the restric-
tion that P and G be equation-free, the homogeneous form can be shown to
have a theoretical interest which is independent of its role as a tool for compar-
ison. This interest, together with our principal results, will now be briefly sum-
marized.

Unlike van Emden and Lloyd we allow for the possibility that the head of
the original clause may be an equation, i.e., an atomic formula whose predicate
symbol is =.

We restrict ourselves to what we term symmetric programs. If P is a symmet-
ric program, then an equation s = t occurs in the head of a program clause C
of P only if there is a program clause C* in P which is like C except that it has
the head t = s. Aside from this requirement, we impose no restriction on P be-
yond the usual one that it be a finite set of definite Horn clauses. Thus P may
contain equations, as well as other literals, and these may occur in any order in
the program clauses of P. The restriction to symmetric programs is a natural one
in the case of programs with equality. It is also clear that any definite clause logic
program can always be extended to a symmetric program.

We are interested in the relation the homogeneous form of a symmetric pro-
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gram bears to the result of combining the original program with a particular
equality theory. Specifically, we are interested in the question: To what extent
does transforming a symmetric program P into its homogeneous form P' allow
us to approximate the deductive power of P U T, where Γis the equality theory

(1) Vχχ = χ

(2) VxVy x = y -> y = x

(3) VxVyVzx = .yΛ.y = z->Λ: = z

(4) V*! VXflVyi V y Λ ( * i = J Ί ) Λ Λ ( X Λ = yn) *p(xu. . . , * „ ) -•

P ( ^ I , . . . » > Ί I ) »

and (4) is an axiom schema with instances determined by the predicates occur-
ring in PΊ

Letting G be any goal (thus G may contain equations), our principal result
implies that if P U TU {G} is unsatisfiable so is P' U [x = x] U {G}. (The proof
of the converse is trivial.) The homogeneous form thus allows us to recover the
effect of Axioms (3) and (4) of T without introducing transitivity and predicate
substitutivity axiomatically. From the point of view of logic programming, the
deductive power of P' U {x = x] is, therefore, practically speaking equivalent
to the deductive power of P U T, although they are not, of course, logically
equivalent.

The main interest of the paper lies in the construction of the Herbrand model
Min Section 2.1, and in the subsequent proof of its principal result, viz, that M
is in fact the minimal Herbrand model of both P U Γand P' U [x = x]. We be-
lieve that our construction of M facilitates an especially transparent analysis of
the Herbrand model theory of programs in homogeneous form. In Section 4 we
show how M may be obtained as the least fixpoint of a program operator whose
definition is motivated by the model-theoretic construction of Section 2.1. Sec-
tion 3 relates our construction of Mto the standard concept of transitive closure.

Before concluding this introduction let us note why an answer to our orig-
inal question follows from the identity of the minimal Herbrand models of
PUT and P' U {x = x}. The following proposition is implicit in Lloyd [2],
whom we follow throughout for terminology and notation.

Proposition 0 Let P be any logic program and let MP be its minimal Her-
brand model. Then P U {G} holds in some Herbrand modelKiffPU{G] holds
in MP.

Proof: The «=-direction is trivial. For the =>-direction it clearly suffices to prove
that MPV G. Let G be +-Ai,..., An. Since K V G, it follows that for every
ground substitution θ there is an /, / = 1,..., n9 such that K 1= ^-Afi. Hence
Aiθ <£ K. But then Afi £ MP since MP e K. Hence for every (9, MP (= Gθ, and
therefore MP t= G.

The following proposition is proved by van Emden and Lloyd in the course
of the proof of their first proposition. The restriction which they impose on P
and G (that they be equation-free) is not appealed to in the course of their proof.

Proposition 1 (van Emden and Lloyd) Let P be a program, P' the homoge-
neous form of P. Then P' U [x = x] logically implies P.
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2 Model-theoretic properties of the homogeneous form

2.1 General symmetric programs

Definition Let P be a program. Then P is symmetric if whenever a clause
s = t <- Bγ,... 9Bg is in P so is t = s <- B j , . . . ,Bq.

Throughout this section P is an arbitrary but fixed symmetric program, and
P' is its homogeneous form. Γis the equality theory defined in Section 1. To
keep the notation simple, we consider only = and the single unary predicate sym-
bol/?. (We also drop unnecessary parentheses and writept for p(t).) The gen-
eralization to predicates of arbitrary arity is, in all cases, obvious. We let H be
the minimal Herbrand model of P; UL is the universe of H. Arbitrary elements
of UL are denoted by the letters a, b, c, d, with or without subscripts. Notice,
therefore, that a, b, c, and d are not necessarily constants but may be arbitrary
terms. The letters s and t denote arbitrary terms which may or may not belong
to UL; the context will always make clear which alternative is intended.

Let [x = x] denote the set of all ground instances of x = x. We define a dou-
ble sequence of Herbrand models, all with the same Herbrand universe ULf as
follows:

Mo = H U [x = x]

N0 = H

Mn+Ϊ = Mn U Nn U {a = b \ there are s are t such that
a = 5, b = t E Mn U Nn, and s = t G Nn\

U [pa\ there is a t such that
a = tGMnUNn, andptGNn]

Nn+ι =NnU {a = bI there is a clause C in P and a substitution θ such that
Ciss = t<-Bu...,Bq>

Bιθ9...9BgθGMn+l9

(s = t)θ is a = b]
U [pa\ there is a clause C in P and a substitution 0 such that

C\spt*-Bl9...JBq,
Bιθ,...,BqθeMn+l9

(pt)θ is pa}.

We call Mn+ί a rectangle completion of iVΛ. The following graph of the
principal clause in the definition of Mn+X gives the intuition underlying this ter-
minology:

a Mn/Nn ^s

T
b Mn/Nn *t

Γ
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The graph Γ is read left-to-right and top-down. Thus Γ represents the fol-
lowing: the equations a = s, b = t belong either to Mn or to Nn, and s = t be-
longs to Nn. Mn+\ completes the rectangle by including the equation a = b.

The double sequence of Herbrand models is pictured below. Boxes (D) sig-
nify rectangle completions and double arrows (=*) signify closures under program
clauses.

Mo • M j . . . Mn *-Mn+ι . . .

/ /

^ o - M . . . Nn = ^Nn+ι . . .

Definition M = \J Mn.
n<ω

Definition 7V= \J Nn.

Remark We observe that NQM, although the converse inclusion need not
hold.

In the following theorems M and TV are the Herbrand models just defined
(relative to the symmetric program P).

Theorem 0 M is a model of P' U {x = x].

Proof: M is a model of [x = x] since M and Mo have the same universe UL, Mo

is a model of {x = x], and Mo Q M.
To show that M is a model of P\ let C" in P' be x = y <- x = 5, j = ί,

^ ! , . . . , Bg. Let ̂  be a substitution such that xθ is a and j>0 is Z?. Suppose further
that Biθ,..., Bqθ, (x = s)θ, (y = t)θ G M. Then there is an n such that these are
all in Mn. Since B\ θ,..., Bqθ £ Λfπ and Cβ is a ground instance of a clause in
P9 it follows that (s = t)θ ENn. Thus we have

tf Mn *^sθ

Nn

b Mn ^tθ

Hence by the definition of Mn+U a = b E Mn+\\ i.e. (x = y)θ E M Λ + 1 .
If C is/7X^-x = t9 Bu . . . , BQ9 then C is pt<^Bu . . . , 5^. Let 0 be such that

(x = t)θ, Biθ,..., i^0 E M(and thus, in some Mn). Since Cθ is a ground in-
stance of a clause in P, (pt)θ E iVΛ. Hence (px)θ E M r t + 1 .

Theorem 1 M is the minimal Herbrand model ofP/U[x = x}.

Proof: The proof is by induction: We first show that any Herbrand model K of
Pf U {x = x] contains Mo. This is the base case. Next we show that if K contains
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Mn, it contains M Λ + 1 , providing the inductive step. It follows that K contains
M. Since K is arbitrary, it follows that M i s minimal.

Base case. Let AT be a model of P ' U [x = x]. Then by Proposition 1, K is a
model of P. Thus ^ is a model of P U {x = x]. Thus if Ξ2 [JC = x ] , and since H
is the minimal model oϊP.KΏ. H. Hence K^ HU [x = x] = Mo.

Inductive step. (1) Suppose a = b G M π + 1 . We have the following cases:
(1) a = b G M Λ . Then α = 6 G ̂  by the inductive hypothesis.
(ii) a = b GNn. Then by the definition of Nn, there is a clause C i n Pand

a substitution 0 such that C is 5 = t <- ̂ , . . . , Bg9 Bx 0 , . . . , Bgθ G Afn and (s =
t)θ isa = b. Since by the inductive hypothesis, K 2 Mn, Bxθ,...,Bgθe K. By
hypothesis K is a model of P' U {Λ: = x}; thus by Proposition 1 it follows that
AT is a model of P. Hence (s = 0 0 G AT. But (5 = t)θ is a = b.

(iii) There are s, t such that a = s G Mn/Nn, s = tGNn,b = tG Mn/Nn (i.e.
# = 51, 6 = / are in Mn or A^). Since s - t G Λ^, there is a clause C in P and a
0 such that C0 is s = ί«- 2?i 0,..., £^0. It follows that C" in P' has the instance

χ = y+-χ = s,y = t,B1θ,...,Bgθ. (t)

Since AT is a model of P', K is a model of (t). If a = s , b = / G Mrt then # = s1,
6 = t G AT, by the inductive hypothesis. If one (or both) of a = s, b = t belongs
to Nn9 then by the argument for Case (ii) that equation belongs to K. Thus in
any of the four possible cases, a = s, b = t G K. Hence a = b G K.

(2) Next we observe that the argument for a literal pa G Mn+χ is exactly sim-
ilar. We include a slightly abbreviated version for completeness.

Suppose pa G Mn+\. There are three cases:
(i) pa GMn. Then by the inductive hypothesis pa G K.
(ii) pa E:Nn. Then by the definition of Nn there is a clause C and a sub-

s t i t u t i o n 0 s u c h t h a t Cθ is pa+-Bλθ,..., Bgθ a n d B\θ,...9 Bgθ G Mn. H e n c e

(iii) There is a f such that a = t EMn and pt GNn. Hence there is a clause
C and a substitution 0 such that pt *- #i 0,..., £^0. Thus C" in P ' has the in-
stance

pχ^χ=t,Bιθ,...,Bgθ. (t)

Since AT is a model of P', i ί is a model of (J). Since a = tG Mn9 a = / G K by the
inductive hypothesis. Thus /?# G AT.

Theorem 2 M is a model of PΌ T.

Proof: We have already shown that Mis a model of P U {x = Λ:} . There are three
cases remaining.

(1) VxVy χ — y-^y — χ. We show that Mn is a model of (1) for all n.

Base case. Mo 1= (1). Let a = b G Mo. Then there is a clause C in P and a sub-
stitution 0 such that Cθisa = b+-Bιθ,...9 Bgθ, with £j 0,..., £^0 G Mo. Since
P is symmetric, there is a clause C* in P such that C*θ is 6 = # <- 5 t 0,..., i^0.
Hence b = a G Mo.
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Inductive step. If Mn V (1), then Mn+X (= (1). Let a = b E Mn+X.
(1) a = b E M r t . Then b = a E Mn by the inductive hypothesis.
(ii) a = b E Nn. Then there is a clause C in P such that for some 0, C0 is

a — b^-Bxθ,..., i ^ 0 and Bx0,..., i ^ 0 E M Λ . Hence, sinceP is symmetric we
also have that 6 = α <- Z?i 0 , . . . , 5^0 is an instance of a clause in P. It now fol-
lows by the definition of Nn that b = a ENn.

(iii) There are 5,ί such that a = s E Mn/Nn9 s = t E Nn9 b = t E Mn/Nn.
Hence by the argument for Case (ii) we have t = s E iVΛ. So by the definition of
AfΛ+1, i = α 6 M Λ + 1 .

(2) VxVyVz x = y Λ y = z -+ x = z. Notice that (2) follows from the follow-
ing proposition:

For all n, if a = b, b = c E Mn then a = c E M. (t)

We will prove (t) by induction on n. Before proceeding with the proof notice that
if one of a = b or b = c is a syntactic identity, the result follows immediately.
Thus we may assume without loss of generality that neither equation is a syn-
tactic identity.

Base case, n = 0. Then a — b9 b = c E H = No. Since c — c E. Mo, we have
a = b, c = c E Mo and b = c E n0. Hence i/ = c G M ! c M

Inductive step. Suppose (t) holds for n and let a = b, b = c E M π + 1 . We have
the following cases:

(i) Both a = b, b = c E M Λ . Then (f) follows by the inductive hypothesis.
(ii) At least one of a = b9 b = c is in Nn. Then the argument is essentially

identical to the base case. E.g., if b = c E Nn then a = b, c = c E Afπ+1; then
* = c G M Λ + 2 £ M

(iii) There are s, t such that a = s, b = t E Mn/Nn, s = t E Λ^, and b = c E
M n . O r t h e r e a r e 5 , f s u c h t h a t b - s , c - t E M n / N n , s = t E N n i a n d a - b E
Mn. Consider the first alternative. There are two subcases.

(iiia) b — t E Mn. Then by part (1) (symmetry) and the inductive hypothe-
sis we have c = t E M, and hence c = t E Mi for some /. Thus we have a = s E
Mn/Nn, c = t E Mh and s = t E Nn. Let j be the greater of /, n. Then a = c E
MJ+lQM.

(iiib) b — t E Nn. Then by symmetry and the fact that Mo <Ξ Mn we have
c = b, t = tE Mn. Since b = tE Nn, c = tE Mn/Nn, a = sE Mn/Nn, and s =
t E Nn. Thus a = cE Mn+2 £ M.

(iv) For both a = b, b = c there are #! and Z?i, and b2 and Cj such that a =
aub = bι EMn/Nn, ax = bx ENn9 b = b2,c = Cι EMn/Nn9 and b2 = cx ENn.
If both b2 = b and b = bλ belong to Mn then b2 = bx E M by the inductive hy-
pothesis (compare Case (i)). If b = b2 or b = bx belongs to Nn, then b2 = bu by
the argument for Case (ii). So in either case b2 = b\ E M, and therefore b2 =
bx E Mh for some /. By symmetry bx=b2E Mh By hypothesis b2 = cx E Nn and
c = cxE Mn/Nn. Thus b\ = c E Mj+i, wherey is the greater of l,n. By symme-
try, c — bxE Mj+χ. By hypothesis a = ax E Mn/Nn and ax = bx E Nn. Hence
a = cE Mj+2 c M.

(3) VxVy x = j> Λ px -• /7y. Let a = b, pa E M. There are two cases to con-
sider, according to whether pa E Nn for some n or pa £ Nn for any n.
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(i) pa G Nn and a — bG Mk for some n and k. Without loss of generality we
may suppose that k > n. Then pa G Nk and a = b G Mk so that pb E Mk+ι c M.

(ii) /?# E Mn for some ft > 0 and pa φ. Nn for any n. Let « be the smallest in-
dex such that pa E Mn. Then by the definition of Mn there is a ί such that a =
t E MΛ_i U Nn_ι and £tf E Nn_ι. By hypothesis a = b G M and therefore # =
Z? E M^ for some #. Without loss of generality we may suppose that q> n. Then
a = t, a = b E Mg. By part (1) b = a E Mq. Thus by part (2) b = t G Mq+ι.
Since /?/ E iVrt_i, /?̂  E Nq+χ. Thus ^6 E Mq+2 ^ M.

Theorem 3 Mis the minimalHerbrandModel of P U Γ.

Proof: Our strategy follows the proof of Theorem 1. Let K be a model of P U Γ.

itase case. Mo = //U [x = JC] c K9 since ^Γis a model of Γ 2 [x = x) and His
the minimal model of P.

Inductive step. If K^Mn, then K 2 Mn+ι.
(1) Let* = 6 G AfΛ+i.

(ϊ) a = b G Mn. Then α = b G K by the inductive hypothesis.
(ii) a = b G Nn. Then a = b G K by an argument identical to our earlier

proof of Theorem 1 (Case (ii) of the inductive step).
(iii) There are s, t such that a = sG Mn/Nn9 s = t G Nn, and b = tG Mn/Nn.

As in the proof of Theorem 1 (see Case (iii) of the inductive step), we may in-
fer that a = sGK, s = t GK, and b = t G K. Thus we have

a K s
I S
1 /
I S

/

I /

K K" K
I /
. /
I S

i /

b- K t

where the broken lines represent equations in K which are inferred by the tran-
sitivity of the equality relation of K.
(2) Let pa G Mn+\. Again there are three cases to consider:

(i) pa G Mn. Then pa G K by the inductive hypothesis.
(ii) pa G Nn. Then there is a clause C in P and a substitution θ such that

pa^Bxθ9...9Bqθ (t)

and

Bιθ,...9BgθeMn.

Thus by the inductive hypothesis Bλ θ,..., Bgθ G K. Since, by the inductive hy-
pothesis, K is a model of (t), pa G K.

(iii) There is a t such that a = tGMn andptGNn. By Case (ii),pt GK. And
by the inductive hypothesis, a = t GK. Thus pa G K, since by hypothesis predi-
cate substitutivity holds in K.
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2.2 Unit clause symmetric programs

Definition A unit clause symmetric program is a symmetric program all of
whose clauses are of the form s = t <- or pa <-.

Let P be a unit clause symmetric program, and let Pf be its homogeneous
form. Let Γbe the equality theory defined in Section 1. The minimal Herbrand
model of Pf U {x = x) is identical to the minimal Herbrand model of P U T of
Section 2.1. We note that the minimal model takes an especially simple form in
this case.

Let H be the minimal Herbrand model of P. We define a sequence of Her-
brand models all with the same universe UL:

M0 = HU[x = x]

Mn+ι = Mn U {a = bI there are s1, t such that
s = teH and a = s, b = t G Mn]

U [pa\ there is a t such that
pteHanda = tGMn}.

The corresponding diagram is

Mo -°> MV"Mn -£> Mn+ι...

Definition M= \J Mn.

Thus, in the case of unit clause symmetric programs, the operation of rec-
tangle completion suffices to generate the chain of Herbrand models.

3 Rectangle completion and transitive closure The concept of rectangle
completion is closely related to the more standard notion of the transitive clo-
sure of a set with respect to a relation R. In this section we first explain this con-
nection in an abstract setting. We conclude by relating our discussion to the
minimal Herbrand model of Subsection 2.2.

Let 3ϊl = (M9R) be a structure with universe M and binary relation R on M.

Definition 911 is transitively closed with respect to R if whenever aRb9 bRc
hold, so does aRc.

The definition is expressed by a standard diagram:

az b
s

N

N

Transitive closure

where the broken line represents the relation inferred.
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Definition OH is D -complete with respect to R if whenever aRb, bRc, dRc
hold, so does aRd.

The associated diagram is

a b

d c

Ώ-completion

where, as before, the broken line represents the relation inferred. (We drop the
explicit reference to R in what follows, and take it to be understood.) The re-
lation between these two concepts is given by the following theorem.

Theorem 4 Let 9H = {M,R) be as above and let M be the domain ofR, i.e.
for every aGM there is a bG M such that aRb. Then OH is Π-complete and R
is reflexive iff OH is transitively closed and R is symmetric.

Proof: (=») Let OH be D-complete and R reflexive. We show first that R is sym-
metric. Suppose aRb holds. Then since R is reflexive bRb holds, i.e.

b b

a b

and since OH is D-complete, bRa holds.
To show that R is transitive, let aRb, bRc hold in OH. Since R is reflexive bRb

holds, and since R is symmetric cRb also holds. Thus we have aRb, bRb, cRb.
Hence by D-completion, aRc.

(<=) Let OTl be transitively closed and let R be symmetric. To show that R is
reflexive, let a be any element of M. Since, by hypothesis, Mis the domain of
R, there is a b such that aRb. Since R is symmetric bRa also holds. Then by tran-
sitive closure

a b
s

s
•s

X

X
X

N

^a

To show that OH is D-complete, notice that by symmetry and transitive clo-
sure we have the following inferences

a b
I , '

' y

' /

I s

d— c



LOGIC PROGRAMS WITH EQUALITY 301

Remark The requirement that M be the domain of R is required only in the
proof of the ^-direction; notice also that it is only used to establish that R is
reflexive.

Let us now consider the model M defined in Section 2.2 above. For Herbrand
models the relevant notions of D-completion and transitive closure are clearly
the following:

Definition Let M be a Herbrand model over UL, R a binary predicate of
L, and a9b,c,ds UL. Then Mis U-complete with respect to R if whenever aRb,
dRc G M and bRc G H, aRd G M.

Definition Let M be a Herbrand model over UL, R a binary predicate of L,
and a,b,c G UL. Then M is transitively closed with respect to R if whenever
aRb, bRc G M, aRc G M.

Clearly, if Mis the minimal Herbrand model of P' U {x = x}9 then Mis D-
complete with respect to =, and = is reflexive. For a complete coincidence with
the definition of the Herbrand model M, we introduce the concept of a heredi-
tary Herbrand model.

Definition Let M be a Herbrand model over UL, and for simplicity let the
predicates of L be p and =. Then M is hereditary if whenever a = b G M and
pb GH,paG M.

It is obvious that the minimal Herbrand model of P' U {x = x\ is the smallest
hereditary and D-complete Herbrand model of P' U [x = x].

Notice that there is a subtlety in our notion of a D-complete Herbrand
model that is absent from the abstract notion of D-completion. This arises from
the requirement that one of the equations must come from H. This precludes the
use of instances of {x = x] unless these arise from program clauses. Since the
proof of the quasi-equivalence of rectangle completeness and transitive closure
depends on the unlimited availability of reflexive pairs, a general argument of
this kind cannot be appealed to in the context of Herbrand models. This is why
the proof of part (2) of Theorem 3 is as complicated as it is. The same consid-
eration precludes a simple argument for the symmetry of the equality relation
on M (part (1) of Theorem 3). That is, we cannot argue:

Suppose a = b G M. Then a = b G Mn for some n. Now b = b G Nn for all
n, since b = b G No and No Q Nn for all n. Thus we have

b Mn •&

T
a Mn •&

and therefore b = a G M Λ + 1 c M.

For there is nothing to guarantee the presence of b = b in iV0.
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4 A fixpoint operator for M In this section we will describe a fixpoint oper-
ator for M. Our aim is to recover the model M of Section 2.1 as the least fixpoint
of an operator defined on the complete lattice of all subsets of the Herbrand base
for the program P U [x = x]. Of course the fixpoint operators associated with
the programs P U Γand P' U {x = x] can be shown to have Mas their least fix-
point. We believe the operator described here is of interest because of the way
it reflects the construction of the minimal model carried out in Section 2.1 above.
This section relies heavily on Lloyd [2], to whom the reader is referred for the
relevant concepts and propositions.

Let τP be the standard fixpoint operator associated with the program P U
{x = x]. τP: 2B -+ 2B is defined on the powerset 2B of the Herbrand base B by
the condition:

τp(I) = {A\A <- A\,..., An is a ground instance of a clause in P U [x = x]
a n d M , > 4 Λ ) c / ) ,

As is well known, the least fixpoint of τ>, lfp(τp), is the minimal Herbrand
model of P U {x = x}.

Let τ D : 2B -• 2B be defined as follows:

Tπ (/) = {A \A is a = b and there are s, t such that a = s9 s = t, b = t G / or
A is pa and there is a t such that a = t, pt G /}.

r• is thus the standard fixpoint operator associated with the program D, where
D consists of the clauses:

x = γ <-^ x = u, u = v, y = v

pχ*-χ = y,py.

It follows by standard properties of fixpoint operators associated with definite
clause programs that τP and τπ are continuous and thus monotonic. Least fix-
points of τP and r α therefore exist and we have

lfp(τp) = τ P t ω, lfp(τπ) = τ α ΐ ω

where the ordinal powers, τP ΐ α, τ α ΐ α, are defined in the usual way.
We are now in a position to introduce a fixpoint operator for M.

Definition τ(/) = τ D (*>(/)).

Thus the ordinal powers of r that are relevant to our discussion are given by:

r ΐ O = r D ( r P TO) = r D ( 0 ) = 0

r ΐ a = τ(τ ΐ a - 1) = τπ(rP(τ ΐ a - 1)), if a is a successor ordinal

τ ΐ α = l u b { τ ΐ 0 | 0 < α } , i f α : i s a limit ordinal.

Since the operator composition of two continuous operators is again con-
tinuous, r is continuous. Hence lfpr = r ΐ ω. Assuming that Mis the least fix-
point of r, it follows that beginning with the empty Herbrand interpretation 0
we can recover M after ω applications of the operator r. This is in contrast to
our earlier construction of M which began with the more complicated structure
H = Tp ΐ ω.

We shall now verify that the least fixpoint of r is indeed M. We will require
a simple preliminary lemma.
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Lemma Let The the equality theory of Section L Then T logically implies D.

Proof: Let K be a Herbrand model over UL such that K N T. K h VxVyVwvy Λ: =
«ΛW = ι ;Λi ;=j^J ί = ̂  For, let # = s , 5 = /, b = ^ E K. Then by transitivity
# = t E A"; by symmetry t = b EK. Thus by transitivity a = bEK. Next, notice
that # t= Vxvy x = j> Λ py -+px, since this formula belongs to the theory T.

Theorem 5 l fp(τ)=M.

Proof: (1) lfp(r) c M. Since r is continuous lfp(r) = τ ί ω . Our argument pro-
ceeds by induction.

Base case, τ ΐ 0 = 0 c M.

Inductive step. Suppose r ΐ « ^ M. We must show that r ί ft + 1 <Ξ M. We have

T ΐ Λ + 1 = τ(τ ΐ Λ).

By the inductive hypothesis,

r ΐ n^M.

Since τ> is monotonic, and M is model of P U {x = x].

τ P (r T «) ^τp(M) <^M.

By the monotonicity of rD

τ D ( τ p ( τ ί « ) ) C τ D ( M ) ,

And by the Lemma M (= D, so that rD (M) c M. Thus

r D ( r p ( r ΐ f t ) ) c M ,

establishing the first inclusion.
(2) MQ lfp(r). It suffices to show that

lfp(τ) NVΛ:V^VZΛ: = ^ Λ J = z^>x = z,

since lfp(τ) is a model of all other axioms of the equality theory Tand Mis the
minimal Herbrand model of P U T. So suppose a = b, b = c E lfp(r). Then for
some ft>l, a = b, b = c ELT ϊ n. Notice if b — c E r ΐ ft, then c = ^ G τ ί « ;
also 6 = feEτΐl^τΐft. Hence α = & E τ ΐ f t + l , thus proving the reverse in-
clusion.
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