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Natural Deduction in Normal Modal Logic
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Abstract A natural deduction system for a wide range of normal modal
logics is presented, which is based on Segerberg’s idea that classical validity
should be preserved “in any modal context”. The resulting system has greater
flexibility than the common Fitch-style systems.

In the introductory sections of Bull and Segerberg [2], Segerberg surveys
the deductive methods available in modal logic, and finds them wanting (pp. 25-
30). Hilbert systems are too clumsy,! Hintikka/Kripke tableaux methods be-
come too complicated, and natural deduction methods, of either the Fitch or the
Gentzen styles, are too restricted, being unable to handle the full range of nor-
mal modal logics. In response to this problem, he proposes a compromise solu-
tion; we should use a natural deduction formulation of K, the least normal modal
logic, and then treat other systems as theories in K, formed by adding appropri-
ate axioms to the natural deduction system. He goes on to propose a system
which he claims is a version of K.

The purpose of this paper is to explore and extend Segerberg’s system. I
present a Fitch-based version of it, and show that it is indeed equivalent to K,
and then compare it with Fitch’s own modal systems. I extend the theory in two
ways, first by liberalizing the rules, and then by using the liberalized version to
give formulations of a wide range of modal logics, including, but not restricted
to, the “standard” ones T, D, B, S4, and S5.

Segerberg’s starting point is the following observation:

The crux of the matter seems to be that any classically valid argument should
remain valid in any modal context; the difficulty is to explicate the italicized
phrase. The solution seems to be to require that whenever I' tautologically
implies A, then also O"T'  O”A. (p. 28)

Here O"T' = {0"B:B € I'}, where [J” abbreviates an n-long string of [’s.
Segerberg then gives a set of inference rules following the Gentzen/Prawitz for-
mat, but does not give the necessary set of deduction rules.? Rather than follow
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Segerberg slavishly, I shall give a Fitch-based version, in order to make compar-
ison with the actual Fitch systems more direct.

The system to be described here presupposes a standard Fitch-style formu-
lation of classical logic, FCL, with introduction and elimination rules for the con-
nectives, ~, v, &, and D.3 In Prawitz’s terminology ([8], p. 23), these rules are
either proper, that is, rely only on sentences occurring earlier in the proof, or they
are improper, that is, they rely on prior subproofs. For ease of exposition, I shall
assume that the only improper rules in the system are DI and ~I.# I shall also
assume that such notions as (an occurrence of) a sentence or a subproof lying
immediately inside a subproof are standardly defined, that the inference rules
require that the items involved in an application of a rule all lie immediately in-
side the same subproof, and that Reiteration can be used only from one subproof
to another immediately inside it. Finally, I assume the standard formation rules
for a sentence in a language containing ~, v, &, D, O, and ¢, and the standard
definition of ¢ in terms of (J and ~.

The System NDK

Proper Rules For each of the proper rules of FCL, schematically of the form
Ay, (A3), (A43) F A, the rule O0"4,, (O"A4,), (O"A43) F O0"A4 is a rule of
NDK.

Improper Rules Every subproof is flagged with 00", for some n = 0. If a sub-
proof headed by A and immediately containing B (or both B and ~B) is flagged
by O7%, then O"(A D B) (or 3"~ A) is derivable in the (sub)proof immediately
containing this subproof.

Reiteration If [1”A lies immediately outside a subproof flagged by [0”, then
A can be written immediately inside the flagged subproof.

Clearly, any proof in NDK in which n» = 0 throughout is just a standard
Fitch-style proof, so NDK contains all of classical logic, assuming that the stan-
dard Fitch-style systems do. If Th(NDK) is defined as the set of theses of NDK,
i.e., those sentences which can be proved categorically rather than hypothet-
ically, then we can give a suitable sense in which NDK is equivalent to K:
Th(NDK) = K.

Theorem 1 Th(NDK) is a normal modal logic.

Proof: Every normal modal logic (NML) satisfies the following two conditions
(in addition to having ¢ defined in terms of I and ~):°

(i) NML contains all tautologies and is closed under all classically valid in-
ference forms.
(ii) NML is closed under the rule RK:

(A& Ay &... & A,) DB

RK
(04, & 04, &... & 0OA,) D OB

n=0.

Evidently, Th(NDK) satisfies condition (i), since NDK contains the classical Fitch
system as a fragment. To see that it also satisfies condition (ii), consider the fol-
lowing schematic proof:
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04, & OA, &...& OA, Ass.
04, &E
0A, &E
O ~A Ass.
Ay Reit

A, Reit

A & A &... & A, n-fold &I

(A & Ay &... & A,) DA Ex Hyp.

A SE
O~~A ~1
04 ~E
(0A, & OA, &...& OA,) D OA »)|

In what follows, ‘RK’ will be used to refer either to the rule just given, or
to the equivalent rule RK”:

(A & A, &...& A,,) DB
(O0"A, & 0"A, &... & O"A4,,) D O"B’

RK”

Theorem 2 Every normal modal logic contains Th(NDK).

Proof: We show that every deduction of a member 4 of Th(NDK) can be trans-
formed into a sequence of sentences L with the following two properties: every
sentence in I belongs to any normal modal logic (NML), and the last member
of X is identical to the sentence 4. Consequently, Th(NDK) is included in NML.
The proof goes by induction on the length of the sequence. The sequence is
formed in the following way. Let the sentences in the deduction be the sequence
(A, A,,...,A,); for any sentence in this sequence, A4;, let Ass; be the assump-
tion at the head of the subproof immediately inside of which A; lies, and let
Conj; be the conjunction of all the sentences 4; which lie immediately inside the
same subproof and whose justification is Reiteration. Then X is the sequence
(o6(A;), 6(Ay),...,6(A,)), where:

U(A,') = (ASS,‘ & Conj,~) DA,‘.

When A4; lies inside no subproofs and under no assumptions, clearly 6(A4;) = A4,.

Now suppose that all the members of X preceding o(A;) are in NML; we
shall show that o(A;) is too. There are four cases to consider; first, when A; has
no justification, i.e., it is an assumption; second, when A; is obtained by Reit.;
third, when A, is obtained by a proper inference rule; and fourth, when A; is ob-
tained by an improper rule.

First and second cases: If A;is an assumption, or obtained by Reit., then
A; either is Ass; or it is one conjunct of Conj;. Either way, o(A4;) is a tautology,
hence o(A4;) € NML.

Third case: If A; is derived using a proper rule, then it has the form [0”B;,
and there are preceding occurrences (1”B;, ((0”By), (O"B;) which are in the
same subproof and which satisfy the following conditions:



266 JOHN HAWTHORN

(i) (Ass; & Conj;) D O"B; € NML

(ii) (Ass; & Conj;) D O"B, € NML
(iii) (Ass; & Conj;) D O"B; € NML
(iv) (B; & Bx & B)) D B, is a tautology.

By RK, then, (v) is in NML:
(V) (DnBj & Dan & DHB[) ) DnB,'

and hence from (i)-(iii) and (v), 6(A4;) € NML.

Fourth case: In the case where the rule is DI, A4; has the form 0"(4; D
Ay), and there is a preceding subproof flagged with [1” whose assumption is 4;,
and in which an occurrence of A, lies. Thus the following condition obtains:

(i (A; & Conj;) D Ay € NML.
By propositional logic and RK it follows that
(i) O"Conj, D> O"(A4; D Ax) € NML

where (0”7 Conj, is the conjunction formed by prefacing every conjunct of Conj,
by 0O". Howeyver, since every member (1”C,,, of (0”Conj; must occur as an ear-
lier line in the same subproof as A4;, we obtain, by the induction hypothesis, for
every C,,,

(iii) (Ass; & Conj;) D O"C,, € NML.

Hence, from (ii) and (iii), by propositional logic, we obtain
(iv) (Ass; & Conj;) D A; € NML.

The case in which A; is derived by ~I is essentially similar.

Theorem 3 Th(NDK) = K.

Proof: Since by Theorem 1 Th(NDK) is a normal modal logic, and by Theo-
rem 2 it is contained in any normal logic, it is the least normal modal logic, which
is K.

Having shown that NDK is a natural deduction form of K, I shall compare
it briefly with Fitch’s own natural deduction modal logics, and those that have
grown out of them. Using the same starting point, the classical logic FCL, Fitch
extended it by adding introduction and elimination rules for O, thereby treat-
ing O exactly on a par with ~, v, &, and D. The elimination rule was easy:
OA + A. The introduction rule required more elaborate methods, however.
Fitch introduced a category of strict subproofs, flagged with a O, and an asso-
ciated rule of strict reiteration; the CII rule then says that if A is established in
a strict subproof, (1A can be inferred immediately outside it. Depending on the
constraints on the rule of strict reiteration, different modal logics are obtainable.
If the rule is as in NDK, of the eye for an eye, O for a O variety, then we get
KT; if we allow the reiteration of [JA itself through a barrier we get KT4,
and so forth. In Fitch [S] different reiteration rules are offered for the systems
T (KT), B (KTB), S4 (KT4), and S5 (KT5 or KTE). Coupled with either a var-
iant of the OJE rule of the form A F ¢A, or no OE rule at all, and distin-
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guishing different components of the rules, it becomes possible to give versions
of all the normal systems that arise from combining D, T, B, 4, and 5 (or E).®

These systems have all the virtues of a good natural deduction system: they
are easy to work in, they have successful strategy rules, and they provide a feel
for the deductive structure of the respective logics. The disadvantage is that these
virtues begin to disappear as soon as one tries to extend their methods to other
logics. The method of varying the rule of strict reiteration works only for axioms
of the form a4 D [BA, where « and 8 are modalities, and the number of ax-
ioms that can plausibly be thought of as embodying a OE rule is extremely
small. Very soon, one has to admit defeat, and just add axioms, as Segerberg ad-
vocated. What one loses thereby in insight into specific logics, one gains in the
ability to work in arbitrary ones.’

Nevertheless, since one can as easily add axioms to the version of K derived
from Fitch’s own system, which I shall call FK, as to NDK, it is interesting to
compare the two systems. They start from the same point, Fitch’s classical sys-
tem, but diverge in what they preserve in their extensions to modal logic. In FK,
what is preserved is the connection between connectives and rules; each connec-
tive has its own rules. Of course, even here there is a change, since in FCL each
connective has an introduction and an elimination rule, whereas in FK OJ has
only an introduction rule, but that is a small matter. In NDK, by contrast, (J
has no rules peculiar to itself, but is instead pervasive; every rule has its OJ char-
acteristic. What is preserved instead is the structure; there is no new category of
strict subproofs, since the only things that are flagged would have been ordinary
subproofs in FCL. All the rules are modal generalizations of the classical rules,
and nothing else is changed. In FK, however, strict subproofs need have no as-
sumptions at their heads (indeed, in some versions they never have). Thus the
relationship of subproof to assumption also changes in FK.

These differences lead to further differences in the overall emphases of the
systems, and also in the proof strategies. Taking the latter point first, the con-
tinuity of [0 with the other connectives is preserved in strategy in FK; if you
want to prove a sentence whose main connective is [1, open a strict subproof
and try to prove the immediate subformula. In NDK, though, strategy is deter-
mined by the main propositional connective, with the modal operators added
along the way. In terms of overall emphasis, the dominant effect in NDK is given
by the remark from Segerberg above (p. 263): NDK is classical logic in a modal
context, and it would only be a slight distortion to regard modal compounds as
being formed not by a modal operator operating on, say, a conjunction, but in-
stead by one of a number of modalized conjunction operators, a (1”&. In FK
a heavier stress is laid on the parallel between the quantifiers and the modal oper-
ators, particularly when the rules for ¢ are added. Further, it is very natural to
interpret a strict subproof as another possible world, and the reiteration rule as
governed by the accessibility relation.

Thus the two systems emphasize different aspects of K. There is, however,
a big difference in the redundancy of the formulations. FCL, at least in most of
its standard versions, has no redundancy as long as the connectives are thought
of as independent, and the same is true of FK. NDK, however, has two dimen-
sions of redundancy. The first, which is obvious enough, is that the use of (0"
throughout could be replaced by plain (I plus induction. The second dimension
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is that the O’s could be eliminated altogether on a number of the rules, and re-
tained on only a minimal kernel. As far as I can see, the only two kernels using
standard introduction and elimination rules are DI and DE, and ~I and ~E;
these two kernels have both an improper introduction rule and a proper elimi-
nation rule, so those who wish to may regard the full set of proper and improper
rules of NDK as derived from a more economical basis. However, if the clas-
sical reductio rule is allowed (derive A from a subproof whose assumption is ~A4
and which includes B and ~B) then a modalized version of that alone, together
with nonmodalized versions of all the other rules, provides a basis for K.® This
last rule, however, breaks down the introduction/elimination duality even in
FCL, so is normally introduced only as a derived rule.

A more radical divergence between NDK and FK appears when we consider
which rules can be adopted for ¢. The Fitch rule, elegantly preserving the mo-
dality/quantifier parallel, permits the inferring of ¢B from ¢ A plus a strict sub-
proof in which B is inferred from A. So far, no rules have been offered for ¢
in NDK, a defect I shall now remedy. The controlling ideal remains that of
preserving classical logic in every modal context; we have to broaden the notion
of context to include ¢. Of course, we cannot take over the O rules and replace
the O’s by O’s, since a number of the rules thus formed would be invalid. But
rather than setting up a separate set of rules for ¢, parallel to those for (I, I
shall give a single set of rules which reduce to the NDK rules in the case where
the context is (1”7, but which allow for more general modal contexts.

In what follows, all references to modalities will be implicitly restricted to
affirmative modalities, and, in fact, for ease of discussion, to affirmative mo-
dalities which contain no negation signs.® In view of the equivalence of ¢ and
~[O~ etc., this latter restriction involves no loss of generality. We start with
some necessary preliminaries; Greek letters will be used as variables for modal-
ities.

Definitions A modality o resembles a modality (8 just in case

(i) « and 3 are the same length, and
(ii) o has a O wherever 8 does.

A finite sequence ¥ of modalities a, a5 ..., matches a modality 8 just
in case either

(i) L is empty and @ is O", or
(ii) for all i, «; resembles 3, and wherever 8 contains a <, «; contains a <,
for exactly one i.

If A occurs in a proof as a result of a strict reiteration from an occurrence
of oA, then « is the tail of that occurrence of A.

Note that resemblance is not a symmetric property, and that a string of null
modalities is to be distinguished from an empty sequence. In the case of a sin-
gle modality, (o) matches 8 just in case o and (3 are identical. With these
resources, we can define a new set of rules for NDK.
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The System NDK*

Proper Rules For each of the proper rules of FCL, A;, (A4,), (A43) I A4, the
rule a; Ay, (ayA,), (az3A;) F A is a rule of NDK*, so long as {a;, (a3),
(o3)) matches 3.

Improper Rules If a subproof headed by A and immediately containing B (or
B and ~B) is flagged by a modality «, (A D B) (or a~A) is derivable in
the (sub)proof immediately containing this subproof, so long as the sequence
containing all the tails of the sentences strictly reiterated into the subproof
matches o.

Reiteration If 3A lies immediately outside a subproof flagged by «, then 4 can
be written immediately inside the flagged subproof, so long as 3 resembles «.

Despite the liberalization of all the rules, Th(NDK*) = K. To see this, we
need to establish a lemma about the presence in normal systems of the rule RK*:
(A& Ay &... & A,) DA

RK*
(1A, & A, & ... & a,Ay) D aA

for n = 0, iff {ay, a2, ...a,) matches «

Lemma Let ¥ be a set of sentences containing all classical tautologies, closed
under classical consequence and the substitution of ¢ for ~O~ etc. Then T is
closed under RK* iff it is closed under RK.

Proof: Left to right. For n > 0, RK* has RK as a special case, o; = a = I, for
all i. For n = 0, the matching condition requires « = (1™, so RK holds too.

Right to left. By induction on the length of «. The base case, when « is a
null modality, is trivial. Suppose RK* holds for any m-long . An m + 1-long
o’ is either Do or Q. In the first case, by the condition of matching, either
there are no «;, or all the a/**! are of the form O«/". Either way, the conclu-
sion follows by RK. In the second case, the condition of matching requires that
exactly one of the a/™*! is of the form Oa/", while the remainder, if any, are of
the form Da}”. Let the one of form Oo/” be o/”*!; then the induction hypoth-
esis yields, by propositional logic

(a'A) & afAr & ... & a) 1A,_1) D (a'A,, D a™A)

and thus

(Oaf"4, & Oaf'Ay & ... & Oa 1A,_1) D O(alA, D a™A)
by RK.
But the following is a theorem of any normal logic:

O(PDQ)D(OPD0Q).

Hence, by jiggling,

(Oof"4; & Daf'A, & ... & Oa Ay & Oal"4,) D Oa™A
which yields the desired result:

(@A, & oA, & ... & a1 A,) D o™ A,



270 JOHN HAWTHORN

Given this rule, the proof that Th(NDK*) = K closely follows the proof for
NDK. The analogue of Theorem 1 (that NDK* is a normal modal logic) is proved
by replacing 00" by «; etc. or «, as appropriate, replacing references to RK by
RK*, and relying on the preceding lemma. The analogue of Theorem 2 (that
NDK?* is in any NML) mostly requires similar rewriting; the only case which be-
comes appreciably more complex is the last one:

Fourth Case: In the case where the rule is DI, 4; has the form o (A4; D Ay),
and there is a preceding subproof flagged with o whose assumption is 4;, and
in which lies an occurrence of A;. Thus the following condition obtains:

(i) (A; & Conj;) D Ay € NML.

Let Conj; be spelled out as C; & C, &...& C,,. By propositional logic and
RK* it follows that

@) o1 Cy & 0,Cr & ... & 0, Cpy D a(A; D Ay) € NML

for any oy, a3, .. .a,,) which matches o. However, each C, in Conj, has a tail,
o, such that o, C, occurs as an earlier line in the same subproof as A4;, and
such that all the tails together match «. Hence we obtain (iii), by the induction
hypothesis, for every o, C,; and then from (ii) and (iii) we obtain (iv):

(iii) (Ass; & Conj;) D a,C, € NML
(iv) (Ass; & Conj;) D A; € NML.

In order to show some of the workings of NDK*, here are two invalid at-
tempts at a proof, and one valid one (for convenience the third uses, and the sec-
ond attempts to use, the reductio rule, rather than a step each of ~I and ~E):

(a) CA Ass.
OB Ass.

O(A & B) &I

(b) 0A Ass.
o l ~A Ass.

A Reit.

QA Reductio

(c) OA Ass.
OB Ass.

Ol ~A4 Ass.

A Reit.

B Reit.

OCA Reductio

The first attempt fails because in the application of &I (¢, ¢) does not
match ¢, while the second fails because (1) does not match ¢ either, though
O does resemble ¢. The rather odd (c) succeeds because the modalities in the
reiterations resemble the flag, and because ([0, ¢) matches ¢. Of course, these
examples are rather slight, but they give some flavor of the rules.

The advantage of this liberalization is that it gives us powerful tools for han-
dling an extended class of normal modal logics. Consider the class of axioms of
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the form yA D 6A4, where vy and 6 are affirmative modalities, as before. We can
define an extension of NDK*, NDK(vy/6), as follows:

The System NDK(v/6)

Proper Rules For each of the proper rules of FCL, schematically of the form
Ay, (Ay), (A3) F A, the rule a4, (azA,), (a3A43) F ada’A is a rule of
NDK*(v/6), so long as {a;, (a3), («3)) matches aya’.

Improper Rules If a subproof headed by A4 and immediately containing B (or
B and ~B) is flagged by a modality aya’, ada’ (A D B) (or ada’~A) is deriv-
able in the (sub)proof immediately containing this subproof, so long as the se-
quence containing all the tails of the sentences strictly reiterated into the subproof
matches aya’.

Reiteration Unchanged: If 34 lies immediately outside a subproof flagged by
«, then A can be written immediately inside the flagged subproof, so long as 3
resembles .

In terms of this formulation, NDK* is therefore NDK(/), the null switch,
and we should always permit null switch inferences even in logics permitting var-
ious switches. It might be possible to relax the reiteration rule after the manner
of Fitch, though this is far from clear; but the complications of keeping track
of the matching would outweigh the advantages. We can, instead, avail ourselves
of a derived rule. Unsurprisingly, y4 D 64 is a thesis of NDK(y/48):

vA Ass.
Y ~A Ass.

A Reit.
0A Reductio

Thus we can gain some of the effect of the liberal reiteration rule, while simpli-
fying the accounting, by using the derived rule yA4 I 64 outside the subproof
and then reiterating in whatever is possible. An example of this technique is the
following proof in McKinsey’s S4.1, which in our terms is NDK(O/)(O/00)
(O00/00), the (y/8) forms given being those appropriate to T, 4, and McKin-
sey’s M, respectively. In this proof, ‘PL’ is used for obvious steps of classical
propositional logic:

1 O(A v B) Ass.
2 ~ (004 v oOB) Ass.
3 ~004 2, PL
4 ao~4 3, Def.¢®
5 O4d(A4 v B) 1, Reit.+ O0/00
6 oo ~B Ass.
7 AvB 5, Reit.
8 A 6,7, PL
9 ~A 4, Reit.
10 OOB 6-9, ~1
11 ~O0OB 2, PL
12 0OA v OOB 2-11, Reductio
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Another proof, this time from NDK(O<¢/00):

1 OoO(A4 D B) Ass.
2 ~O0O(A D B) Ass.
3 O¢(Av ~B) 2, Def.¢ + PL
4 ROV 3, &E
5 OO(A D B) 1, Reit.
6 oOB 4,5, MP(O0/00)
7 O¢~B 3, &E
8 ~OOB 7, Def.®
9 OO(A D B) 2-8, Reductio

Naturally, for the many logics whose axioms are not of the form yA D 64,
the possibility of extending NDK* to NDK(v/6) is of only marginal interest.
Nevertheless, it is an illustration of the power of NDK*, and of some interest
in its own right. Returning to the complaints of Segerberg with which this pa-
per began, we can see that if deduction in modal logic does have to be treated
in the way he suggests, with a natural deduction system for K and other logics
introduced via axioms, NDK¥* is a useful foundation.

NOTES

1. He might have added that, unlike in the case of classical logic, the standard Hilbert
systems of modal logic do not give a natural characterization of the (syntactic) con-
sequence relation I' - A. This is because of the presence of rules such as Necessita-
tion, which require their premises to be theorems, rather than simply prior items in
the derivation.

2. The distinction, briefly put, is that inference rules characterize immediate inference
for a system, but that deduction rules are needed to explain how these are combined
into full deductions. Segerberg’s use of the distinction appears to be slightly differ-
ent from that in Prawitz [8], pp. 16-24.

3. The locus classicus is Fitch [4], but a more convenient source for present purposes
is Fitch [5]. Any number of introductory logic texts give slight variations on Fitch-
ian themes.

4. In many systems there is an improper VE rule, too; this can be replaced by the proper
rule PvQ,POR,QDRFR.

S. Originally, normal modal logics were classified model-theoretically; even among syn-
tactic characterizations, the one given is not the most common, but it is convenient.
It is borrowed from Chellas [3], to which the author is heavily indebted.

6. The systems which use either D or T and any or all of the rest are present more or
less explicitly in Fitch [5]. The earliest trace I have found of systems using neither of
those principles, i.e., no OJE rule, are in Siemens [9]. I have serious doubts that all
the claims in this latter paper about possible bases for systems are true, however. Ver-
sions of all the systems mentioned, and some more, are presented in Fitting [6].

7. 1 do not mean by these remarks to suggest that no other natural deduction systems
exist. For a given logic, it is often possible to tailor the rules to produce a Fitch-like
version; an example is the provability system which uses the axiom (A D A) D
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[OA, a version of which is given in Fitting [6]. But two things become clear. First,
there is no systematic way in which the rule changes can be implemented to cover
more than a few systems at a time, and second, there is a rapid fall-off in insight into
the system which they afford.

8. In fact, a modalized reductio rule is the exact analogue in NDK of the strict subproofs
of FK, in the following sense. Take any proof in FK, and for each strict subproof
find the sentence B for which (1B is inferred from the subproof; insert ~B as an
assumption to the strict subproof. The result is a proof in a version of NDK which
uses reductio as its only modalized rule. A similar transformation works in reverse.

9. The definition of an affirmative modality, as a string of O’s, ¢’s and ~’s in which
the number of ~’s is even, apparently goes back to Becker [1].
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