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The Frαenkel-ΛΛostowski Method, Revisited

NORBERT BRUNNER*

Abstract Permutation models generated by isomorphic topological groups
satisfy the same choice principles (Boolean combinations of injectively
bounded statements). As an application the group Jp of p-adic integers is
characterized: A monothetic linear group G generates a model that satisfies
the same choice principles that hold in the model corresponding to Jp iff the
G-model satisfies the well-orderable selection principle, and ACq holds, q
prime, iff q Φ p. The main result is a strengthening of a previous theorem
of Pincus: All Fraenkel-Mostowski-Specker independence proofs concerning
choice principles can be proved in finite support models.

1 Introduction In this note we comment on some aspects of the structure
theory of permutation models which are related to their historical development
fifty years ago. Following some ideas of Fraenkel, permutation models were
invented by Lindenbaum and Mostowski [16], [17] as a device for proving inde-
pendence results on the axiom of choice in ZFA set theory (a weakening of ZF
which permits a set A of atoms). In [17] Mostowski used models with only finite
supports. Later he extended this method to models with infinite supports [18],
and finally Specker [24] presented the most general construction of a permuta-
tion model from a group-generated Hausdorff topological group. This line of
research seems to have been based on the conviction that more general construc-
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tions are needed for more sophisticated independence proofs. We will show that
all Fraenkel-Mostowski independence proofs for ZFA which concern the choice
principles in Jech [12] can be performed in finite-support models. In fact, one
can stipulate the existence of a support function, though not for least supports.
Hence, the flexibility gained from Specker's construction does not materialize
in provability strength. As was first announced by Pincus ([23], p. 137), for each
Π2 sentence in a Specker model there is an infinite-support Fraenkel-Mostowski
model that satisfies it.1

LI Notation Our surrounding set theory is ZFC, (V,G,=) denoting the real
world. Following an idea of Truss, we define a ZFA-universe as follows: For
XG V we set Y(X) = UjV α :αG On}, where Vo = Xx {0} and Vα = [(A, a): a
minimal, such that A Q U{V^: β G a}}. We define x Gx j>, if x G A and y -
(A,a) for some a > 0 and a > A> and we set x =xy iff x = y in V. (V(X), G*,
=x) satisfies ZFA + AC, and 0X = (0,1), Ax = (V0,l) is the set of atoms.
If there is no danger of confusion, we shall omit the subscript. A faithful rep-
resentation d:G -• S(X) (G a group, S(X) the full symmetry group, and d
an injective homomorphism) is extended to all of V(X) as in Specker [24]:
(dg)(x,0) = ((dg)x,0) for x G X, and we recursively set (dg)x = {(dg)y:
y Gx x] (within V(X)) for x G V(X)\V0, defining an G-automorphism. We
write sym^jc = sym^x = {g G G: (dg)x = x] for the stabilizer of x G V(X)
and ΐixdx = Π{symdy:y G x x] for the pointwise stabilizer. A topological
group (G, ,G) (G the topology) generates the permutation model PM =
PM(tf,G, ,G,*) = [x G Y(X) :vy G x TC({JC}) :sym y G G}, where TC( ) is
the transitive closure in V(X); a proper V-class C ^ PM defines a class (C,On)
of PM iff sym C G G. Then (PM,G*,=*) satisfies ZFA. We shall assume that
Ax Q PM. If possible, we shall not mention d.

This approach to permutation models is more flexible than that in Brun-
ner and Rubin [7], insofar as it allows us to compare models on different sets
of atoms. Also, we prefer to work with atoms instead of with irreflexive sets,
since the latter can be used as in Feigner [8] to introduce additional informa-
tion on the G-structure which cannot be reconstructed from the group action.

G is linear (group-generated), if 1 (i.e., the identity) has a neighborhood
base consisting of open groups. For example, Gfin, which is generated by
{fix e: e G [ A J < ω j , and Gnat> which is generated by {sym x: x G PM}, are
group-generated Hausdorff topological groups. If G generates PM, so does
Gnat ^ G» whence it suffices to restrict one's attention to linear Hausdorff
groups. We shall always assume, then, that G = G n a t .

1.2 G Φ Gn a t is possible: the "second Fraenkel model" [12] is generated by
G = Z% with the product topology P of 2ω. H < G is the direct sum of count-
ably many Z2's. We let G be the group topology generated by P U {H}. Then
H is dense in G with respect to P, whence H and the product topology P 1 H
generates the Fraenkel model (see [7]). Since //is an open subgroup of (G, ,G)
with the relative topology G 1 H = P 1 //, (G, ,G) generates the Fraenkel model
too. But Gn a t = P Φ G. Moreover, the assumption Ax <Ξ PM is not automati-
cally true.



66 NORBERT BRUNNER

2 Persistency As was shown by Ahlbrandt and Ziegler [1], under some addi-
tional conditions countably categorical structures with isomorphic topological
automorphism groups are each interpretable in the other. For permutation mod-
els the topology is more closely related to the structure: permutation models with
isomorphic topological automorphism groups satisfy the same choice principles.
To assign a meaning to this statement, we observe that the group of E-auto-
morphisms of PM <Ξ V(^) naturally corresponds to a subgroup Aut PM of
S(X) and that Autnat generates PM. Moreover, as motivated by Pincus (5.1 of
[21]) we specify that a "choice principle" is a negation of a Jech-Sochor bounded
statement. In [6] such a result was announced for some examples of choice prin-
ciples, but the proof could be completed for the axiom of choice, AC, only.

2.1 A sentence φ of the ZF-language is persistent if the following holds: If
(G, ,G) G V is a topological group, djiG-* S(Xt), i G 2, are injective repre-
sentations, and PM/ = PM(flfz,G, ,G,X/) are the corresponding permutation
models with G-relations G/, such that Ax. <Ξ PM7 and Gnk = G, then PM0 sat-
isfies φ iff PMi does (with G replaced by the respective G/'s).

If φ is persistent, then its validity depends only on the group, whence we
say that G satisfies φ iff some/all permutation models generated by G satisfy
φ. In view of 4.3 this makes sense for all group-generated Hausdorff topolog-
ical groups.

Theorem Boolean combinations of Jech-Sochor bounded statements are per-
sistent.

As an application, it follows that in the "second Fraenkel model" there is
a complex vector space which has Hamel bases of different cardinalities. For as
was shown by Lauchli [14], the group (Z2 ® Z 2)ω satisfies this statement. The
theorem follows from the following lemma and the proof of the Jech-Sochor
Theorem (see [13]).

2.2 Lemma For each σ G On there is an Go — E\-isomorphism F: PQ(A0) -*
Pf (FM 0 ) in V. Here σ is the σ-th ordinal in V(0) (which is the same as the σ-th
ordinal in PM/), Ao = AXo and Pf(-) is the σ-fold iteration of the power set
operation in PM/.

Proof: We first defineFon AQ. We let {orb0 aa:a G\}be the partition of Aol
here orb/X = {(dig)x'g G Gj, sym/ = sym .̂, a -* aa in V. As was shown by
Truss [25], for each open H <G there is an x G PMi such that sym! x = H. For
since G = G&t there is a y G PM! such that H ^ sym! y, and in PM! we may
setx= [{d1g)y:gEH}. Since He V, xe V(Xχ) is a set and since x Q PMX

and sym! x = H, x G PMi. With H = symotfα, in V we get a function a -> xa G
PMi such that symiXQ, = symotfα. Modulo some obvious manipulations, we
may assume that xa is of the form xa = {Sa x (K + a)}, where Sa Φ φ and K
exceeds λ and the V-cardinality of Pσ(X0). We now define F1 Ao as the orbit
F = {((dog)aa, (d\g)xa) :g G G and a G λ). One easily verifies that Fis a one-
to-one function F:A0 -> PMi in V such that symi/fa = symo# and {dχg)F(a) =
F{{dog)a).

We recursively extend F to Pd(A0) by Fx = F"x\ F:Pδ(A0) - Y(Xχ).
F(x) £ F(a) for a GA0, for if x G Ao this follows from the definition of F(x)
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as a singleton, and if x £ Ao then F(x) G F(a) implies that F"x = Fx = Sa X
(K + α) has more elements (with respect to cardinality in V) than in Y(X\)
Pδ{F"A0) 2 F"x > K. From this one proves by induction on max{rkx, rky} that
x = yiϊϊFx = Fy;xey iff Fx G Fy; and the identity (dλg)F(x) = F((dog)x).
This implies that the image of F is contained in PM^ for if g G symox and
x G Ao, then g G syn^Fx from the definition of F 1 4̂0> and if x ^ ^40 then
(vy G x)(3z G x) : (<iog).y = z, whence (άxg)Fy = Fz£Fx and (ά\g)Fx c Fx,
proving that symox c syn^Fv. So we have that F is an G-isomorphism from
Pg(A0) into P f ( F M 0 ) . That it is onto follows by induction from the follow-
ing claim: lίX= {Fy.ye Y], Y£ PM0 in V(X0), then sym 0 Γ2 s y m ^ b y
a previous remark this gives symox = syn^F*:), whence preimages of P M r

subsets of im F are in PM0. For if g G s y m ^ , then (Vj G F)(3z G F ) :
(^i<?)F( j ) = F(z), whence F((rf0^)^) = F(z), and by injectivity (^o^)^ = z,
proving that (dog)Y c y.

2.5 2.1 can be improved to show that injectively bounded statements 3xφ(x)
are persistent, where φ(x) s V^((.y* < &(x) ΛTC(X) Πy = 0)-+c(x,y))9 b9c
are bounded, i.e., for some absolute term a, b(x) <=̂  bpOί(<x){x) and c(x,y) ++
cpa{xUy)(x9y)9 and y* is the Hartogs number. We sketch a proof.

We assume that in PM0 Φ(x) holds. Then with σ = σ(x) and F:Pfi(A0) ->
PMi of 2.2 we have φ(Fx) in PM^ σ(x) is an ordinal such that for all u and
y with y* < 6(x), P α («) G-isomorphic to Pa(x), and TC(w) 0 ^ = 0 , there
is a t; such that v* < 6(x), TC(y) Π x = 0 , and Pα(jc U ϋ) is G-isomorphic to
Pa(uU y) with the isomorphism being an extension of the previous one. The
proof resembles that of C15 in [21]. It follows that b(x) = b(Fx) = β. We let

r = σ(Fx) and G:P{(AX)_-+ PM0 be the mapping of 2.2. Then the following
sets are G-isomorphic: Pf (Fx U y), where y is any set in PM! such that y* <
jS and y Π TC(JC) = 0 ; P<?(GFx U Qy), where (Gy)* < jS; P^(GFx U υ), where
ϋ is defined from C14 in [21] as at p. 730 in [21] to satisfy TC(ΛΓ) Π V = 0 in
addition to y* < jS; Pg(λ: U w), some IV such that w Π TC(x) = 0 and w* <
]8. Since c(x,w) holds by φ(x), c(Fxr,.y) follows, proving φ(Fx).

Examples for statements covered by 2.3 but not by 2.1 are "every field has
an algebraic closure" and "there is a set of 2*° representatives for the Dede-
kind-finite cardinals".

2.4 Choice principles seem to behave poorly under products. If G =
Π<G;: / G /> is an infinite product (| G, | > 2 and / infinite), then G does not
satisfy ACω (i.e., PM does not satisfy AC"). For if G, generates PM, in V(Xi)
and di: G, -• S(Xi), then we let rf: G -> ̂  = U {Â  x {/}: / G /} be the sum rep-
resentation and PM the corresponding model which meets our assumptions
Ax c PM and Gn a t = product topology. If we set Pt = ( ( ^ x {/}) X (0},l) (in
V(X) the set of atoms that comes from A7), then in PM < P, : / G /> is a well-
ordered family of nonempty sets which has no infinite subfamily with a choice
function. Also, in V there is an G-isomorphism F:PM/ -+ {x E PM : Ax Π
TC(x) <Ξ pi]9 whence G satisfies all Jech-Sochor bounded statements holding
in Gh
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If G is a topological ultraproduct, modulo a countably incomplete ultra-
filter, then G is a P-space, i.e., G is closed under countable intersections, whence
the principle of dependent choices DC holds. Hence the bounded statement
ACω is not inherited by continuous open homomorphisms.2 However, the
axiom of choice for families of finite sets, AC f in, fails.

Theorem IfGis abelian or a P -space, then G does not satisfy AC f in, unless
G is discrete.

Proof: The common property of P-groups and abelian groups which we use is:
For x G PM and g G G, ϊix{(dgk)x: k G Z) G G. We show by an application
of Howard's argument [11], that if G satisfies AC f in, it satisfies AC, whence G
is discrete. If X G PM, we let/ be a choice function on [X]VfO\[0] (which
exists by ACWO). Then fix X> sym (X,f) and X is well-orderable. We assume,
on the contrary, that x G X and g G sym (X9f)\sym x. Then Y = {(dgk)x: k G
Z) G PM. Since Fis wo (well-orderable), we can form y =f(Y) G Y. Since
g <£ sym x, (dg)yφy, contradicting (dg)y = ((dg)f)((dg)Y) = y. So in par-
ticular the set A of atoms is well-orderable, whence {id} = fix A G G.

3 The translation problem The problem of finding explicit topological char-
acterizations is open for most persistent statements. In 1967 Mathias observed
that G satisfies AC iff G is discrete, and recently Blass has given a combinatorial
(in terms of Ramsey groups) characterization of the Boolean prime ideal the-
orem. In [3] he discovered an axiom SVC (small violations of choice) which
holds in all permutation models, and also gave translations of choice principles
in terms of SVC-witnesses. We show that such translations automatically estab-
lish the corresponding global (class-) forms of these choice principles in the
model, and also give equivalent properties of the group, though they are clumsy
to state.

A χ-set S is an SVC-witness, i.e., for each set x there are a G On and a sur-
jective f:axS->x. Dually, S is a γ-set, if for each x there exist a G On and
an injective/:x-> a X S. Each γ-set is χ, and if S is χ then P(S) is 7. SVC states
that there is a χ-set. For example, in ZFA, AC is equivalent to the existence of
a χ-set S with a Dedekind-finite P(S). It is an open problem to determine the
status of the assertion that every χ-set is 7 in the hierarchy of choice principles
in ZFA + SVC. The partition principle (if P is a family of disjoint nonempty
sets, then P < UP) implies this assertion.

3.1 Theorem Let PM be a permutation model generated in V(X) by G,
G = G^t, and SePM.

(1) The following statements are equivalent:
(i) Sisx

(ii) There is a surjective function F:S X On -> PM in PM
(iii) There is an open H < G, such that {sym//X : x E S | is a neighborhood

base of id in H (this is the reason for coining the term χ-set), where
sym//jc = H Π sym^x.
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(2) The following statements are also equivalent.
(i) 5 is a y-set

(ii) There is an injectiυe function F: PM - * S x On in PM
(iii) There is an open H < G such that {sym//x:x E S] is the set of all

open subgroups of H.

Proof: We avoid mentioning d. The first observation is abstracted from [3]:

There is a set B E P M , such that {sym x:x G B] = {H< G:Hopen}.

As was observed in the proof of 2.2, for each H <G there is an xH E PM, such
that sym xH = //, H-+ xH in V. We set B = U{orb xH:H < G], which is a set
in V{X) since G E K As B c PM and sym B = G, B E PM.

We now prove (1). (ii) => (i) follows from replacement. For (i) => (iii) we set
H = symGf where/:a X S-+ B is onto. For (iii) => (ii), we first observe that
oτbH(s,x) is a surjective mapping from oτbHs onto orb//jc, if symHs < sym//X.
Hence if orb^x^ α E On, is an enumeration of the //-orbits of PM and
symHsa < sym/jXα, where a -> (sa9xa) is in Y(X), then F = U f o r b ^ s ^ a ) ,
4 > : α G θ n ) i s a mapping from dom Fc S X On onto PM and sym F = H.

The proof of (2) proceeds similarly. For (i) => (iii) one sets H = symG/ for
some one-to-one/: B -> α x >1 sym///(x) 3 sym//jc is trivial and "<Ξ" follows
from/(x) =f(dhx) for Λ E sym///(x) and injectivity. For (iii) => (ii) we take
symHsa — sym/ẑ o; and observe that oτbH(xa,sa) is a bijective mapping be-
tween the orbits, whence F = U{orb//<xQ;, ( 5 α , α ) ) : α G θ n ) : PM -• S X On
is a symmetric one-to-one mapping.

3.2 It follows from (2) that PM is covered by a well-orderable class of finite
sets (the class form CMC of Levy's axiom of multiple choice MC), iff PM sat-
isfies MC. Consequently, as a corollary to [7], we obtain: G satisfies MC, iff
G is locally bounded. In [7] it was shown that PM satisfies CMC iff the
automorphism group Aut is locally compact.

If Aut is locally compact, it is locally bounded and hence satisfies CMC.
And if Aut satisfies MC, it is locally bounded and therefore its Weil-completion
G is a locally compact subgroup of S(AX) (working with the natural represen-
tation of Aut). Since each g E G corresponds to a Cauchy net in Autnat, for
x E PM a value g(x) E PM can be defined, thus identifying g with an automor-
phism, i.e., G = Aut.

5.3 The first independence theorem which used an uncountable set of atoms
(V-cardinality) appeared in Mostowski [20], whose proof showed that AC* (AC
for families of infinite cardinality at most K E On) does not imply well-orderable
choice ACWO. Moreover, as follows from the following cardinal inequality,
countably many atoms do not suffice. Concerning a possible converse of this
inequality, it was observed by Levy [15] that the character χ(Gn a t) can be arbi-
trarily high, and G would still satisfy the same persistent statements as S(ω) with
the product topology.

Theorem // G satisfies AC" and χ (Gn a t) < K, then G satisfies ACWO.
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Proof: Since there will be no confusion, we write a instead of a. S = (Sa: a E
λ> is a well-orderable sequence of nonempty sets, and H = sym S E G n a t . We
construct a choice function σ E PM. There is a neighborhood base of id of the
form (sym^XQ,: a E κ>, a -+ xa E PM in V(X). From AC* we obtain a choice
function/E PM for the transfinite sequence (oτbHxa :a E K) E PM, such that
/(α) E orbf/jt .̂ In V ^ ) , where AC holds, we let s be a choice function for S,
s (α) E Sα, and we define φ E κλ c PM such that sym xφ ( α ) < sym s(α), α E
λ. ThenF= U{orb//«*0(α),α>, s(a)):a E λ) is a function, F E PM, and we
define σ(a) = F(f(φ(a)), a) E orb/jS^α) <Ξ Sa9 a choice function of S in PM.

4 Support functions We now investigate structural properties of permuta-
tion models that are not persistent. PM c V(X) is a finite support model, if
there exist a group G and a representation d:G->S(X), such that Gfin gener-
ates PM (i.e., PM = PM(tf,G, ,Ggn,ΛT)); e E [ A J < ω is a support of xG PM,
if sym x 2 fix e. In V(X) there is a function 5:PM -> [Ax]

<ω such that
sym x Ώ fix S(x). If, in addition, S is a class of PM, it is called a support func-
tion for G. PM has a support function iff there is a group G with a support
function, such that G f in generates PM. PM is an M-model, if every x has a least
support supp(x). This notion was introduced in Mostowski [18]. We start with
a first-order characterization of the finite-support-model property.

4.1 Theorem
(1) PM is a finite-support model iffA<ω = U{An:nGω} is a χ-set
(2) PM has a support function iff [A<ω]<ω is a y-set.

Moreover, if PM is generated by G, then it is a finite-support model iff for
some open H< G H f i n = H n a t , and it has a support function iff there is a sup-
port function for some open H < G. From this one easily deduces that the usual
permutation models constructed from normal ideals of infinite sets cannot be
obtained from a different group and the ideal of finite sets of atoms.

Proof: (1): If Gfin generates PM for some group G, then {symG/:/E A<ω] is
a local base of id for G f i n, whence A<ω is χ. If conversely {symHf:fE A<ω]
is a local base of id for some H < G in G n a t, where Gn a t generates PM, then
{fixH (im /) : / E A <ω} <Ξ H f i n is an open base of id for H n a t . Hence H n a t = H f i n,
and since His open, it generates PM too.

We now prove (2): If [A<ω]<ω is a 7-set, and F(x) = <T(x), ax}9 x E
PM, is the mapping from 3.1.(2)(ii), then symHT(x) = sym^x for H = symGT
and S(x) = U { i m / : / E T(x)\ is a support function for H n a t : sym^x 2
fixHS(x). Hence H n a t = H f i n, and since H is open H n a t generates PM, which
therefore has a support function. If conversely S:PM -» [^4]<ω is a support
function, then we set H = symGS. By the proof of 2.2, every open subgroup K
of His of the form sym^*, for some x E PM. We let/: n -• S(x) be any bijec-
tion and set F = oτbκf K = sym//X. Then K = sym//F, and since F Q S(x)n is
finite, Fe [A<ω]<ω.

4.2 If G is totally bounded, then every permutation model PM generated by
G has a support function S for G. For by 3.4 of [7] G n a t = G f i n. We set O =
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{orb a: a G Ax] c [v4x]
<ω, and observe that in PM [O] < ω can be well-ordered

by some relation <, sym < = G. Hence S(x) = Ue, e G [O]<ω the <-least ele-
ment such that sym x Ξ> fix(Ue), defines a support function for G, sym S = G.
But in general a group has a representation without a support function.

Example There exists a finite support model without a support function.

Proof: We work in V(Z X ω), Z the integers, and let G = Zω operate on the
set 4̂ of atoms through dg(z,n) — (g(n) + Z,JZ). PM is the model generated
from G f i n. If PM has a support function, then there is an open H <G such that
there is a support function S for H f i n = H n a t . Since S is a support function for
each open subgroup of H, we may assume that H = fixG^ = sym^S for some
e G [v4]<ω. We define the following sets of atoms of PM: Pn = {(z,n,o):zG
2], En= {(z,n,O):z even}, On = Pn\En, and we observe that symGPrt =
symG{En, On}=G9 whence f(n) = S(En)U S(On) G [A]<ω defines a function
in PM, sym/// = H. If e Π PΛ = 0, then/(/i) Π PΛ Φ 0 ; for otherwise g G
fix// S(En), where #(AZ) = 1 and g(i) = 0 for / Φ n, despite the fact that
dgEn = On. We now obtain a contradiction: A standard permutation argument
shows that there does not exist a function f:ω -> [;4]<ω such that f(n) Π
Pn Φ 0 for infinitely many n.

4.3 To complete the picture, we show that every linear group generates some
finite-support model. This together with 2.1 proves that, for the purpose of inde-
pendence proofs, the class of finite-support models with arbitrarily large sets of
atoms (in view of 3.3) is sufficient. With a proper class of atoms the situation
might be different.

Theorem For every group-generated Hausdorff topological group (G, ,G)
there exists a permutation model PM in some V(X) and a representation d of
G as a subgroup of S(X), such that Gfin = G generates PM, Λx c PM, and
PM has a support function Sfor Gfin such that S(x) is a minimal support ofx.

Proof: We begin with an adaptation of a standard result from permutation
group theory (see, e.g., [10]).

If (G, ,G) is a group-generated Hausdorff topological group, then there
is a permutation model QM in some Y(X) and a representation t of G as a sub-
group of S(X), such that Gfin = G ât = G generates PM.

We set X= {h H:h G G and H < G open} and let G operate on X by
(tg)(hH) = ghH. In Y(X) we form the permutation model QM generated by
Gfin. Then Λx g QM, Gfin = G^ t , and since symtG(hH,0) = hHh~\ G f in = G.
Since G is Hausdorff,-1 is an injective representation of G.

We let B be the set found in the proof of 3.1 for QM. In V we form V(B)
and define the operation dof G on B by (dg)(b) = (tg)b, tg the G-automorphism
of QM. PM is generated from G?in in V(B). Since [symdG(b90) :b G B] =
{symtGb:bGB] = [H<G:Hopen}, Gfin = G and AB is a γ-set in PM; hence
there exists a support function S: PM -• f ^ ] " 1 in PM (as in the proof of 4.1).
Obviously, S(x) is a minimal support ofx.

M-models cannot be obtained in this way. As follows from [4], if PM is
an M-model then AC^S holds, the axiom of choice for well-ordered families of
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well-order able sets, as does PACWO, which says that every family of well-
orderable sets has an infinite subfamily with a choice function. Therefore, a
compact group generates an M-model iff it is discrete.3

4.4 The groups that appear in the literature are usually the automorphism
groups of some first-order structure on the set of atoms which contains all
the information about the permutation model, as in Pincus [22]. To give an-
other example of the above construction, we consider the group Jp of p-adic
integers, p a prime number. Each g G Jp is thought of as a formal series

oo

Σ 8n'Pn> Sn G p, and addition is defined accordingly (cf. 10.2 of Hewitt

and Ross [9]). The topology is defined by a nonarchimedean metric, the
groups Ln = [g G Jp: gk = 0, for k < n] forming an open neighborhood base
of the identity. In fact, each open subgroup of Jp is an Ln. Jp is a compact lin-
ear monothetic Hausdorff group. For a G Jp, n > 0, we set x(a,n) = [x G
Jp:xk = ak for kGn] a n d X = {x(a,n):a G/ p , n >0}. An operation dof Jp is
defined as (dg)x{a,n) = x(a + g,«), giving sym(x(α,«),0) = Ln9 whence
PM(d9Jp9 + 9Jp,X) is the finite-support model that results from 4.3 when
applied to Jp. As an application, we add some weak forms of AC to an inde-
pendence result of Zuckerman [26].

Lemma IfE is a finite set of primes, then G = Π(Jp:pGE) satisfies MC,
KWWO (the well-order able selection principle, that for each well-ordered family
F of sets F with at least two elements there is a selection S: 0 Φ S(F) c F and
F\S(F) Φ 0 ) , and ACn (choice for families of n-element sets) iffn is not an
integer combination n = Σ n(p) •/?, n(p) G ω, of E.

PGE

Proof: PM is a model generated by G. If H < G is open, because of the spe-
cial structure of G it is a product of the Ln(p)'s, whence the index [H:K] is a
product of primes in E, K < H < G open. In particular, for K = H Π sym x,
the cardinality |orb//x| = [H:K] has all its prime factors in E. If \S\ = n and
n is not an integer combination of E, there is somexGS such that | orb//x| = 1,
H = sym S, because S = U{orb//X:x G S], i.e., sym x ^ sym S. It follows
from [11] that every family of ^-element sets has a choice function. If, on the
other hand, n = Σ n(p) •/?, 0 Φ F c E, then F = U{orb Fn:nGω}, Fn =

pGF

U{n(p) x oτbHiP9n)xg:p<ΞF], H(p,n) = Ln x Π *q> Ln < JP> and s y m ^ =
qφp

H(p, n + 1), is a counterexample to PACΛ (every family of 7?-element sets
has an infinite subfamily with a choice function). We now prove KWWO.
In view of MC it suffices to prove KW^, and we may assume that the
family has the form F = (Fa: a G K), Fa = orb// xa, H = sym F, where
H= Π ^ ( P ) ί ( Π ^ ( / 7 ) ) ^ l andsymxα= J[LmiP9a).U m(p,a)7>n(p)

pGE L \ p / J peE

for all p G E, Fa is a singleton, a contradiction. Hence K = U{Kp:p £ E],
Kp= {a G κ:m(p,a) < n(p)}, and we define the selection function on Kp as
follows: Sp(a) = orbHip)xa, where H(p) = Ln{p)_x X J[ Ln{q). Since G is

qφp
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abelian, sym (orb// xa) = <//, sym xα>, the group generated by H and sym xa,
and as (H, sym xα> =£ <//(/?), sym xα> in the/rth coordinate, Sp(a) Φ Fa.

Despite their importance in topological algebra, the p-adic groups seem
to have escaped attention by set theorists. They prove the following new inde-
pendence results: (i) Mostowski's independence results [19] can be augmented
by KWWO + AC<Λ φ ACm, if m,n do not satisfy the condition (5); (ii) G =
Π (Jp:p prime) is a monothetic group, whence it satisfies AC^° for each
n > 1 (cf. [7], p. 158), but by 2.4 and the lemma no instance of PAC,,, n > 2,
holds.

With respect to persistency, finite products of Jp are the only linear
monothetic groups which satisfy KWWO. For if G is linear and monothetic, it is
discrete or totally bounded, since all nontrivial subgroups of Z have a finite
index. Hence by 25.16 of [9] G satisfies the same persistent statements as
Π<GP :p prime), where Gp is Jp or Z (pnip)). If there are infinitely many fac-
tors GpΦly PKWω fails (counterexample: oτbGxh xt E P, from 2.4). Other-
wise, if G is not discrete, it contains finitely many factors Jp and their product
is an open subgroup of G, generating the same model. If G is discrete, it satis-
fies the same persistent statements as 1 = the empty product. We may conclude:

Corollary A monothetic linear group G satisfies the same persistent state-
ments as some finite product P = U(Jp:p E E) iff G satisfies KWW0.

Moreover, p E E iff AC^ fails and, as follows from the proof of the lemma and
2.4, PKWFis false for Jp and hence for P, if p E E.

Another application of the /7-adic groups is motivated by quantum mechan-
ics. Benioff [2] has considered several extension mappings T -• T of quantum
mechanical operators T on a Hilbert-space H of some model PM c Y(X) to T
on a corresponding Hilbert-space Hin the "real world" V(X); e.g., if .fiΓis the
completion of H in Y(X) then T is the unique extension of T to H. Benioff has
applied his results to solve ontological questions.4 Here we investigate the spec-
tral behavior under this extension for the following spaces.

Example If G is a nondiscrete linear monothetic group, it satisfies the fol-
lowing statement: "There is a Hubert space //which is not finite dimensional
while each orthonormal system is finite".

Proof: As follows from the previous remarks, PKWfin is false; let (Fn: n E M)
be a counterexample.

We set H = Π {Ker φn:nEM}9 where φn: 12(U{FΛ: n E M}) -> C is the con-
tinuous linear functional φn(x) = Σ x(a). If (xn:nE: ω) is a sequence in H,

a<ΞFn

then s = U[s(xn) :n E ω) is finite, where s(xn) = {a:x(a) Φ 0}, whence //is
locally sequentially compact. For φn(x) = 0 implies Fn\s+(x) Φ 0 , s+(x) =
{a: Re x(a) > 0 or (Re x(a) = 0 and Im x(a) > 0)}, and s(x) ΠFnΦ0 implies
s+ (x) Π FnΦ 0 , whence an infinite s defines a selection function S(n) = FnΠ
s+(xm), m minimal with s(xm) Π Fn Φ 0 , with an infinite domain dom S =
{n eM:s Π FnΦ 0 } . If D is an orthonormal subset of H, then [D]<ω is
Dedekind-finite (cf. [5]), and the axiom of multiple choice implies that D is
finite.

Since G satisfies MC, D = U{Fn:n G M] can be represented as a well-
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orderable union of finite sets, whence there is a diagonal operator S on h(D)
for which the topological approximate point spectrum U(S) Φ σp(S), the point
spectrum (in the model PM generated by G). If Γis the restriction of S to H,
then the sequential approximate point spectrum σa(T) = σp(T) Φ Π(T) (see [5]
for the background). For H we have σa(f) = Π(f) = Π(Γ);_hence σa(T) Φ
σa(f) changes. If His the nonstandard hull of Hin V(X) and H = H, the non-
standard hull in PM (with respect to a countable ultrapower), then for the exten-
sion ftoHwQ have σp(T) Φ σp(f) 2 Π(Γ).

We finally note that the results of this paper do not apply if the permuta-
tion model is formed in a subclass of V(X), the most interesting case being
V! (X) = {x<Ξ V(X): TC(x) Π Ax is finite), which is due to Levy.

NOTES

1. In [23] the result is stated for Σ2. In a letter sent on May 5, 1988, Pincus commu-
nicated to me a proof that works for sentences Π2 in the power set operation.

2. This is to be expected in view of the following fact: If x e PM and PM(x) is the
V(ΛΓ) of Section 1.1 relativized to PMi then PM(x) is a permutation model, gener-
ated by the quotient group sym (x)/fix (ΛΓ). Conversely, each G/H, H a closed nor-
mal subgroup of G, generates some PM(x). Hence quotients preserve countable
choice.

3. The Pincus construction may be strengthened as follows. There is some ordinal β
such that each open subgroup H of G is H = sym (Λ:) , for some x E PM of rank rk
(x < β). The Pincus model QM is constructed in V({ΛΓG PM:rk (Λ:) < β}) with the
group action induced by the action of G in PM.

4. For instance, it was observed by W. Boos (The Journal of Symbolic Logic, vol. 53
(1988), p. 1289) that in appropriate generic extensions the extended model contains
hidden parameters for the ground model.
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