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Characters and Fixed Points in Provability Logic

ZACHARY GLEIT and WARREN GOLDFARB*

Abstract Some basic theorems about provability logic —the system of
modal logic that reflects the behavior of formalized provability predicates in
theories such as arithmetic — are given simplified, model-theoretic proofs.
The theorems include the Fixed Point Theorem of de Jongh and Sambin, the
Craig Interpolation Theorem, and the Beth Definability Theorem. Attention
is also paid to the complexity of models for formulas in this logic.

Provability logic is the modal logic whose axioms are the tautologies and
all formulas of the forms D (A -> B) -> ( Ώ Λ -• ΏB) and D ( Ώ A -• A) -> Q 4 ,
and whose inference rules are modus ponens and necessitation. This system has
been known variously as K4W, L, G, GL, and PRL; we adopt the next to last
of these monikers, and use " h " for provability in GL. GL is of interest since it
reflects the behavior of formalized provability predicates in such theories as
Peano Arithmetic (for details see [1] or [3]).

A formula A is said to be modalized in a sentence letter p iff every occur-
rence of p in A lies in the scope of a D. The Fixed Point Theorem, due to de
Jongh and Sambin, states that if A is modalized in p then there exists a formula
H containing only sentence letters of A aside from p such that hD (p++A)*+
D (p <-> H). Via the connection of GL with provability in formal theories, this
theorem implies that sentences in such formal theories constructed from formal-
ized provability predicates by "self-referential" techniques are provably equiv-
alent to sentences involving no self-reference.

In Section 1, we give a purely model-theoretic proof of the Fixed Point
Theorem, which we think to be more perspicuous than the extant proofs. The
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eral errors in the penultimate draft.
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same basic apparatus is exploited in Section 2 to prove a theorem on the joint
satisfiability of formulas, which then quickly yields the Craig Interpolation
Lemma and the Beth Definability Theorem for GL. A final section is devoted
to bounds on the complexity of models.

We assume that the basic concepts of the semantics of GL are known; here
we review them quickly (using the notation of [1]). A model is a triple M =
(W,R,P) where Wis a nonempty finite set of objects called "worlds", R is an
irreflexive, transitive relation on W called the accessibility relation, and P is a
function assigning a truth value to each pair <w,#>, where w E Wand q is a sen-
tence letter. The notion of a sentence F being true at a world w of M, in sym-
bols M \=w F, is defined in the usual modal manner; in particular, M \=w ΏF iff
M \z

υ F for each world υ accessible from w, that is, each v such that wRv. It
should be noted that if M f=w ΏF and υ is accessible from w, then M \=v OF;
for, by the transitivity of R, if v is accessible from w then all worlds accessible
from v are accessible from w.

A formula is valid in a model iff it is true at each world of the model. The
modal completeness theorem for GL, due to Segerberg, states that hFiff Fis
valid in all models. In what follows we assume this result, and deal only with
models, often passing from validity to provability without special notice.

If M = < W, R, P) is a model and w a world of M, the submodel ofMgen-
erated by w is the model NT = (W\R\Pf) where W = {w} U {xG W\wRx],
and R' and P' are restrictions of R and P to W. It is easily shown that M ί = w F
iff M' l=w F for any formula F Hence, if u and v are worlds of models M and
N, and the submodel of M generated by u is isomorphic to that of N generated
by v, then MYUF iff N YυF for all formulas F. We refer to this principle as
"continuity".

We shall need the following simple fact: If a formula G is valid in a model
N whenever F is valid in N, then HDF-* ΠG. For let w be a world in a model
M such that M Yw ΠF Let N be the model that is the restriction of M to the
worlds accessible from w. By continuity, Fis valid in Λf; hence G is valid in N.
By continuity again, M t=w ΠG. Thus DF-> DO is valid in all models; so by
completeness, hDF-> DG.

Let M = < W,R,P) be a model. The M-rank of the worlds of M is de-
fined thus: M-rank(w) = 0 iff no world is accessible from w; otherwise, M-
rank(w) = 14- max{M-rank(v)\ wRv}. The finitude of Wand the irreflexivity
and transitivity of R ensure that every world of M has a unique M-rank.

Let S be a finite set of sentence letters. We define the n-S-chαrαcters by
induction on n. The O-S-characters are all the conjunctions ±q\ ±#2* * ±#Ar>
where <7i,... ,</* is a listing of S and ± indicates the presence or absence of a
negation sign. (If S is empty, T is the sole O-S-character.) If Ku.. .,Km are all
the (n — l)-iS-characters, then the fl-S-characters are all the conjunctions ±qχ -
±q2- . . . -±qk'±0Kι ±0K2' . . . -±0Km, where 0 is defined as ~ D ~ . By
induction, it may be easily shown that each satisfiable Λ-S-character implies a
unique (n — l)-S-character. If u is a world of a model M, the n-S-chαrαcter
of u is the unique Λ-5-character K such that M \=u K. If u and v have the same
Λ-S-character for n > 0, then for every x accessible from u there is a y accessi-
ble from v such that x and y have the same (n - l)-S-character. For if K is the
(n — l)-S-character of x then OK is a conjunct of the Λ-5-character of u; hence
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0 ^ is true at v, so that there is a y accessible from υ at which K is true. (The
term "character" comes from [1], Our definition differs slightly from Boolos's,
in order to avoid redundant conjuncts. Our definition is identical to that in [2],
p. 34, for what Fine calls "normal form formulas for n".)

1 For the remainder of this section, let A be a formula modalized in/?, S the
set of sentence letters of A aside from p, and n the number of boxed subfor-
mulas of A, that is, the number of distinct subformulas of A having the form
ΏE

Since A is modalized in p, A is a truth-function of members of S and boxed
formulas. Hence the truth values at any world w of the members of S and the
boxed subformulas of A determine the truth value of A at w; thus if M f=w

(p++A) these truth values determine the truth value of p at w, and so also deter-
mine the truth values at w of all subformulas of A. That is, two worlds at which
p ++ A is true will differ on some subformula of A only if they differ either on
a sentence letter in S or on a boxed subf ormula of A.

This simple observation underlies our proof of the Fixed Point Theorem.
Truth values at w of all subformulas of A are determined by truth values at w
of members of S and subformulas ΏE. The truth value at w of ΠE is deter-
mined by truth values of E at worlds v accessible from w. If p «•* A is true at all
such v, the truth value at v of E is determined by truth values at v of members
of S and the boxed subformulas of A. By iteration, if we assume p <-> A is valid
in the model, truth values of all subformulas of A at any world w are uniquely
determined by the truth values of members of S at w and at the worlds acces-
sible from w.

Of course, the Theorem requires somewhat more: a specification of a fixed
amount of information about the truth values of members of S at w and at the
worlds accessible from w that suffices to determine the truth value of p at w.
As we shall see, the Λ-5-character of w suffices for this.

Fixed Point Lemma SupposeMandNare models in whichp^Ais valid,
and let u0 and v0 be worlds of M and N9 respectively, which have the same n-
S-character. Then u0 and v0 agree on /?.

Proof: Suppose not. We construct a sequence u0, ux,..., un of worlds of M, a
sequence v0, vx,..., vn of worlds of N, and a sequence ΠDOf..., ΏDn of sub-
formulas of A, with the following property for each /, 0 < / < n:

(P;) Uj and vt have the same (n — /)-5-character; for eachy < /, DZ)y is true
at both ut and vi9 but w, and Vj differ on ΏDt.

Basis: The worlds u0 and v0 are given. By supposition, u0 and v0 differ on p. So
u0 and v0 must differ either on a sentence letter in S or on a boxed subformula
of A. But UQ and v0 agree on all sentence letters in S, since they have the same
Λ-S-character. Let ΠD0 be a boxed subformula of A on which u0 and v0 differ.
Thus (Pi) holds for / = 0.

Induction: Let / < n, and suppose u0,..., w, , v0,..., f/ and D D 0 , . . . , • A a r e

given and possess property (P, ). To fix ideas, suppose Dflf is false at ut and
true at Vι\ the other case is treated symmetrically. Let w/+1 be a world of min-
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imal M-rank among those worlds u accessible from u t such that Dj is false at w.
By minimality, Dt is true at every world accessible from ui+ι, so that DZ>, is
true at ui+ί. In addition, since ui+1 is accessible from «,, every boxed subfor-
mula true at «,- is true at ι//+1.

Since κ, and t;,- have the same (/? — /)-S-character and n — i > 0, there is
a world ι> of TVaccessible from Vj such that v and w/+1 have the same (n — i —
l)-S-character. Let vi+χ be any such υ. Then every necessitation true at Vj is true
at vi+χ. Thus ΠD0,... ,DZ>, are all true at both ui+ι and f/+1.

It remains to select ΏDi+χ. Since DZ>7 is true at vi9 Dt is true at vi+χ. But
Dj is false at M, + 1 . Hence ui+χ and ιv+i must differ on either a sentence letter in
S or a boxed subformula of A. Now ui+ι and y ί + 1 agree on all sentence letters
in S, since they have the same (n - i - l)-S-character. Let D ΰ , +i be any boxed
subformula of 4̂ on which w/+1 and vi+ι differ.

This concludes the construction of the sequence. Now property (P, ) for
each i<n implies that ΠDθ9... ,ΠDn are all distinct. This is a contradiction,
since by hypothesis there are n boxed sub formulas of A. Hence the supposition
that «o and υ0 differ on p is false.

Fixed Point Theorem There exists a sentence H containing only sentence let-
ters from S such that hD (p <-> A) <-• D (p <-• H).

Proof: Let H be the disjunction of all /2-S-characters K with the following prop-
erty: There exists a model M and a world w of M such that p <-• A is valid in
M, /? is true at w, and w has «-S-character K.

Suppose p <-> 4̂ is valid in a model JV; we show that p++H is also valid in
iV. Let u be a world of TV, and let Γ̂ be the rt-S-character of u. If p is true at u,
then i ί is among the λz-S-characters disjoined to form H; hence H is true at u.
If // is true at u then AT must be a disjunct of H\ hence there exist a model M
in which /? «-> ̂ 4 is valid and a world i; of M at which /? is true and which has
ft-S-character K. Thus u and v have the same «-S-character. By the Fixed Point
Lemma, u and v agree on p. Thus /? is true at u.

Now suppose p*->H is valid in a model TV; we show that /? «-> >1 is valid in
TV. Suppose /? <-» 4̂ is not valid in TV. Let w be a world of lowest TV-rank at which
p «-> v4 is false, and let M be the submodel of TV generated by w. Then M ^v

(p++A) for each world v accessible from w. Let M' be the model like Mexcept
that M' Yw p iff M Nw ~p. By continuity, if v is accessible from w and £> is a
subformula of A, M' \=v D iff M \=v D. Moreover, M' Yw H iff M t=w H and
Af' \=w A iff M Nw^4, since H does not contain p and 4̂ is modalized in /?, so
that the truth value of p at w does not affect the truth values of H and A at w.
Consequently, /? <-»̂ 4 is true at w in Af', and hence valid in AT, but p ++ His
false at w in Λf'. This contradicts what was proved in the previous paragraph.

We have shown that p <+ A is valid in a model iffp++H is valid in the
model. Hence \-Ώ{p ++ A) <-» •(/? ++ H).

Note 1 The argument given two paragraphs above can easily be extended to
show that any M can be transformed into a model in which p ++ A is valid by
altering only truth values assigned to p. Thus any satisfiable formula F lacking
p can be made true at some world of a model in which p «-> A is valid; equiva-
lently, a formula F lacking p is valid if it is valid in all models in which p <-• A
is valid. Formulated in this last way, this result was first shown by de Jongh.
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Note 2 Our proof of the Fixed Point Theorem is at bottom a model-theo-
retization of the proof in [1], Chapter 11. Boolos defines his fixed point as the
disjunction of Λ-S-characters K such that \-(A ++ p) • (A <-• p) K-+p. If an
w-S-character K is a disjunct of our fixed point //, then the Fixed Point Lemma
and completeness suffice to show that it meets Boolos's condition, and so is a
disjunct of his fixed point. Conversely, let K be an Az-S-character that meets
Boolos's condition. If K is unsatisfiable then it will not be a disjunct of H, but
if K is satisfiable then the result given in Note 1 shows that K is a disjunct of
H. Thus, Boolo's fixed point and ours are the same except for unsatisfiable n-
S-characters included in Boolos's.

Note 3 Our fixed point, like Boolos's, is a disjunction of Λ-S-characters,
where n is the number of boxed sub formulas of A. Hence, as Boolos noted, it
contains at most n nested D's. Of course, such a disjunction may be equivalent
to a formula with less nesting, but as a general bound this is best possible. For
example, if A is ~ Ώnp then H is ~ D" ± (Πn denotes a string of n consecutive
D's). Note that the bound on the nesting in the fixed point is the number of
boxed sub formulas of A, not the nesting of A. Thus, for example, if A is
Π (q ++P) -> Π (~Q ++P), then A has nesting of one, but A has no fixed point
of nesting < 2 (see below).

The syntactic computation of fixed points given in [3], p. 80, does not
yield this bound on the modal complexity of fixed points. Thus our proof pro-
vides more information in this regard. However, our proof provides a far less
efficient algorithm for calculating fixed points than does Smoryήski's. For if
I S| = s then the number c(n9s) of rt-S-characters obeys the recursion c(0,s) =
2s; c(n + 1,5) = 2*2c(/2>5); thus, if s and n are anything but very small, a pro-
cedure that requires checking each Λ-5-character for inclusion as a disjunct of
the fixed point will be impractical. (Smoryήski's discussion of this point in [3],
pp. 122-124, contains an error, on which we shall elaborate in Section 3.) Our
proof does suggest a heuristic method for seeking fixed points that, in many
cases, is reasonably expeditious: search for an exhaustive list of properties of
a world in a model, expressible using sentence letters from S and at most n
nested D's, that imply the truth of p at the world, given that A ++p is valid in
the model; then disjoin the formulas expressing those properties. For example,
let A be D (q ++p) -> D (~q <-•/?), let p <-• A be valid in M, and let w be a world
of M. Either of two simple properties of w yield the truth of p at w:

(1) M-rank (w) = 0
(2) There exists a v accessible from w with M-rank(ι ) = 0 and M \=v ~q.

For if (1) holds then M I = W D ( ^ ++p), so that M (=„ A and hence M \=wp. If
(2) holds, then M \=w — D (q ++p), so that again M l=w A and M \=w p.

Now suppose w has neither property; we find a third property that holds
if and only if/? is true at w. Since (1) and (2) fail, M-rank( w) > 0 and there exists
a u of M-rank 0 accessible from w such that M f=w q, so that M \=u p ++ q\
hence M \=w ~Π(~q *-> /?). Thus M t=w p iff M t=w ~Ώ(q ++ p). If M l=w

— D (q <-•/?) then there exists a v of lowest M-rank accessible from w such that
M \=v ~q++p. Since (2) fails, M-rank(ι ) > 0; hence M¥υ ~U(~q++p). But,
by the choice of v, M \=v D (q ++ p). Hence M t=y ~p, so that M \=v q. Con-
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versely, if MYυq9υ is accessible from w and M-rank(ι ) > 0, then either M t=y

~D(<? <-»/?), so that MK, ~D(<7 <-•/?); or Af h, Π(q++p), so that MK, ~A9

whence M Yυ ~p, which yields M Yv ~q <-»/?, and thus again M l=w ~ D (q ++p).
In sum, if neither (1) nor (2) holds, then M\*wp iff there exists a v accessible
from w of M-rank > 0 at which q is true. We thus obtain the disjunction
Ώ± v 0(~q-Π±) v O(gr OT) as the fixed point H.

2 Two formulas A and i? will be jointly satisfiable only if they do not make
conflicting demands on their common vocabulary, that is, on the sentence let-
ters they share. Conversely, one might expect that if A and B can be satisfied
separately in ways that treat their common vocabulary suitably alike, then A and
B should be jointly satisfiable. The theorem below shows this to be the case; in
it, rt-S-characters are used to make precise the requisite suitable likeness. The
theorem yields as corollaries effective versions of the Interpolation Theorem and
Implicit Definability Theorem for GL. For any formula C let v(C) be the num-
ber of boxed subformulas of C.

Joint Satisfiability Theorem Let A and B be formulas of GL, S the set of
sentence letters common to A and B, and n = v{A) + v(B). If there exists an
n-S-character K such that A K and BK are each satisfiable, then AB is satis-
fiable.

Proof: For C = A or C = B and x a world in a model, let p(C,x), the C-profile
ofx, be the conjunction of all sentence letters of C, negations of sentence let-
ters of C, boxed subformulas of C, and negations of boxed subformulas of C
that are true at x. Note that if two worlds have the same C-profile then they
agree on all subformulas of C. Let TΓ(C9X) be the number of boxed subformulas
of C that are false at x.

Lemma Let u and v be worlds in models M and N, respectively, that have
the same k-S-character, where k = τr(^4, u) + τ{B, υ). Then p(A, u) p(B, v) is
satisfiable.

Proof: By induction on k. If k = 0, π(A,u) and π(B,v) are each 0. Thus, no
conjunct of p(A,u) -p(B,v) is a negated necessitation. Since u and v have the
same O-S-character, they agree on all sentence letters in S. The following M* =
(W,R,P) is then a model for p(A,u) p(B, v): W contains one world w; the
accessibility relation R is null; and, for each sentence letter/?, P(w9p) = T iff
p is a conjunct of p(A,u) p(B,v).

Let k > 0; suppose the lemma holds for all integers < k and that π(A, u) +
π(Byv) = k. Let ΏDλ9... ,ΠDj be the boxed subformulas of A that are false
at u and let ΏDj+\9... 9ΏDk be those of B that are false at υ. For each /, 1 <
i < k, we show that there is a model M, and a world w such that:

(a) Mi K ~Dt

(b) E is valid in M/ whenever ΠE is a conjunct of p(A,u) -p(B,v).

To fix ideas, let i <j; the casey < i < k is treated symmetrically. Let x be a world
of M of lowest rank that is accessible from u and at which Dt is false. Then
ΏDi is true at x. Since u and υ have the same &-S-character, there exists a world
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a world y of N accessible from v such that x and y have the same (k — 1)-S-
character. Since y is accessible from v, every boxed subformula true at υ is true
aty; hence π(B,y) < π(B,v). Similarly, π(A,x) < π(A9u); in fact, since D£>/
is true a t * but false at u9 τ(A9x) < τ(A,u). Let m = τr(v4,x) + π(B9y); thus
m< k. Since x and j> have the same (k - l)-S-character, they have the same m-
S-character. By the induction hypothesis, p(A,x) -p(B,y) is satisfiable. Let M,
be a model and w a world such that Mz KvP(v4,Jt) -p(B,y). By passing, if nec-
essary, to the submodel of M, generated by w9 we may assume that every world
of Mj except w is accessible from w.

Since M, h^/?^,*) p{B,y), w agrees with Λ: on all subformulas of A,
and agrees with y on all subformulas of B. In particular, Dt is false at w, which
is property (a). If ΠE is a conjunct of p(A9u) or p(B9 υ)9 then ϋ1 and ΏE are
both true at x or at j>, respectively. Thus E and ΠE are both true at w. Since
every world of M, except w is accessible from w, E must be true at every world
of M/. That is, E is valid in Mi9 which is property (b).

We may assume without loss of generality that the models Mt = {Wi9Ri9Pi)
are disjoint. We shall obtain a model for p(A, u) p(B, υ) by amalgamating the
Mi9 and adding a new world at the top. That is, let z be an object not in any
W i 9 a n d l e t M * = ( W 9 R 9 P ) 9 w h e r e JV = Wx U . . . U W k Ό { z } , R = R ι U . . .
U ^ U {<z,x)\xG Wλ U . . . U FF*}, and, for each sentence letter/?, P(x9p) =
Pi(x9p) for x in Ĥ  , and P(z,p) = T iff/? is a conjunct of /J(^4,W) -p{B9υ).

By continuity, if x E Wi9 then anything true at x in M, is true at x in M*.
We show that M* \=zp(A,u)-p(B9v). Let/? be a sentence letter. If/? is a con-
junct of p(A,u)-p(B9v), then/? is true at z by the definition of P(z,/?). If -/?
is a conjunct of p(A,u) p(B,v)9 then, by the definition of P(z,/?), /? is false
at z iff/? is not a conjunct of p {A9u) p (B9 v). But were/? and -/? both con-
juncts of p(A9u)-p(B9υ)9 p would be in S and w and v would differ on/?. But
this is impossible, since u and υ have the same £-S-character. Let ΏE be a sub-
formula of >1 or B. If D/sis a conjunct of p(A9u)-p(B9v)9 then iiis valid in
each Mi9 so that M* \=x E for each x in each Ĥ  . Hence ΠE is true at z. If
-ΠE is a conjunct of p(A9u)-p(B9v), then DE is false at w or at υ, so that
Dis is ΠDj for some /, 1 < / < / : . Hence there exists a w in ^ such that

M* Nw ~A; hence -ΠE is true at z.

The Joint Satisfiability Theorem follows quickly from the Lemma. Sup-
pose K is an w-S-character, where n = v(A) + v(B)9 and ̂ 4 -^ and BK are each
satisfiable. Then there exist models M and TV and worlds u and υ such that
M ^ ^ l l and TV h, £•#. Let k = ΊΓ(A9U) + τr(£,ι;). Then n > £, so that w
and t; have the same £-S-character. By the Lemma, p(A9u)-p(B9v) is satisfi-
able. But since A is true at u9 p(A9u) truth-functionally implies A; similarly,
p(B9v) truth-functionally implies B. Hence AB is satisfiable.

Interpolation Lemma Suppose YA -* C. Then there is a formula B whose
sentence letters are common to A and C such that YA -> B and YB -+ C.

Proof: Let S be the set of sentence letters common to A and C, n = v(A) +
j>(C), and 5 the disjunction of all «-S-characters K such that, for some model
M and world w, M \=w AK. Obviously YA -> B9 since by definition at any
world at which A is true there is a disjunct of B that is true. Suppose it is not
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the case that \-B -> C. Then B~C is satisfiable, so K~C is satisfiable for
some disjunct K of B. Now, by definition, A K is satisfiable. Hence, by the Joint
Satisfiability Theorem, A ~C is satisfiable, contrary to hypothesis.

Beth Definability Theorem Let A(p) be a formula of GL, #«*/ let A(q)
result from A(p) by replacing p by q. Suppose VA(p) -A(q) -> (p++ q). Then
there exists a formula H whose sentence letters are among those of A (p) other
than p, such that \~A(p) -• (p <-• //) .

Proof: Let S be the sentence letters of A(p) other than/7, n = 2v{A{p)), and
//the disjunction of «-S-characters AT such that, for some model M and world
w, M \=w A(p) -p K. Then \~A(p) -»(/?-• //), since, by definition, in any
world at which A(p) andp are true some disjunct of His true. Suppose it is
not the case that \Ά(p) -+ (//-*/?). Thus A(p) ~p H is satisfiable. Hence
A (p) ~pK is satisfiable for some disjunct K of //. Let # be a sentence letter
foreign to A(p); by substitution for p, A(q) ~q Kis satisfiable (recall that AT
does not contain/?). Now, by the definition of//, A(p) -p-K is satisfiable. Since
K is an fl-S-character, S is the set of sentence letters common to A(p) p and
A(q)-~q> and« = 2v(A(p)) = ι>(A(p)-p) + v(A(q) -~q), the Joint Satisfia-
bility Theorem applies. We may conclude that A(p) -pΆ(q) ~q is satisfiable.
But this contradicts the hypothesis that \-A(p) A(q) -+ (p <-• q).

Note The Beth Definability Theorem yields the Fixed Point Theorem as a
fairly direct consequence (see [1], p. 173, or [3], p. 110), although this was not
noticed —nor was the Beth Theorem proved for GL —until several years after
de Jongh and Sambin first proved the Fixed Point Theorem. (The Beth Theorem
and Interpolation Lemma for GL were originally proved, independently, by
Boolos and Smoryήski.) We prefer the direct proof of the Fixed Point Theorem,
since it is clearer, and it provides the best possible bound on the number of
nested D 's mentioned at the end of Section 1.

3 In this section, we investigate the complexity of models for fl-S-characters,
as measured by the rank of worlds at which /2-5-characters can be made true.
Now the usual proof of the modal completeness theorem shows that if Fis satis-
fiable then there exist M and w with M \=w F, and M-rank(w) at most the
number of boxed subformulas of F; but that result is far too crude when applied
to fl-S-characters.

If n or 5 is extremely small, bounds on rank are easily obtained. Any 0-S-
character can be satisfied by some M and w with w the only world of M, and
hence M-rank( w) = 0. A 1-S-character is a conjunction of a O-S-character and
formulas ±0C, where C is a O-S-character; any 1-S-character can be satisfied
by some M and w with M-rank( w) < 1. If S is empty, then the satisfiable n-S-
characters are equivalent to one of the formulas — Πk± Πk+ι±, for 0 < k <
n, and ~ D " ± . Now M |=w ~Πk± Πk+ι± iff M-rank(w) = k, and M Nw

— D^J. iff M-rank(w) > n. Thus, for any n9 every satisfiable «-0-character can
be satisfied by some M and w with M-rank( w) < n.

These simple cases might make it seem plausible that any satisfiable n-S-
character can be satisfied by some M and w with M-rank( w) < n. However,
such a claim is false. A simple counterexample can be constructed with n = 2
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and S containing one sentence letter, say q. Consider any satisfiable 2-{q}-
characteri^ containing the conjuncts O(q-Oq-O~q) and ~ 0(~<7 ~ 0<7 ~ 0~g).
If M \=w K, then the truth of the former conjunct at w requires the existence of
a world v accessible from a world u accessible from w such that MYυ ~q. The
truth of the latter conjunct at w requires that for all x accessible from w of M-
rank 0, M Yx q. Hence M-rank (t>) >0, so that M-rank ( w) > 2. An example of
a satisfiable 2-[q}-character with these conjuncts is the 2-{q]-character of the
world w3 of the following model {W,R,P): W = {w0,wuw2,w3}, WJRWJ iff
/ < y, and P so defined that q is true at w0, w2, w3 but not at wx.

(This example shows Smoryήski ([3], p. 122) to be mistaken in his account
of a Boolos-style computation of fixed points. Given a formula A modalized in
/?, containing n boxed subformulas, and with S the set of sentence letters of A
aside from /?, Smoryήski proceeds thus: construct all models M in which p ++
A is valid and in which all worlds have M-rank < n; then disjoin the n-S-
characters of all worlds of such models at which p is true. This procedure can
fail to yield correct results. For suppose A contains two boxed subformulas,
S = {#}, and A is tautologous. Obviously, any fixed point //must be equiva-
lent to T; yet, as the above example shows, Smoryήski's method will yield a dis-
junction of 2-{q]-characters that omits some satisfiable ones, and hence will not
be equivalent to T.)

More generally, there are satisfiable 2-S-characters K that cannot be made
true at worlds of rank < 2s, where s = | S | . Let S = [qx,... ,qs], and let Co,
. . . , Cm be the different conjunctions ±qx ±q2- . . . ±qs, so that m = 2s — 1.
Let M- (W,R,Py, where W= {w0,... ,wm+2}, UiRuj iffy < /, and Pis such
that M I=M. Cz for 0 < / < m, and M \=u. Co for / > m. Let K be the 2-S-
character of um+2- Let iV Nw K; we show TV-rank(w) > m + 2. Let x be a
world of N accessible from w whose 1-S-character is the same as that of um+ι.
That 1-S-character includes 0Cm as a conjunct; hence there exists a world z of
N accessible from x such that N VzCm. Note that TV-rank(w) > TV-rank(z) +
2. Thus it suffices to show that, for all v accessible from w and each /, 0 < / <
m, if N K; Cj then TV-rank (i>) > /. This is trivial for / = 0. Suppose it is true
for /, let υ be accessible from w and TV \z

v C / + 1. Since w and um+2 share the
same 2-S-character, there is a world Uj of M with the same 1-S-character as υ.
Clearly j = i + 1, since ui+i is the only world of Mat which C / + 1 is true. Now
the 1-S-character of ui+ϊ contains 0C, as a conjunct, since C, is true at ι/, and
Uj+iRUj. Hence TV Ny 0C, , so there exists a ι/ in TV accessible from v such that
TV Ny' C/. By the induction hypothesis, TV-rank(ι;') > /; hence TV-rank(ι ) > / +
1, and the claim follows by induction.

The example just given is best-possible: any satisfiable 2-S-character can
be satisfied by some M and w with M-rank(w) < 2s -I- 1. That bound is implied
by the following general result.

Theorem Let S be a finite set of sentence letters, and let n>2. IfK is a satis-
fiable n-S-character, then there exist M and w such that M Vw K and M-
rank(w) < a + 1, where a is the number of satisfiable (n - 2)-S-characters.

Proof: A model M = < JV,R,P) is a tree iff, for every x G W, the set of v such
that υRx is linearly ordered by R. Any model can be transformed into a tree,
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with the same maximal rank (see [1], p. 106, or [3], p. 108), so there is no loss
of generality in restricting attention to tree-models.

Suppose M tw K, where M = (W,R,P) is a tree and w has rank > a 4- 1.
For each world w, let φ(u) = {7|7an (n - 2)-S-character such that M I=M 07).
Note that if uRv then φ(v) <Ξ φ(u). By the pigeonhole principle, there exist
worlds x and y such that wRx and xRy, x has rank at most a + 1, and <p(x) =
φ(y). Let Z = {u \xRu and not yRu}. Let JF' = W - Z, i?' and P ' restrictions
of i? and P to »", and Mf = <W,R\P').

We show first, by induction on M-rank, that every *; in JF' has the same
(n — l)-S-character in M' as in M. Suppose this is true for all worlds of W of
lower M-rank than v.

Cose 1: v Ψ x and not υRx. Then, since Mis a tree, in Mno world in Z is acces-
sible from v. Hence the submodel of M generated by v is identical to the sub-
model of M' generated by v9 so that υ in M and υ in M' agree on all formulas.

Case 2: v = x or υRx. It suffices to show, for every (n - 2)-S-character 7, that
M \=v 07 iff M' \=v 0J. Suppose M \=v 0/. Then there exists azinW such that
vRz and MYZJ. If z G Pf' then, by the induction hypothesis, since z has lesser
rank than v9 z has the same (n - l)-S-character in Mand M'\ hence it has the
same (n - 2)-S-character in M and AT, whence M' Yz /, so that M r Yυ 0/. If
z G Z, by the choice of x and j there exists a z7 such that yRz' and M (=z- /; zf

is then in W and has lower M-rank than v, and, as in the previous case, we
obtain M' \=v 07. Conversely, suppose M' (=y 07. Then there exists a zin W
accessible from v with M' Yz 7, and z has lower rank than υ. By the induction
hypothesis, z has the same (« — l)-S-character in M and in M'\ hence it has the
same (n — 2)-S-character in the two models. Hence M t=z 7, whence M K, 07.

Now we should like to show that the world w has the same fl-S-character
in M and in AT; but this may not be the case. Hence we amplify M' by adjoin-
ing a copy of what was in Maccessible from x. That is, let X = {u G W\xRu},
let Z?" and P" be the restrictions of R and P to X, and let <.¥"*,i?*,P*> be an
isomorphic copy of (X,R",P") such that X* and W are disjoint. Finally, let
M^ = (W'U X*, R\ P' U P*>, where Z^ = # ' U R* U {<w, v>\vGX*}. By
continuity, if t; G W and t; is accessible from w, then t; has the same (ΛZ — 1)-
S-character in M' and in M^ hence the same (n — l)-S-character in M and in
M1^ Also by continuity, if v G Λr*, then v has the same (n — l)-5-character in
M1" as its isomorphic image has in M. It follows that, for all (n - l)-5-
characters 7, M hw 07 iff M* f=w 07, whence w has the same «-S-character in
Mand in M f .

Thus, in M*, w has «-S-character K. Let an M- or M t-path be any
sequence (v\,... ,ŷ > of worlds of M or M^ such that each υi+γ is accessible
from Vj. We claim that the number of M f -paths that begin with w and have
length > α + 2 is less than the number of such M-paths. For the maximal
M-rank of worlds in X* is α, so any M t-path beginning with w and of length
> α + 2 must be composed of worlds in W , and hence is an M-path as well;
while clearly some M-paths beginning with w and of length >α + 2 are not
Mf-paths, since they contain elements of Z. It follows that, by iterating the
process by which M f is constructed from M, we eventually obtain a model in
which w has ft~S-character K and has rank at most α + 1.
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