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The Nonαxiomαtizαbility of 1.(0^)

by Finitely Many Schemata

SAHARON SHELAH* and CHARLES STEINHORN**

Abstract Under set-theoretic hypotheses, it is proved by Magidor and
Malitz that logic with the Magidor-Malitz quantifier in the Ki -interpreta-
tion is recursively axiomatizable. It is shown here, under no additional set-
theoretic hypotheses, that this logic cannot be axiomatized by finitely many
schemata.

Magidor and Malitz [2] introduced the ^-variable-binding quantifiers Qn.
The language L(Q") is formed by adding Qn to first-order predicate logic. For
an infinite cardinal K, QnX\X2.. .xnφ may be assigned the so-called /c-interpre-
tation in a structure ΐPίί, wherein QnX\.. .xnφ is satisfied if there exists a n A c
ΐPίί of power K that is homogeneous for φ, i.e., for any au... ,an E A,
φ(ctι,... 9an) holds in 9K. Among many other results Magidor and Malitz es-
tablish, under the set-theoretic axiom 0K l, a completeness theorem for L(Q")
in the Kt-interpretation (hereafter LίQ^)). Unfortunately, the complete axiom
system for L(Qκj) exhibited in [2] lacks the simplicity of, e.g., Keisler's set of
axioms for L(Q^) (cf. [1]).

This paper, a sequel to [3], demonstrates that this failure of simplicity is
not without reason. It will be shown here, without additional set-theoretic
hypotheses, that LίQ^) cannot be axiomatized by finitely many schemata.
Even more strongly, we prove:

Theorem 1 No collection of axiom schemata of bounded quantifier depth
suffices to axiomatize L(Q^).

This result is due to the first author (Shelah). He communicated it via notes
to the second author (Steinhorn), who then prepared this paper. The proof of
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Theorem 1 follows roughly the same plan as that of Theorem 3.1 in [3]. For any
possible bound k on quantifier depth of axiom schemas for L(Q^), a model
Oil will be constructed, whose L(Q,Q2)-theory under a nonstandard interpreta-
tion of Q and Q2 does not have a standard model (one of power Xλ with the
Kj-interpretation for Q and Q2), but in which every valid LίQ^Q^-schema
of quantifier depth less than k holds.

For the convenience of the reader, we include below the definition of an
axiom schema from [3]. It will not be used until the very end of the paper. For
examples, consult [3].

Definition 1 Let <£ be a logic and let Rx(υ\9..., v^),... 9Rn(v"9..., υ^n)
be relation variables. A schema is an £(Ri9...,/^-formula Φ(/?i,... 9Rn) in
which each of the variables v) for / < n and j < m, is bound to a quantifier of
<£. The quantifier depth of the schema is |{ vjΓ: / < n ΛJ < W;}|.

Now we embark upon the sequence of definitions and lemmas leading to
the proof of Theorem 1.

Definition 2 Let k > 3 and n > k (for definiteness, let n = k2). A k-
degenerate structure ΐίϊί = (MU ω, P9<9R9F9G) is an L-structure, where the
nonlogical symbols of L are a unary predicate symbol P, a binary relation sym-
bol <, a binary relation symbol R, an /z-place function symbol F, and a £-place
function symbol G, satisfying:

( a ) M Π ω = 0 , P(9K) = ω
(b) < linearly orders M
(c) R is a relation o n M x M
(d) F\Mn-+ P ( 3 t t ) , G : M k ^ P(ΐίϊί)
(e) there is no sequence <#/: 1 < / < 2n) from M such that ax < a2 < . . . <

α2Λ, R(ai9aj) holds for all / *./, F ^ , . . . ,an) = F(an+U... ,a2n), and
<^: 1 < / < n) = (aj,: n + 1 < j < In) (mod G) (i.e., for any 1 < ix <
i2 < . . . < ik < /i, GCα/j,... ,aik) = G(an+iι,... 9an+ik)).

Lemma 1
(i) Passage to substructures preserves k-degeneracy

(ii) If (ΐftlβiβ < a) is an increasing chain of k-degenerate structures, then

(J 9110 is k-degenerate

(iii) Ifΐttli, i = 0,1,2, are k-degenerate structures such that Oίlj Π 9H2 = 3ΐlOί

//ιe« OH! α«ί/ 9ϊl2 can be amalgamated over 3H0 /Λ/O a k-degenerate structure 3H
w/z'Λ universe 311 j U 3K2 without introducing any new equalities.

Proof: The first two assertions are evident, so it remains to verify (iii). For this
statement, simply shuffle together the linear orders on Mγ and M2 and stipulate
that -ιR(a,b) holds whenever a E M{\MQ and b E M2\M0, or vice-versa.

The reader should observe that more subtle ways of amalgamation in (iii)
may be possible if ϋϊli and 0H2 satisfy additional conditions (e.g., if
ω\(F"(Mf) U F"(Mξ)) is infinite and ^ and 3tt2 are countable). We will
have to avail ourselves of this additional freedom in what follows.

Let 3) be the set of all quantifier-free L-types with parameters from ω that
are realized in ^-degenerate models. We then have:
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Lemma 2 Let / ? G S . Then there is a finite p0 <Ξ p so that, if 911 is k-
degenerate, 3Π7S t=A)~*P Moreover, |2) | = Ko.

Proof: Given /7(Xi,... ,x m ), let /?0 be the set of those formulas in 77 specifying
whether or not P(X;) holds (and if it does, the element in ω equal to x,), the
complete < and R diagram for pairs (Xi,Xj) for which -ιP(x/) Λ -IP(XJ) holds,
and the value in ω of Fand G for ̂ -tuples and Ar-tuples from [xγ,... ,xm], re-
spectively. Obviously, /?0 is as desired. To see that 2) is countable, notice that
there are but countably many possibilities for p0 as above.

Lemma 3 There exists a countable existentially closed k-degenerate structure
911*, which is unique up to isomorphism over P(9ϊl*) = ω.

Proof: Using amalgamation and preservation under unions of increasing chains,
the proof of the existence of 9TC* is routine. Uniqueness follows via a back-and-
forth argument, using the first statement of Lemma 2 above to ensure that the
construction can be continued.

Lemma 4 The structure 911* is ̂ -homogeneous and ThL(9TC*) admits elimi-
nation of quantifiers.

Proof: The proof of the uniqueness of ΐίϊί* yields, mutatis mutandis, ©-homo-
geneity. Let us now prove the quantifier elimination.

Let φ(yϊ9... 9ym) = 3x ψ(x9yu... ,ym) be given, where φ(x9yΪ9... 9ym)
is quantifier-free. We show that φ(y\,... ,ym) is equivalent, relative to
ThL(3H*), to a quantifier-free formula in at most the variables ^ 1 , . . . 9ym. If
<p(y\> j^m) is n o t satisfiable in any λ>degenerate structure, then clearly
T h L ( 3 1 Γ ) ¥φ(yu...,ym) <+ y x Φ y γ . T h u s w e a s s u m e t h a t φ(yi,...,ym) is
satisfiable in λ:-degenerate structures.

L e t ( P = & p ( y 1 , . . . , y m ) : p ( y 1 , . . . , y m ) E S ) Λ ( 3 9 Π ) ( 3 α 1 , . . . , α w G 9 1 l ) [M
is ^-degenerate Λ ϋH ^p(a\,... ,am) t\ Ix ψ(x,aι,... ,am)]}. Next, let (Po be the
collection of all finite p0 <Ξ p E (P as guaranteed by Lemma 2. For /?oE(Po, let
/?! be obtained by "deleting" the parameters from ω in p0, e.g., re-
place F(yu... ,ym) = r, G(y2,... ,Λ+i) = ̂  where r,s G ω by F ( ^ , . . . , ^ )
{ ^ J G ( j 2 > JJΛΓ+I) according to r ( φ\s Each such /?! is finite, and it also
is clear that (Pi, the set of all such/?!, is finite.

We now claim that

ΎhWL*)£lxψ(x9yl9...,ym)++ V (ΛA)

The implication from left to right needs no argument, so we turn our attention
to the reverse implication. Suppose that # l 5 . . . ,am E 3H* and for some pλ E
(Pi, 911* t= Λ/?I (# 1 , . . . , am). Moreover, let 911 be ̂ -degenerate, c9bι,...9bme
911, and 911 t= ψ(c,bι,... ,bm) Λ Λ Pi(bl9.. .,bm). The definition of (Pi
assures us of the existence of 3TC. Since both (a\,... ,am) and ( 6 1 , . . . ,bm)
satisfy px, we can use 9H \ ω U {c, b\,..., bm} (by permuting ω) to define a /:-
degenerate structure TV with universe ω U {au... ,am,d\ —where d is a new ele-
ment not in 911* —so that

N£φ(d,au...,am)
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and, for every quantifier-free formula 0 ( j i , . . . ,ym) with parameters from ω

N\*θ(aΪ9...9am) iff 311* ¥θ(al9...9am).

Then, by amalgamating N and 911* over 911* ί ω U {αj,... ,am], since 911* is
existentially closed, we find that 911* 1= 3x ψ(x,aι,... ,# m ) , as desired.

Definition 3 The Nonstandard Interpretation of Q and Q2 ί/i 911*

(a) Let Qx ^ ( J C , > Ί , . . . ,ym) be an L(Q,Q2)-formula and aXi... ,am G 911*.
Then,

iff (Vc G 9lΓ\ω)(3δ G 9TC*)91l* t= b > c Λ ψ(b,au... ,α m ) .

(b) Let Q2xy ψ(x,y,Zi,... ,zm) be an L(Q,Q2)-formula and cfj,... ,α w G
9H*. Then,

3Π; |=Q2jζy^U,λέϊ1,...,flm)iff

(3{ft/:/<ω} C3TΓ\P(31Γ))

[i<j-*bi < bj Λ (V/ ̂ y)0H* h ψ(bi,bj,au... ,α w ) Λ <6,: / < ω>

is an unbounded indiscernible sequence in 911* for quantifier-free for-
mulas with parameters in ω U ( # i , . . . ,αm] having fewer than k free
variables.]

Lemma 5 Let Q and Q2 be interpreted in 911* as in Definition 3.
(a) Let ψ(x,y\,.. ,ym) be quantifier-free. Then, for any a G 911*,

91Γ N Qx ψ(x9a) ~ 3x ψ(x9a) Λ -.P(JC) Λ /\ (-iP(α, ) -> x > as) .
L 1 < / < W J

(b) Lei φ(u9v9yu... ,j>m) ^ quantifier-free. Then, for any a G 911*,

9H* l=Q2wι; φ(u,v,a) <-> lulv\\l/(u9v,ά) Λ -*P(U) Λ - P ( ι ) NUΦV

Λ Λ (<Ίί)(J'/)-4«>ΛΛί'>Λ)

Λ "w and v realize same quantifier-free type over [a] U ω" .

Moreover, for any finite C C ω, there is a witnessing sequence (bj: i G ω> for

φ(u,v9a) contained in 911* so that G"{{bi:i G ω}) DC = 0 .

Since the right-hand side of the equivalences in (a) and (b) in Lemma 5 are first-
order, it follows immediately from Lemmas 4 and 5 that

Corollary 1 ThL(Q)Q2)(9H*) admits elimination of quantifiers.

Proof of Lemma 5 (a): Before carrying out the proof, we observe that the inter-
pretation of Q in 9H* is first-order, so we merely wish to obtain a sharper def-
inition than the original one. To prove the equivalence, we first notice that the
direction from left to right is clear, so we argue only for the reverse implication.
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Let us abbreviate the right-hand side of the equivalence by θ(ά). Suppose now
that

9tt |=fl(fl).

Let 5JK! and 9ϊl2 be copies of 9ϊΓ so that

OHJ Π9ϊl2 = ωU {ά}

and let c G 9ϊl2 be such that

9K2 \=Ψ(c,a) Λ ->P(c) Λ /\ (-ιP(ai) -+x>di).

Now, amalgamate 911! and 3TC2 over ω U {#} in such a way that for all d G
9KΛω, c > d. Then, since ψ(x,a) is quantifier-free and 9%! is existentially
closed, it immediately follows that 911 j 1= Qx ψ(x,ά), and we are done.

Proof of Lemma 5(b): Again, only the right to left direction demands proof.
Without loss of generality, we may suppose that \l/(u9v,yu... ,ym) implies a
complete quantifier-free type. It clearly suffices to construct a countable existen-
tially closed structure 91 containing ω U [a] such that 91 1= Q2uv φ(u9v,a)9

since 91 will be isomorphic to 91Γ over ω U [a] by Lemma 4.
Let d\ and d2 satisfy the right-hand side of the equivalence in (b) and let

C C ω be a finite set as in the last clause in (b). Let 91 be a structure with uni-
verse ωU[fl)U [bj: i G ω} so that

(i) [a] has the same quantifier-free type over ω in 91 as in 911*
(ii) bi < bj if i < j and 6, > d for all / G ω and deCU {a}

(iii) for all i <j9 (bhbj) satisfies the same quantifier-free type over ω U
{a} in 91 as (dud2) does in 91Z*

(iv) all (k — l)-tuples in {bj: i G ω) satisfy some fixed quantifier-free type
over ω U [ά] in 3D

(v) ^-tuples in 91 for which F is not defined by (i)-(iv) are assigned dis-
tinct values of F different from any values of F determined by (i)-(iv)

(vi) λ>tuples in 91 for which G is not defined by (i)-(iv) are assigned dis-
tinct values of G different from any values of F determined by (i)-(iv),
and G//({6/:/Gω}) ΠC=0.

Observe that (vi) does not conflict with (iii) or (iv) since we have assumed
that k > 3, and that clauses (i)-(iv) determine only finitely many values of F and
G, which makes it possible to satisfy (v) and (vi). Also, we can satisfy the sec-
ond part of (ii) because the right-hand side of the equivalence in (b) is satisfia-
ble in 9TΓ.

Now we show that the structure 91 is ^-degenerate. Suppose for a con-
tradiction that

ex < e2 < . . . < e2n

is a sequence of elements from 31 \ω violating ^-degeneracy. First, it is clear that
βj G(ft/:/Gωj for some / < In. Let /0 be the least one with this property. Also,
since the construction only fixes the k — 1 type of a sequence from {bi: i G ωj,
it follows from (v) and (vi) that io> 2n — k. However, for r < k, we see that
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(iv) forces the quantifier-free type of an r-tuple from [fy: i E ω} to be in 33, and
so it is not possible that e violates ^-degeneracy.

We next extend 91 to a countable existentially complete ^-degenerate struc-
ture 911, and let 9l2 be the initial segment of 911 cofinal with (ft/ / E ω j . It is
a simple matter to verify that 9l2 is existentially complete. Since 9l2 is iso-
morphic to 3TC* over ω U [ά], we conclude that

WL*tQ2uvψ(u9v9Q).

To show that all true IXQ^Q^-schemes of quantifier depth less than k
hold in 911*, we have to define a version of 911* in which F is only a partial
function.

Definition 4 Let c = (cx,...,cm) E (911*)m. Then 9ϊl* is the L-structure in
which the interpretation of all nonlogical symbols but F is as in 911*, and
F(aι,... ,an) is defined (and equal to its value in 9TC*) only if

( 3 { r f 1 , . . . , έ / / } c { a l 9 . . . 9 a n ) ) [ \ { a Ϊ 9 . . . 9 a n ] \ [ d Ϊ 9 . . . 9 d t } \ < k

ΛG'drfi ί/))£G'((ci cj)].

9H* becomes an L(Q,Q2)-structure by interpreting Q and Q2 as in Definition 3.

We need the following analogue of Lemma 2 in our new setting.

Lemma 6 For any quantifier-free typep over ω U ( c ] realized in 9 H | , there

is a finite p0C p so that 9ϊl* f= p0 -• p.

Proof: Just modify the proof of Lemma 2.

Lemma 7 9ϊl| is homogeneous for quantifier-free types over ω and
ThL(QjQ2)«9ϊl*,c» admits elimination of quantifiers.

Proof: We first prove homogeneity. Suppose, then, that ax and a2 are sequences
of elements from 9Π| that satisfy the same quantifier-free type over ω. Given
b\ E 911*, we must find a ί 2 € 9ΪI* so that ax ~ b\ and ά{ ~ b2 satisfy the same
quantifier-free type over ω. Applying Lemma 6, it is easy to see that there is a
finite subtype of the quantifier-free type of bγ over ω U [ax} that implies the
whole type. Thus, as 911* is existentially closed it suffices to show that we can
adjoin an element b2 to 91Z* in such a way that the resulting structure is k-
degenerate, and b2 satisfies the appropriate finite subtype over [a2] U ω.

To carry out the easy amalgamation, we first let b2 be a new element and
stipulate that it has the same type over ω U ( ά 2 ) i n the sense of 9H* as does bx

over ω U {a{}. Then, we complete the ordering of b2 with respect to the rest of
9H* in any consistent way, and set -ιR(b2,d), for d E 9H*, where possible.
Since only finitely many F and G values have been prescribed to tuples contain-
ing b2 already, we can complete the assignment of F and G values to such
tuples by demanding that distinct values different from those previously assigned
be given to the remaining tuples. Bearing in mind that the type of ά2 ~ b2 over
ω to which we are initially committed may not describe the complete type of
a2 ~ b2 over ω in the full degenerate structure with universe 9ΪZ* U {b2}, it is a
simple matter to verify that the structure just constructed is ̂ -degenerate.

To prove quantifier elimination, as before, we first eliminate first-order
quantifiers and then show how Q and Q2 can be expressed in first-order logic.
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Thus, let 3xψ(x9yu... ,yhc) be given, where ψ(x,yu... ,j/,c) is quantifier-
free. The argument here is very similar to that given in Lemma 4 and so we will
only highlight it, leaving details to the reader. We assume that <3Tl*,c> t= 3>>ax
iHx,j>,c), and let (P = {p(yu . . . ,j>/) :p is a quantifier-free type over ω U {c} Λ
( 3 * ! , . . . ,0/ G 31l*)<31l*,c> 1=/?(#!,... ,#/) Λ ix ψ{x9aΪ9... ,tf/,c)}. Just as in
the proof of Lemma 4, we define a finite set (fλ of finite types px over c that
we obtain from (P. Again we assert that

(W,t,c)tlxψ{x,yu...,yhc)~ V (ΛA).

Only the only direction from right to left requires proof, so let a\,..., at E 31l£
be such that for some/?! E (Pi, <3ϊl*,c> N Λ / ? ^ ^ , . . . , # / ) . With rf <£ 3ft*, just
as before we can build a structure TV* with universe {d, aγ,..., ah cx,..., cm} U
ω so that for any quantifier-free formula θ(yu . . . ,j>/,£i,... , z m ) ,

N*^θ(al9...9ahcl9...9cm)iff^}rθ(al9...9ahcl9...9cm)9

and

TV* ^ ^ ( r f , ^ ! , . . . , ^ / , ^ , . . . , ^ ) .

By defining F for π-tuples from N* where it is not already defined, we can make
N* into a / -degenerate structure TV so that TV t [au... ,ahc] U ω = 3TC* Γ
{#!,... ,#/,c} U ω. Then, after amalgamating TV and OH* over {#i,... ,ahc] U
ω into a A:-degenerate structure, 311* being existentially closed implies that
3H* t= 3Λ: ψ(x,aι,... ,al9c). This completes the argument.

Now we must show how to eliminate Q and Q2. (Here the role of G in
Definition 4 comes into play.) First we deal with Q. Let Qx ψ(x,y\,... , j/,
cu . . . ,cm) be given, where ^ is quantifier free. Let ψ'(x,yu... 9yι,cu... ,cm)
be obtained from ψ by replacing each of F(uλ,..., un) = t>, where ux,...,un,
v e {x,yu... ,yι9cu... ,cw) by the formula

F(wi,...,wΛ) = yΛ"3{wi,...,wp}e{Wl,...,M/I}[|{Wl,...,iι/I}\{wi,...,Wp}|
< £ Λ G ' ' ( { V V 1 , . . . , W ^ } ) C G ' ' ( { C 1 , . . . , C W } ) ] " .

Note that the expression in quotations is a formula as the "quantification" is
really a finite disjunction. Now, following part (a) of Lemma 5, we assert that

311* 1= Qx ψ(x,yu... ,yι,cl9... ,cm) ̂  ax ψ'(x,yu... ,j/,ci,... ,cw)

Λ̂ P(X)Λ /\ (iP(Λ)-*JC>Λ)Λ Λ W ^ ^ C / ) .

As usual, only the direction from right to left requires proof. Suppose that
# i , . . . ,#/ E 3H* satisfies the right-hand side of the equivalence above in 311*.
It follows that (aί9... ,#/) satisfies the same formula in 31Z*. Then by quanti-
fier elimination in 3TΓ, 3H* 1= Qx ψ'(x9au ... ,ahcu ... ,c w ) . But by the way
that ψ' has been defined, the elements that witness ψ' in 3H* will witness ψ in
3H*. Thus, 3H* 1= Qx Φ(x,au . . . 9ahcu... ,c w ) . The argument for eliminating



8 SAHARON SHELAH and CHARLES STEINHORN

Q2 is similar—just modify suitably the right-hand side of the equivalence in part
(b) of Lemma 5, and then appeal to quantifier elimination in 3ft*.

For the proof of the main lemma, Lemma 9, we will need the following,
rather technical lemma. It isolates exactly those conditions we will need to satisfy
in the proof of Lemma 9 to extend a fixed witnessing sequence for an L(Q^)-
formula.

Lemma 8 Let α be α countable ordinal and a G 3ft*. Suppose that It =
[bi'.i < a] C 3ft* satisfies Definition 3(b) for the quantifier-free formula
φ(x,y,a,c) except possibly that It is not unbounded in 3ft| and that G" (It) Π
G" ({ά,c}) = φ. Then there exists an existentially closed end extension 91 of 3ft*
and d G 91X311* so that It U [d] satisfies Definition 3(b) for <p(x9y,a9c) except
that It U [d] is not unbounded in 91.

Proof: Our strategy is to construct a ^-degenerate structure 91* so that 91 = 91*
is the existentially closed end extension as required in the conclusion of the
lemma.

To begin, we consider the following quantifier-free diagram Δ in a language
with constants for elements of 3ft* and a new constant d:

A = q.f. diagram(3ft*) U [d > c: c G 3ft*)

U {φ(d9b9a9c):bel%}

U {θ(b,ά,c9n)*+θ(b'9ά9ε,ή):B9δ' e (It U [d})<k Λ
n G ω Λ θ(x,y9z, w) q.f.}.

We now show that

Claim 1 Δ can be completed to the diagram A' of a k-degenerate structure
with the same universe.

Proof: To prove this, we first assert that

S = { / ι e ω : ( a δ e / / U {c,ά,rf}\//U {c,a})F(b) = « G Δ }

is finite. To see this, we first observe that the only way for F to be defined by
Δ for an Λ-tuple containing d is by one of the last two sets of sentences in Δ.
However, it is obvious that each of these sets of sentences in Δ can contribute
only finitely many values to 5.

To show that Δ can be completed to the diagram of a ^-degenerate struc-
ture with the same universe, we begin by letting ~iR(a,d) hold for all a G 3ft*
such that this formula is not in Δ. We next assign distinct values from ω\S to
F(b) for each fl-tuple I G 3ft* U [d] for which Δ does not determine F(t).
Lastly, values of G can be assigned arbitrarily. We now check that the result-
ing quantifier-free diagram is the diagram of a ^-degenerate structure. So we
suppose that

tx < . . . < tn<tn+\ < < t2n

are constants from 3ft* U [d], and prove that they cannot violate ^-degeneracy.
The argument divides into two cases.

Case I: For all j = 1,... ,2«, tj G 3ft|. By the way that F has been defined
for #-tuples for which it is not defined by Δ, we see that at least one of
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F(tu.. .,tn), F(tn+l9... 9t2n) must be defined by Δ, say F(tu.. .,tn). Then

F(tn+ι,... 9t2n) cannot be determined by Δ, since 3ΪZ* obviously can be com-
pleted to the diagram of a /r-degenerate structure. Hence, by the condition given
in Definition 4 under which Fis defined, we see that (t{,..., tni tn+ι,..., t2n)
could not satisfy the conditions on G necessary to violate ^-degeneracy.

Case II: (Necessarily) t2n = d. By the way that R has been defined, we see that
tj G la U [a,c] for j = 1,. . . 92n - 1. Hence, since all elements of It are greater
(with respect to <) than each element of {a9c}9 we observe that if tj G // for
some j = 1 , . . . , n9 then tj G // for all j = n + 1, . . . 92n - 1.

Subcase a: (tχ9... 9tn) contains no element of //. By the way that we have
defined F9 either F{tu... 9tn) or F(tn+U... ,t2n) must be determined by Δ.
Suppose first that F(tu...9tn) is defined by Δ. Since G" (//) Π G" ({ά,c}) =
0 , it follows that | {/ π +i,. . . ,hn\\ [ά9c}\ < k. But then by indiscernibility, we
could find ^ + 1 < . . . < t'ln all in // U [δ9c] so that (tu... ,tn,tή+u. . Jin)
violates ^-degeneracy, which is impossible (N.B. indiscernibility is applied
only to t2n-ι+\, >t2n9 where / < k). Now assume that F{tγ9... 9tn) is not
defined by Δ, but that F(tn+ι,..., t2n) is. Because t2n = d, we must have that
F(tn+U... 9t2n) G S, and so F(tu . ..,tn)Φ F(tn+l9... 9t2n) by construction.

Subcase b: (tχ9... 9tn) contains an element of //. In this case, we see that
F(t\,... 9tn) must be defined by Δ. But since tn+\9... ,t2n £ It U [d] and
Gu(It U {rf}) Π G"({c}) = 0 , once again it is not possible for (tu... 9tn9

tn+\9... 9t2n) to violate A:-degeneracy. This completes the proof of Claim 1.

Next we prove

Claim 2 Let U be the result of augmenting L by constants for each a G 3H*
and by new constants d = (d9dΪ9... 9dm). Suppose that Δ' = Δ U [θ{d9a')} can
be completed to the quantifier-free diagram of a k-degenerate structure, where
for each i= l , . . . , m , θ(dya') f= dt > d9 [c9ά] C [a'\ C OH*, andθ(y9z) is a
quantifier-free formula with parameters from ω implying a complete type in 3D.
Let ψ(xι,... ,xh . . . 9xn9y9z) be a quantifier-free formula with parameters from
ω that implies a complete type in 3D such that

X\9... 9Xi> least element of y

and

.v, + i , . . . ,xn < least element of y.

If A' U {ax ψ(x9 d9a
f)} can be realized in a k-degenerate structure, then there are

bi+x,..., bn G 9H* and new constants eu.. .9et so that

A' U [ψ(e,b9d9δ'))

can be completed to the diagram of a k-degenerate structure.

Claims 1 and 2 suffice to prove the lemma, since the desired 91* can be con-
structed recursively as the union of a chain of length ω using Claim 1 as the base
stage, and Claim 2 for the inductive stages of the construction.
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Proof: To prove Claim 2, we can let Δ' = Δ, since θ(d,a) can be absorbed into
3xψ(x,d,a'). Now, let

31ΓNΔU {lxψ(x,d,a')}

be an existentially closed ^-degenerate structure. Take bo,eo E 3IΓ so that

WL'£ψ(eθ9Bo,dtaΊ

where we identify elements of ΐfti' with the interpretations of d and a'.
Now (31Γ)* = 3ΪI* over ω, so we can choose b E ΐftl* such that the

quantifier-free type of b ~ ά' over ω in 3R| is the same as that of b0 ~ a' over
ω in (3ΐΓ)?. Moreover, it is an easy exercise in amalgamation to see that we can
choose b so that for ally = / + 1,... ,/i, and all t E // U {#'},

unless ψ specifies otherwise.
Let ψ' (Xj+\,...,ArΛ,.p,z) be that part of ψ dealing only with the variables

Xj+ι,... ,xn, y, and z. Our construction so far makes it clear that we can extend
Δ consistently to Δ U {yl/'(b9d9ά')].

We next complete Δ U {ψ'(b,d9a')} to the quantifier-free diagram of a k-
degenerate structure 3l0 with the same universe. To do this, we first stipulate
that -^R_(tι,t2) hold for any tut2 for which it is not required to hold by Δ U
{ψ'(b,d,ά')}. Observe that

[x:(iyed)R(x9y)}Cl?U{a\d}.

Next, let

S' =SU [n <Ξω:ψ'(b,d,ά') NF(ΰ) = n for some ΰ]

where S is as in the proof of Claim 1. It is clear that S' is finite. To ̂ -tuples
whose value of Fis not determined, we assign distinct values from ω\S'. Lastly,
we assign values of G arbitrarily to A:-tuples for which it is not determined. We
must show that this construction yields the quantifier-free diagram of a k-
degenerate structure.

So we suppose that

/ i < - . . < t n < t n + x < . . . < t 2 n

are from 7V0, and prove that they cannot violate ^-degeneracy. The argument
divides once again into two main cases.

Case I: For ally = 1,... ,2/i, tj E 911*. By the way that Fhas been defined for
Λ-tuples for which it is not defined by Δ U W(5,d9a

f)}9 we see that at least one
of F(tu...,tn)9 F(tn+ι,...,t2n) must be defined by Δ U [ψ'(b,d,a')}9 say

F{tu... 9tn). Suppose first that F(tn+i,... ,t2n) is not determined by Δ U
{ψ'(b9d9a')}. Then, since F(tn+l9.. .9t2n)*_s for any s E S'9 it follows that
F(tϊ9. ..9tn) cannot be determined by \l/'(b,d,a') and so must be determined
by Δ. But if F(tn+Ϊ9.. .9t2n) is not determined by Δ U {\l/'(b9d9a')} and
F(ti9...9tn) is determined by Δ, we see from Definition 4 that (tu...9t2n)
could not violate A:-degeneracy. Hence, F(tn+U.. .,t2n) must be determined by
Δ U [ γ ( b 9 d 9 ά ' ) } . But it is imposs ib le for bothF(tu . . . , t n ) mdF(tn+u.. . 9 t 2 n )
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to be determined by Δ U [φf(b9d9a')}9 since this quantifier-free diagram can be
realized in a A:-degenerate structure. This completes the argument in Case I.

Case II: Some element of t is in d. By the way we have extended the definition
of R, we see that ?C/«f U {a',b,d}.

Subcase a: t C // U [a\d}. Again, we see that at least one of F(tu... ,/„),
F(tn+l9... 9t2n) must be defined by Δ U {φ'(b9d9a')}9 say F(tΪ9.. .,tn). We

then observe that F(tχ,...,tn) E Sf. Hence, by the way that we have defined F9

it must be true that F(tn+X,... ,t2n) also is determined by Δ U {ψ'(b9d9ά')}.
But then, since Δ U {φ'(b9d,a')} can be realized in a ^-degenerate structure, it
is not possible that t violates λ>degeneracy.

Subcase b: t contains an element of d and an element of b. By the way that we
have chosen b, we must have t C {a'9b9d}. But then F(t\9... 9tn) and
F(tn+ι,... ,t2n) must be determined by φ'(b9d,ά'), and then it certainly is
impossible for t to violate λ>degeneracy.

We now embed 9l 0 into 3TC' via a mapping / so that the restriction of the
embedding is the identity on ω U [a',d] and i(b) = b0. The conclusion of Claim
2 follows by taking the substructure of 3ft' whose universe is i(M* U {d}) U
{e}. With the claim proved, the proof of Lemma 8 is complete.

Lemma 9 For any c E (9H* ) m

9 there exists a continuous increasing chain of
^-structures <9ΐlα : a < ω\) such that

(i) M o = ΐίϊί* and P(ΰϊίa) = P(3H 0) = ω for each a < ωλ

(ii) for a, β < ω^, 3ϊlα and ΐftlβ are isomorphic over ω
(iiϊ) for α < |8 < ω l f 9lία < L (Q,Q 2 ) ^β and ΐfϊίa C e n d 311̂
(iv) 9Hωi = | J 9Ilα >L(Q,Q2) S^α, /or all a < ωΪ9 where Q and Q 2 Λα^

the standard Xχ-interpretation in 91lωi, a«<i /Λe nonstandard interpre-
tation in 3fϊlα.

Proof: We first construct the chain of models satisfying (i), (ii), and (iii), and
lastly verify that (iv) holds. At a limit ordinal α, we shall take ΐfϊίa = (J Sfll̂ ,

β<a

so we are left with the construction at successor ordinals. The main task is to
make sure that witnesses are added, ensuring that Q 2 has the standard interpre-
tation in 3Πω i. Let a - β + 1 be given, and assume we have built 9Kjg. Further-
more, for each formula Q2xγ <p(x,y,Zi9... ,Z/) (where φ(x,y,Zι>... ,Zι) is
quantifier-free), and au . . . ,#/ G 911̂  such that ΐftlβ t= Q2xy φ(x,y,al9... 9aι)9

suppose that we have fixed a sequence // 1= {b^: ξ < γ> that satisfies the con-
ditions of Definition 3(b) and two further stipulations. The first is that if δ is
the least ordinal with aλ9... 9aιE 3Hg, {b%:ξ < ω] <Ξ 9Hδ and at each successor
ordinal δ + ( ι > + l ) < β , we have that bv E 9Tlδ+(ί,+i). In other words, for each
formula Q2xu φ(x9y9 ax,..., aί) that is to hold in DHωi, a fixed witness sequence
has been extended at each successor stage in the construction. The second con-
dition to be imposed on // is that G"(Ig) Π G"({ci9... ,cm}) = 0 . That such
a sequence (b%: ξ < ω> can be found, which we then extend, follows from part
(b) of Lemma 5.

We will build ΐPίίβ+ι as the union of an ω-chain of structures 91/,/ < ω,
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each isomorphic over ω U {c{,... ,cm] to 911*, with 9l 0 = 911̂  and 9l, + 1 a
proper end extension of 91/ for all / < ω. It follows immediately that 911̂ +1 =
(J 91/ satisfies (i), (ii), and the second clause in (iii). Moreover, the first asser-

tion in (iii) follows from (ii) and the quantifier elimination given in Lemma 7.
The main task in the construction at a stage / > 0 is to add a new witness to the
fixed witnessing sequence Ig for the ith formula Q2xy φ(x,y,ά9c) that holds in
ΐftlβ according to some fixed listing, where φ(x,y,z, w) is quantifier-free. How-
ever, Lemma 8 guarantees that precisely this can be done.

To complete the proof of Lemma 9, we now must verify (iv). We obviously
have 9ϊlωi >L 9Hα for each a < ω\. Next, assume that we are given a formula
Qx φ(x,ά,c), where φ(x,a,c) is quantifier-free and a G (9ϊlα)m. We must show
that

3TCωi N Qx φ(x,ά,c) iff 3Kα 1= Qx φ(x,a,c),

where Q receives the standard #ι -interpretation on the left and the nonstandard
interpretation on the right. This follows by the quantifier elimination for the
nonstandard interpretation, and because 9Hωi is the union of a chain of count-
able end extensions. Finally, given a formula Q2xy φ(x9a,c) with φ quantifier-
free and a G (9TCα)

m, we must verify that

9rcωi N Q2xy φ(x,y,ά,c) iff 3ϊlα h Q2xy φ(x,y9ά,c)9

where Q2 receives the standard ^-interpretation on the left, and the nonstan-
dard one on the right. Here, the direction from left to right again follows from
the quantifier elimination for Q2 and because 9Kωi is the union of a chain of
countable end extensions. The reverse implication holds because for some a a
fixed witnessing sequence for <p(x,y9a,c) has been extended at each stage β >
a in the construction of (ΐίϊlβ:β < ω\).

With the difficult preparatory labors completed, we now are able to prove
Theorem 1.

Proof of Theorem 1: Let 3ϊl* be the countable existentially closed /:-degenerate
structure. Clearly, ^-degeneracy is expressible in first-order logic and

9tt* 1= Q 2 ^ ( J C J ) Λ -iQjc P(x),

where Q and Q2 receive the nonstandard interpretation. Then, ThL(Q)q2)(91l*)
does not have a model in which Q and Q2 receive the standard Ki -interpreta-
tion. For suppose not, and let 91 be such a model of power Xx and let / c 91
be homogeneous for R(x,y) of power Klβ Since 9ΐΓ 1= (Vy) -ι {Qx)x < y, it
follows that < is ωi-like on 91, and we may assume that / = [b$.: ξ < ωx} and
whenever η < v that bη < bv. Next, let /t be a set of pairwise disjoint increas-
ing Λ-tuples whose components are from /. Since 91 N -ι(Qx)P(x), there is
some n0 G P(9l) and I2 £ I\ of power &x such that if b G 72, 91 t= F(b) = n0.
Finally, again because P(9l) is countable, there is an 73 Q I2 of power Xx so
that for any bub2 G 73, 91 t= bx = B2(G). But this is impossible, as 91 was to
be ^-degenerate.

We complete the proof by establishing that any true LίQ^QK^-axiom
schema of quantifier depth less than k holds in 9H* (with the nonstandard
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interpretations, of course). So let Vx Φ(φ\,... ,φp) be an instance of such a
true schema, where φι s <Pi(Vi,x), and suppose for some c E 3ΪI* that 911* t=
i φ ( ^ i , . . . ,φp). We may also assume that ψi is quantifier-free. Since for each
/ = 1,...,/?, /A(ϋ, ) < £, it then follows that for each / = 1,...,/?, and a E

9K? t=^/(α,c)iff 9 Π * t = ^ ( α , c ) .

Therefore 3H* t=-i Φ ( ^ i , . . . ^ J , and hence by Lemma 9, 9ϊlωi \=-iΦ(φΪ9.. . , ^ ) .
But this last assertion is impossible, since 9Πωi is a standard LίQ^^Qx^-model.
So the theorem is proved.
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