
262

Notre Dame Journal of Formal Logic
Volume 30, Number 2, Spring 1989

Isomorphic but Not Lower Bαse-lsomorphic

Cylindric Algebras of Finite Dimension

BALAZS BIRO*

Abstract This article deals with Sereny's theorem giving sufficient condi-
tions for two cylindric set algebras (Cs's) to be lower base-isomorphic, a
cylindric algebra version of Vaught's theorem on the existence of prime mod-
els of atomic theories in countable languages. It is proved that Sereny's the-
orem requires all the conditions given in its statement. Here the necessity of
the condition of the infinite-dimensionality of the given Cs's is proved via
constructing isomorphic but not lower base-isomorphic Cs's of any finite
dimension greater than one. A model-theoretical corollary of the above de-
pendence is stated also.

In this paper we will prove that the (cylindric) algebraic version of Vaught's
theorem concerning the existence of prime models of atomic theories does not
hold for finite dimensional cylindric set algebras, i.e. for algebras correspond-
ing to models for languages with finitely many variable symbols, partly solving
a problem posed in [4] and [9]. Let us see this statement in a little more detail.
The algebraic version of the Vaught theorem referred to above is the following
theorem of Sereny [10]: Any isomorphism between two infinite dimensional
countably generated regular and locally finite Cs's with atomic neat n-reducts
(for all finite n) is a lower base-isomorphism. (The notation used in this theorem
is defined below, and also in [6] and [7].)

We will show that the condition that the algebras concerned be of infinite
dimension cannot be dropped. It is worth adding that we have already proved
this fact about all other conditions in this theorem (cf. [2], [3], and [4]). Our
treatment is based on [6] and [7]; consequently, we follow the terminology and
notation of these volumes except that we denote the full Csa with base U by
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©ί)(α, U). Here we recall only the notions that are connected with our central
concepts. Throughout this paper a. is an ordinal. Let 21 be a Csa with base U
and unit element V. Let / be a bijection from U onto a set W. We set fX =
{y E a W\ f~ι ° y E X] for any X E A and call / the base-isomorphism in-
duced by/. Let F' c F. We set r / κ ^ = XΠ V for any XG Λ. In this case,
r/K' is the relativization of 2ί to V. If in addition rlv> is an isomorphism and
y — ay fQΐ a jy/ g (/then r/K' is called a strong ext-isomorphism. 21 is Ẑ αse-
minimal if it is not strongly ext-isomorphic to any Csα except itself. A function
g is called a /ower base-isomorphism if g = k~ι ° h° t for some strong ext-iso-
morphisms k and / and for some base-isomorphism h.

In a little more detail, we will show that the condition that the algebras con-
cerned be infinite-dimensional cannot be dropped in the algebraic version of
Vaught's theorem referred to above (proved in [10]) according to which any
isomorphism between two countably generated regular locally finite-dimensional
Cs's with atomic neat tf-reducts for any finite n is a lower base-isomorphism.
Consequently, Vaught's theorem mentioned above cannot be extended to lan-
guages with finitely many variable symbols.

The results of the present paper also imply that the condition on the char-
acteristic cannot be omitted from Theorem I. 3.6 of [7], according to which any
two isomorphic Csreg Π Z/'s of positive characteristic are base-isomorphic.

First we introduce some special notions and notation, which can for the
most part be found in [1], [6], and [7]. Furthermore, we use the notions and
results of [1]. It is supposed throughout that a < ω.

If 21 is cylindric set algebra with base U then we write base(2ί) = U (cf. Def-
inition 0.1 of [7]).

If a < ω, for a CAa 21 we write d, d%, or da for d%{a X a) = Π{ -dκλ:
K < λ < α ) . (See Section 1.7 of [6].)

Suppose x and y are elements of a CAα. Then they are said to be cylindri-
cally equivalent if for every K E α, cκx = cκy (see [1]).

Let n E ω and, for the time being, denote @b(α,/7) by 21 and ©b(α + 1,
n + 1) by 33. Let N = {s E J 2 3 : n £ Rg s] and for i E α + 1 , Z, = {s E J 5 8:
Si = n} (cf. the proof of Lemma 2 in [1]).

Finally, for X c d% define X+ c d® as follows:

X+={s<EN:a]seX}U{s<Ξ Za: α U ί l j U {{s E Z , : siM EX}:i<Ξa}.

Here

(1) ss(o()

is the function differing from s in place / where its value is s(a) (cf. 3.1.1 in [6]).
Now we state some lemmas:

Lemma 1 If X c d then d ~ X+ = (d ~ X)+.

Let 1 < / E ω. Define a series {Xι

a: 2 < a < ω) of elements of <&b(cx9ω) by
recursion on α such that X^ E @b(a,a + i). Let

Λ^ = {(k,m) E 2 (/ + 2): A: + 1 = m(mod / + 2)}

(see Figure 1). For a > 2 let A ^ = (XL)+- We then have the following lemma.
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Figure 1

Lemma 2
(i) /// > 1 tffld α > 2 f/te/2 0 C XI C J α ;

(ii) itoίλ Λ!^ ί?A2ί/ ύ/ ~ A^ are cylindrically equivalent to d.

Proof: (i) can be proved by induction on a using Lemma 1. (ii) can be seen in
the same way as Lemma 2 of [1], using Lemma 1 of the present paper.

If 2ί is a cylindric algebra then At 2ί denotes the set of atoms of 2ί.

Lemma 3 Assume that 21 c g G C4 α , |Λ| < ω, i; G Λί 21, x tf«ί/y G C,
x + j = f, x j = 0, and x Φθ Φ y hold in 6 and both x and y are cylindrically
equivalent to v. Let 33 = © g e ( ( x , j } U A). Under these hypotheses
(1) >lί SB = Λί « ~ [v] U {x,y}

(ii)B = (Bqm^(A U {x,y}).

Proof: This lemma is a special case of Lemma 3 of [1].

Now, for / e ω ~ 1 and α G ω ~ 2 define Wa G Csa as follows: Let 21L =
© g S M ^ α + o ^ ^ } ) ) t h e CSa w i t h b a s e α + / generated by X^. Sometimes 2 l (/»
will be written instead of Wa.

We will need the following lemmas.

Lemma 4 At 2l« = {U{dR: R is an equivalence class ofΣ] -d(2a ~ Σ): Σ is
an equivalence relation on a such that it is not the identity relation of a} U

I Xa» " ~ Xoί}'

Proof: This lemma follows easily from Lemmas 2 and 3.

Lemma 5 If a > 2 and / > 1, then 2ί« is base-minimal.

Proof: We prove the statement by induction on α. For a = 2 the lemma can be
easily seen to be true. Now suppose the lemma is true for a. We are going to
prove it for a + 1. Suppose W <Ξ α + 1 + / is such that

(2) (Yna+lW: YGA^i)
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is an isomorphism on Wa+ι- For the sake of brevity denote α + 1 W by V, the
relativization of Sl̂ +i to Kby 9ΐ, and Xι

a by X. First, we claim that

(3) a + ieW.

In fact, suppose the contrary, i.e.

(4) <x + i£W.

Since | base (2ί^+i)| ><* + 1, K+ι ^U{-dJk:j < k< a + 1} ^ 0; hence, by (2),

(5) ft hΠ{-rf;*: . / < * < < * + 1) * 0 .

Let

(6) qeΓl{V~D}P:j<k<*+l).

We have

<7 G c*<7α+1 = c*v>"+l)da+ι ΠV by (6)

= <r*(/ α + 1 ) (ί? - XUi) Π F by Lemma 2 (ii)

Hence there i s a w G ^ such that

(7) < 7 £ e J α + 1 ~ * +

(cf. (1)). By (4) and (6)

(8) <7«G7V.

So, by (7), a\q G X thus ςr«+1 G ^Γ+. Consequently q G c ^ 1 " ' " 4 ^ ; ^ Π F =
c®X+, so there is a t G PΓ such that q? GX+. However, by (7), (8), and the
definition of X+ the only possible choice for t is a -f /, hence a + / G W. This
contradiction proves (3). Set

F r = aW.

We will prove that

(9) rll

is an isomorphism. To prove this it is enough to show that YD V Φ 0 when-
ever Y G At 21. By Lemma 4 if 7 G At SI then

(10) 7 is an atom of the minimal subalgebra of SI,
(11) Y = X, or
(12) y = d ~ X

By (5) I W| > a + 1, so | W \ > α. Hence, as it is easy to see, if Y is an
atom of the minimal subalgebra of 31 then Y Π V Φ 0. This disposes of case
(10). For case (11), by (3) and (5) take aqEVΠ da+ι such that qa = a + /. In
this case, by Lemma 2 and (2),

<7 G c$ϊa+i)(da+ι - x+) n Jα + 1 n κ = 4)(rfβ + 1 - ̂ r+) n da+ι.
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Hence there exist qό,. . . ,qά-\ €= W' such that the series q' = <<70,.. . ,qά-i,
a + /> E ( J α + 1 ~ Jf+) Π F, thus α V G I Π F . Case (12) can be treated sim-
ilarly. By (9) and the induction hypothesis we have that W - a + i. This fact
and (3) prove that W = a + i + 1.

Now we have our main theorem.

Theorem 6 For any a E ω ~ 2 there exist infinitely many pairwise iso-
morphic, and finite (hence atomic and countable) but not lower base-isomorphic
Cs^'s.

Proof: We claim that for / E ω ~ 1 the Csa

9s Wa satisfy the requirements of the
Theorem. In fact, 2Γα's are trivially finite.

By Lemma 2(ii) AXι

a = Δda = a, hence Xι

a is regular. Thus, by Corollary
3.1.54 of [6], 3Γα is regular.

The fact that the algebras 21^ are isomorphic can be proved easily by
Lemma 3 by induction on the complexity of terms.

If / Φj, Wa and 2l{ cannot be lower base-isomorphic, since |base (Wa)\ Φ
I base (2ί{)|, and they are base-minimal by Lemma 5.

Corollary 7 The condition that the algebras concerned be of infinite dimen-
sion cannot be dropped in the algebraic version of Vaught's theorem (Theorem
1 of [10]), according to which any isomorphism between two isomorphic count-
ably generated regular locally finite Cs's of infinite dimension with atomic neat
n-reducts for any finite n is a lower base-isomorphism.

Corollary 8 The Vaught theorem (Theorem 2.3.4 of [5] or Theorem 27.10
of [8]) on prime models of atomic theories in (ordinary) languages of power ω
cannot be extended to languages with finitely many, but more than one, vari-
able symbols.

Proof: By Corollary 7 herein and Section 4.3 of [6]. See also Theorem 6 of the
present paper.

Corollary 9 The condition for the cardinalities cannot be dropped from The-
orem 1.3.6 of [7] which states the following: If% and 33 E Cs£g Π Lfa9 21 = 93,
and I base (21) | Π | base (33)| < a Π ω then 21 and 93 are base-isomorphic.

Proof: The proof is similar to those for Theorem 6 and Corollary 7.
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