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"Pathologies" in Two Syntactic

Categories of Partial Maps

FRANCO MONTAGNA*

Introduction In [2], Di Paola and Heller introduce the dominical categories
and the recursion categories in order to find an algebraic (or, better, category-
theoretic) approach to recursion theory. The authors show that the basic part
of recursion theory can be based on a few category-theoretic axioms and prove,
by means of several relevant examples, that their approach is suitable not only
for classical recursion theory, but also for a broad class of situations. The au-
thors suggest that their approach could provide an algebraic version of Gόdel-
Rosser's incompleteness theorems, and provide a first, but relevant, step in this
direction, showing that in any recursion category satisfying some natural con-
ditions there are creative and effectively inseparable domains.

To carry their project one step further, it seems quite natural to study cat-
egories of partial maps from a syntactic point of view. This study has also been
suggested by Di Paola and Heller. The most interesting category of this kind
seems to me to be the one whose objects and morphisms are defined as follows:

1. The class Ob of objects is the smallest class C such that ω GQ, A,B G
C i m p l i e s A x B G V a n d A + B < Ξ V ( w h e r e A + B = A x { 0 } U B x
{1} is the disjoint union of A and B).

2. The morphisms from A to B are the gδdel numbers of partial recursive
functions from A to B modulo provable equality in PA, i.e., the equiva-
lence classes of natural numbers with respect to the equivalence ~ de-
fined by n ~ m iff PA h Vx[(φnx T <-> φmx\) Λ (φnxl -• φmx = φnx)].

Here we are using notation from [8]1; moreover, if A G Ob, the elements
of A can be naturally coded by natural numbers, and we can identify each α E
A with its code in ω. We denote this category by S.

*We wish to express our gratitude to R. Di Paola and A. Heller, who introduced us to
dominical categories; we also wish to thank Giuseppe Rosolini, who first suggested that
S and S' are p-categories, and whose ideas contributed to improve the present paper.
Lastly, we are indebted to Claudio Bernardi for useful discussions.
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Another category, a little less natural, but still useful, is defined similarly,
with the exception that the equivalence ~ is replaced by the equivalence —'
defined by n ~ ' m iff VJC G A, PA h (φnxϊ ++ <ρmxΐ) Λ (φnxl -> φmx = φnx).
We denote this second category by Sf.

When studying these categories, a considerable difficulty is constituted by
the difference between recursion theoretic notions taken "from the outside" and
recursion theoretic notions considered "from the inside", i.e., with the eyes of
PA. The most important difference is that the notion of totality suggested by
Di Paola and Heller does not correspond to the expected one, and in particu-
lar S and S' are not dominical categories. It turns out that both S and S' satisfy
the axioms of Rosolini's pointed p-categories. (These categories constitute an
intuitionistic counterpart to dominical categories. For reference, cf. [9].)

We believe that S and S' are interesting in their own right. For example,
when doing elementary recursion theory, we usually identify two (sets of instruc-
tions for) recursive functions iff we are able to prove in some metatheory, which
is not far from PA, that the two sets of instructions determine the same
function.

As regards Di Paola-Heller's project of finding a category theoretic coun-
terpart to the incompleteness theorems, we find only negative results. We can
however point out the following positive aspects of the present paper:

1. We provide two relevant examples of "models" of Rosolini's p-categories,
which are not dominical categories, and prove that, in these examples,
Rosolini's notion of totality (R) is more natural than Di Paola-Heller's
(DPH).

2. We provide a syntactic classification of totality by means of category
theoretic concepts.

3. We prove, by means of a trivial but useful conservation result, that
many important properties of recursion categories extend to both S and
S'9 and, more generally, to all p-categories with a Turing morphism.

4. We prove that the difference between p-categories with a Turing mor-
phism and dominical categories with a Turing morphism is relevant, by
showing that many important recursion theoretic theorems holding in
all dominical categories with a Turing morphism are not valid in S and
S\ and thus are independent of the theory of p-categories with a Tur-
ing morphism.

Throughout the whole paper, a basic reference will be [2]. Also, knowledge
of [9] would be very helpful.

1 Preliminary notions

Definition 1.1 (See [2]) A category is pointed iff for each pair X, Y of objects
there is a morphism 0XY: X-* Fsuch that for each morphism φ: Y-+ Z and ψ:
W-+ X, φθxγ — 0xz and 0Xγψ — 0WY. (In the following we omit subscripts.)
A morphism φ is DPH total iff for all ψ whose target is the source of φ, φψ =
0 implies ψ = 0.

Definition 1.2 (See [2]) Let 6 be a pointed category. By a near-product is
meant a bifunctor x: β x C -+ 6 satisfying the following conditions:
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( N l ) φxψ = 0iffφ = 0orφ = 0

(N2) x restricts to Cτ x (2>τ -> Qτ (here Cτ denotes the subcategory of
DPH total morphisms), where it becomes a product, accompanied by projec-
tions Xχ^-Xx x X2-^X2, and thus a diagonal Ax, viz. the unique total mor-
phism φ: X-^ X X X such that pφ = qφ — Id^

(N3) The associativity and symmetry isomorphisms of this restriction are
natural on C x C x C and C X C, so that x is coherently associative and sym-
metric

(N4) For all φ: X-> Xr and all Y, p(φ x \άγ) = φp, q(lάγ x φ) - φq and
(φ X φ)Ax = Aχ>φ.

Definition 1.3 (See [2]) A dominical category is a pointed category 6 with
a near-product satisfying (N1)-(N4).

Definition 1.4 (See [9]) A p-category is a category 6 endowed by a bifunc-
tor x : 6 X C -> C, called (near) product, a natural transformation Δ: Id ->
x -(Id,Id), called diagonal, and for each object A in 6, natural transformations

P-,/i: —xA -> Id and 3U5_: Ax > Id, called projections, such that

Λ4,/i44 = IdU = QA,AΔΛ (PA,B * QA,B)ΔAXB = ldAxB

PA,B(IUA XPB,C) =PAtBxc A4,c(IdU x ^ , c ) =PA,BXC

QA,C(PA,B X I d c ) = qAxβ,c QB,C(QA,B X We) = QAXB,C

and the isomorphisms α and μ, for associativity and commutativity defined by
a = ((/? x pq)A X qq) and μ — {q X p)A are natural in all variables.

A pointed p-category is a p-category which is pointed in the sense of Def-
inition 1.1 and such that, for every morphism φ, <px0 = 0 x ^ = 0.

Note that dominical categories are pointed p-categories (cf. [9]) but, as we
shall see, not vice versa.

Definition 1.6 In both dominical categories and p-categories, the domain
dom φ of a morphism φ is defined by dom φ = #<<ρ,Id> =/?<Id,<£>>, where (φ,
φ) = (φ x φ)A.

Definition 1.7 A morphism φ is R total iff dom p = Id.

In a dominical category, R total and DPH total morphisms coincide (cf.
[2]). In a pointed p-category, R total morphisms are DPH total (cf. [9]), but not
vice versa, as we shall see in Section 2.

Definition 1.8 A dominical semigroupoid (p-semigroupoid) is a dominical
category (a pointed p-category) where all objects are isomorphic.

Definition 1.9 A Turing morphism of a dominical semigroupoid (a p-
semigroupoid) is a morphism r: X x Y'-> Z such that, for all φ: X x y-> Z,
there is a total g: X-* X for which φ = τ{g X lάγ). A recursion category (ap-
recursion category) is a dominical semigroupoid (a p-semigroupoid) endowed
with a Turing morphism.

In the following, we limit ourselves to morphisms from ω to ω. This restric-
tion is not relevant, since all objects of *S(5r) are isomorphic to ω. Furthermore,
we shall omit subscripts, thus writing Δ instead of Δω, Id instead of Idω, etc.
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Now, let n, m, and d be such that PA h Vxφnxϊ, PA h Vxφmx = x, and
PA h Vxφdx = <x,x>, where (x,y) is a PA term representing the pairing func-
tion (see [8]); let Id = [m], 0 = [n], Δ = [rf] where, for / G ω, [/] is the equiva-
lence class of / modulo ~ or ~ ' according as we are working in £ or in S'.
Let X be the bifunctor induced by the pairing function, and let p, q be the nat-
ural transformations induced by the projection functions (see [8]). It is easily
seen that the axioms of pointed p-categories are satisfied. Note that the domain
of a morphism φ=[ή\\s the equivalence class [m] where m is such that PA h
Vx[(φmxϊ «-• φnχ1) Λ {φmxϊ -• φmx = x)]. A Turing morphism r is the one
induced by the function a(e,x) = φex. The defining property of Turing mor-
phisms follows from the formalization of the s-m-n Theorem.

It is easily seen that in both S and S' Axiom (Nl) of dominical categories
is not verified: let a,β be undecidable Σ? sentences such that PA h α -• ~ιβ.
Let φ = [e], φ = [/], where e,i are such that PA h Vx(φexl ++ a), and PA h
y/x(φtxi ++ β). Clearly, φ Φ 0, φ Φ 0, but φ x φ = 0.

Note that Axiom (N2) is not verified in S(S') if "total" is understood as
"DPH total". This can be seen indirectly, by showing that some theorems of the
theory of recursion categories which can be proved without the use of (Nl)
are not valid in S and S' (cf. for instance, Proposition 5.3 of [2] and Exam-
ple 1.1 of the present paper).

On the other hand, (N2) becomes true in both S and S' if "total" is under-
stood as "R total". In fact, this property holds in all p-categories (cf. [9]). Lastly,
(N3) and (N4) hold in any p-category. This leads to the following trivial, but
useful, result.

Proposition 1.1 Let Φ be a statement provable from the axioms of recursion
categories, and suppose that in some proof of Φ Axiom (Nl) is never used and
in all occurrences of (N2) the word "DPH total" can be replaced by "R total".
Then Φ is true in S and in S'. (More generally, Φ is true in every pointed p-re-
cursion category).

2 Totality As we said before, DPH and R totality coincide in dominical cat-
egories. In this section, we show that this is not true in S and S' and, therefore,
in p-categories in general. This result will follow from a syntactic classification
of totality by category-theoretic means. First, it is easily seen that R totality in
S(S') corresponds to ''provable totality" in PA (to totality in the real world
respectively). Thus, we have a category-theoretic counterpart to the two most
common notions of totality. The interpretation of the notion of DPH totality
in S and S' is much more surprising, and is closely related to interpretability.
First of all let us recall the following:

Proposition 2.1 (See [7]) For every PA sentence a, the following are

equivalent:
(1) a is Π? conservative (i.e., for all β G Π ? , //PA h a -> β, then PA h a)
(2) PA + a is relatively interpretable in PA
(3) For all n, PA h Con(PA \ n + α ) , where Con(/M Γ n 4- a) is a formula
which naturally expresses the consistency of the theory whose nonlogical axioms
are a and the axioms of PA whose gδdel number is <n.
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We note that if a,β are Σ? and Π? conservative then a Λ β is also.
In the following, Iί(υ) denotes a standard Δo formula binumerating the

set of nonlogical axioms of PA; we write A(ΓB(x)~]) for A(Sb£mχB(x))9

where Sb is defined as in [3]; moreover, if γ(x) has exactly x free, then we write
Con(PA Γ n + y(x)) for Con^, where β is the formula [Π(t>) Λ V < w] V υ =
SZ?̂ Wχ γ(x). Recall that PA is essentially reflexive, whence, if α(x) is any
formula and n E ω, one has PA hα( j )-> Con (PA t « + α(x)).

In the sequel, we make use of the following fact: if a (x) is a Σ? formula,
there is an index e such that

(*) PA (- ( ^ x l <-> α(x)) Λ (φexi -> <̂ ex = x).

To prove this, note that, by Theorem 2.13 of [4], if β(z,x,v) is Σ? and

PA h β(z,x, u) Λ β(z,x,t;) -• v - w,

then there is an index e such that

PA h < êx = v ++ β(e,x,v).

To get the claim, it suffices to apply the above theorem, with β(z,x,v)
replaced by z = z Λ ax Λ X — υ, thus getting an index e such that PA h <£>ex =
ι ; ^ α X Λ ( x = y ) . From this and PA h φexϊ <-• 3f (< êx = f) we get (*).

Theorem 2.1 Lβ/ <̂  = [β] be a morphism of S. The following are equivalent:
(1) φ is DPH total
(2) for all n9 PA h VxCon(PΆ Γ n + ^ x i )
(3)/or all n, PA h VxCon(Pyl \ n + V^ < x φexi)
(4) /or fl// ax E Π?, //Pv4 I- Vx[<^;d ^ αx], ίΛen PA hvxαx.

Proof: First, we prove that (2) and (3) are equivalent. (3) =» (2) is trivial. To
prove (2) => (3), one uses formal induction on x; for x = 0, the claim is trivial;
to prove the induction step, let q be such that PA Γ q contains Robinson's Q.
If a(x),β(x) are Σ? formulas and n > q, one has:

(i) PA V a(x) Λ Con (PA Γ n + β(x)) -* Pr P A r Λ Z ( Γ α(x)" Ί ) Λ Con (PA Γ
Λ + /8(ΛΓ)) -^ Con(PA t Λ + a(x) Λ /3(X))2

(ii) PA hCon(PA Γ Λ + Con(PA \ n + α(x))) ^ Con(PA Γ w + α(x)).

Moreover, if γ(x), δ(x) are arbitrary formulas, then

(iii) If PA h Vx[γ(x) -> δ(x)], then 3mV/z > m PA h Vx[Con(PA Γ A7 +
γ ( x ) ) ^ C o n ( P A \ n + δ(x))].

Now, let α(x),0(x) be Vĵ  < x ^ej>l and φe(x + 1)1 respectively; by (2)
and (i),

PA \-a(x) -* Con(PA t /z + α(x) Λ /5(X)).

By (iii), there is an m > q such that for all n > m

PA hCon(PA f n + a(x))->

Con(PA Γ n -f Con(PA \ n + a{x) Λ ]8(x))).

By (ii), there is an m such that for all « > m

PA h Con(PA f n + α(x)) -> Con(PA \ n + α(x) Λ /3(X)).



110 FRANCO MONTAGNA

Thus, for all m there is an n > m such that PA h Vx[Con(PA Γ n + Vy <
x φeyi) -> Con (PA Γ AZ + vy < Λ: + lφeyi)] - Using induction we get: 3mVn >
m P A F VxCon(PA Γ n + Vy < x ^.yi); from this we easily get: VΛ PA h
VxCon(PA \ n + Vy < Λ Γ ^ J I ) .

(1) => (4): Assume that PA h Vx[φexi -+a(x)], a(x)eU°ι. Let / be such
that

PA h Vx[(<PiXl *+ -iα(jc)) Λ (^/jci -• ^ x = *)] (Cf.(*)).

We get:

PA h V x ^ ^ x l -> 3^(^ x = .y Λ φeyi)]

-> α(x) Λ πα(jc)].

We conclude:

PA h VXφeφiX\.

Letting ψ = [/], we get v?ψ = 0. Since φ is DPH total, we conclude that
Φ = 0.

Thus, PA f- VΛ: φ^. By the definition of /, PA h Vx a(x).
(4) => (2): Since, by the essential reflexiveness of PA, for all n, PA h

vx[φexl -+ Con (PA r n + φexl)], condition (4) yields PA h Con (PA i n +
φexl) (this sentence being Π?).

(2) => (1): Let q be such that PA Γ q contains Robinson's Q. Then for any
Σi formula a(x), PA h V;c[α(x) - ^ P r P A ^ Γ α ( j c ) ~ 1 ] . Let φ = [/] be such that
^ = 0. Then, PA h Vxφeφ;x19 whence, for some n > q, PA h PrPAtnVxφeφix

J\.
4̂ fortiori, PA h VxPrPA^Γ<^β(p/xΐ~1.

Now,

-> 3^Pr P A r π ( Γ ^ X = ̂ Π ) Λ VzPrP A r (
 ΓφeφiZV)

luPr?^n

ΓφeuV.

Since V/:, PA h VwCon(PA f k + <^wi), we conclude that PA h VJC^ JCΪ;
i.e.,^ = 0.

DPH total morphisms of S also have a model-theoretic characterization.
Let φ = [β] be DPH total, M be a model of PA; by (3), for all n, M \=
VxCon(PA Γ n + Vy < x φeyl). Let Γ be PA Γ n + {^δl: Z? G M}. In M,
there is no proof of any contradiction from the axioms of T (otherwise, by the
least number principle, we would get an inconsistency in M of PA Γ n + Vy <
b φeyl, for some b G M). By Overspill, we get an M-definable model M' of
PA such that M possesses a truth-definition (satisfying the obvious conditions
for truth) for Mf and, for all b G Λf, M' V φebϊ; i.e., the domain of φe in M'
contains M. Conversely, this condition implies that for every model Mof PA,
and for every n G ω, one has M N VxCon(PA \ n + φexi), whence by The-
orem 2.1, φ is DPH total.

It is clear that condition (3) of Theorem 2.1 is satisfied if PA + "Vxφexl"
is relatively interpretable in PA. This suggests the following problem.

Problem 2.1 Is there a DPH total morphism φ = [e] of S such that PA +
"Vxφexl" is not interpretable in PA?
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A different characterization of DPH total morphisms in S and S\ and,
more generally, in any p-category is obtained by means of the notion of a dense
domain.

Definition 2.1 A domain e is called dense iff for every nonzero domain
δ, eδ Φ 0.

Trivially, Id is a dense domain; a dense domain which does not coincide
with Id will be called nontrivial. By Proposition 5.3 of [2], in a dominical cat-
egory such that each morphism φ has a range (that is, a domain ran^ such that
(ran<£>)<£> = φ and if φφ = ψ'φ9 then φmnφ = φ'ranφ (cf. [2]), there are no non-
trivial dense domains. On the contrary, even though in both S and S' each mor-
phism φ = [i] has a range (it suffices to consider an n such that PA h
vx[(φnxl <-> ly(ψiy = x)) Λ ( φ n x i -* φnx = x)]) a n d t o d e f i n e ran<p = [n]), w e
will prove in Example 1 below that in both categories there are nontrivial dense
domains. This constitutes another difference between dominical categories and
p-categories. We also observe that dense domains constitute a filter if the com-
position is assumed as infimum of two domains and, consequently, inclusion is
defined by dom<£> c domφ iff dom^domi/' = domy?.

Theorem 2.2 Let G be any pointed p-category where each morphism has a
range. Then a morphism φ is DPH total iff domφ is dense.

Proof: First of all, we show, using some properties of domains proved in [2]
for dominical categories and extended in [9] to p-categories, that φ is DPH
total iff dom^ is. This follows from the fact that φφ = 0 iff d o m ( ^ ) = 0 iff
dom((dom^)ψ) = 0 iff (domφ)φ = 0. Now, it is clear that, if dom^ is DPH
total, it is dense. Vice versa, suppose that dom^ is dense; if (άomφ)φ = 0, then
dom<p(r2inφ)φ = 0 = 0^. By the definition of ranψ, this entails that dom^ranψ
ran;/' = 0 ranφ = 0, whence dom^ran^ = 0. Since any range is a domain, and
domy? is dense, ran^ = 0, therefore φ = 0. Thus, dom<£> is DPH total.

We are now in a position to characterize DPH total morphisms of S".

Theorem 2.3 Let φ = [e] be a morphism ofS'. The following are equivalent:
(1) φ is DPH total
(2) for all n, the sentence "φenl" is Π? conservative
(3) for all n, PA + "φenl" is interpretable in PA
(4) PA + ["φenln: n G ω] is interpretable in PA
(5) domφ is dense
(6) every model M of PA can be extended to an M-definable model M' such that
M has a truth definition for M' and for all b e ω, M' 1= φebi.

Proof: The equivalence of (2) and (3) follows from Proposition 2.1 and the
equivalence of these and (4) follows from the compactness of interpretability and
from the fact that, if a,β are Σ? sentences such that both PA + a and PA + β
are interpretable in PA, then a and β are Σ? and Π? conservative, whence a Λ
β is and PA + a A β is interpretable in PA. The equivalence of (1) and (5) fol-
lows from Theorem 2.2, and the proofs of (1) =* (2) and (2) => (1) are very sim-
ilar to the proofs of (1) => (4) and (2) => (1) of Theorem 2.1. Lastly, (6) is easily
shown to be equivalent to (4).
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Remark 2.1 We have seen that S and S' are not dominical. One could ask
whether it is possible to define another near product with respect to which the
above categories become dominical. It turns out that, if such a near product
exists, it does not satisfy some very natural conditions; for example, there cannot
be a near product making S dominical and for which there exists a recursive
function/such that, for all n, [f(n)] = dom[n]. Indeed, since in a dominical
category a morphism φ is DPH total iff άovsiφ = Id, such an/would reduce the
set T — {n: [n] is DPH total) to the recursively enumerable set {/: [/] = Id).
This is a contradiction, because, using the fact that the set of Σ? sentences a
such that PA + a is interpretable in PA is Πξ* complete (see [5] or [10]), one
easily proves T to be Π2 complete too. We conclude this section with two
examples.

Example 1 Let n be such that PA \-Vx[(φnxl<+ -1 Con (PA)) Λ (φnxi -• φnx =
x)] (where Con (PA) is the usual consistency statement for PA). Since -1 Con (PA)
is Πj conservative (see [3]), [n] is DPH total in both S and S\ Since φn is
everywhere divergent in the real world, [n] is not R total. Also, by Theorem 2.2,
[n] constitutes a nontrivial dense domain.

Example 2 Let e be such that PA h Vx[(φexl <-> -iP//PA(x,0 = ΐ)) Λ (φexi ->
φex = x)]. φe is total in the real world, whence [e] is R total (and DPH total)
in S'; however, [e] is not DPH total (whence it is not R total) if it is thought
of as a morphism of S. Indeed, let / be such that

PA h Vx[(<PiXl <-> PrfPA(x9δ = I)) Λ {ψiXi -+ φtx = x)].

Clearly, in S, [/] * 0, [e][i] = 0 .

3 Creative domains By Proposition 1.1, many classical theorems of recur-
sion theory, which hold in all recursion categories, can be extended to p-
recursion categories, and to S and S' in particular. For example, the Recursion
theorem as stated in Theorem 4.5.1 of [2] holds in any p-recursion category. In
this section, we are particularly interested in creative domains. We shall see that
in both S and S\ there are creative and effectively inseparable domains, but,
unlike the classical case, there are creative domains which are not complete. The
presence of such "pathologies" is a typical aspect of S and S'.

Definition 3.1 A c-p (recursion) category is a p-(recursion) category where
each morphism φ has a section (i.e., a morphism σ such that φσ = domσ and
φσφ = φ). A c-p (recursion) category having coproducts compatible with the near
product in the sense of [2] is called a c+-p (recursion) category. c+-dominical
and c+-recursion categories are defined similarly (cf. [2]).

Definition 3.2 A constant is an R total morphism c such that, for all R total
f9g9 cf= eg. An atom is an R total morphism a such that, for every domain e,
either ea = 0 or ea = a.

Both S and S' are c+-p recursion categories: coproducts are defined in the
obvious way by means of the disjoint union and a section σ of a morphism [n]
is defined as the equivalence class of a number e such that the condition
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ί
Πi (first z in the list of the graph of φe such that

Π2Z = x) if such a z exists (see [8])
divergent otherwise

is provable in PA.
The constants of S(S') are the equivalence classes of gόdel numbers of

provably constant (respectively, constant) recursive functions. Even though in
c-dominical categories any constant is an atom, S and S' have no atoms at all.
Indeed, let a = [e] be an R total morphism, k = φe(0), a be an undecidable Σ?
sentence; let n be such that PA h Vx[(φnxl <-• (x Φ k v a)) Λ (φnxi -* φnx =
x)]. It is easily seen that in both S and S\ [n] is a domain, [n]-aΦθ, [n]-aΦa.

Definition 3.3 A category has sufficiently many atoms iff for all morphisms
φ, φ, if φ Φ ψ, there is an atom a such that φa Φ ψa. A category has sufficiently
many constants iff for all <p,ψ, φ Φ ψ implies that φc Φ ψc for a suitable con-
stant c.

Clearly neither S nor S' has sufficiently many atoms. Moreover, S' has
sufficiently many constants, where S does not.

Definition 3.4 A domain e is creative with respect to the constants iff for
some (hence for each) Turing morphism τ : l x l - > l , there is an R total mor-
phism h such that, for all constants c, if τ(c x e) = 0, then ehc = τ(c,hc) = 0.
In this case, h is said to be a productive morphism for e.

Letting e = [e], h = [i], the above condition becomes equivalent in S(S')
to the following one: For n G ω, if PA h Vx(φnxl -> φexϊ) (respectively, if for
all /, PA f- φnii -> ̂ >e/ΐ), then PA h φeφιn\ Λ φnφin\.

By Proposition 1.1, the proof of Theorem 8.7 of [2] can be extended to any
c-p recursion category. Thus, K = domrΔ is creative in both S and S'. It fol-
lows from Theorem 8.13 of [2] and from the fact that in any c+-dominical cat-
egory every constant is an atom, that in any c+-recursion category with
sufficiently many constants and in which Δ has an inverse, each creative domain
e is complete: i.e., for each domain δ, there is an R total morphism h such that
δ = άom(eh). We shall see that this property fails to hold in a very strong way
in both S and S', even though 5' has sufficiently many constants and Δ has an
inverse in both S and S'. More precisely, we shall prove that in both S and S'
there are infinitely many creative domains which are incomparable with respect
to a very weak kind of reducibility.

Definition 3.5 Let e,δ be domains, δ is said to be reducible to e (abbreviated
as δ < e) iff there is an R total morphism h such that δ = dom(e/z).

Clearly, e is complete iff, for all δ, δ < e.

Definition 3.6 We say that δ is weakly reducible to e (abbreviated as δ < w

e) iff there is an R total morphism h such that, for each constant c, be is total
iff ehc is.

It is clear that weak reducibility is a much weaker condition than reduci-
bility and corresponds to reducibility in the real world.
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Theorem 3.1 In both S and S' there are infinitely many creative domains
which are mutually incomparable with respect to < w and all have Id as produc-
tive morphίsm.

Proof: Let X = {n: PA h φnn\}, and let Y be any recursively enumerable set
disjoint from X. By a result proved in both [5] and [10], there is a Σ? formula
OL(X) such that the following conditions hold:

(1) If n G y, then PA V OL(Ά)
(2) IfnGX, then PA h -ια(/z)
(3) If ft φ X U y, then a(n) is undecidable and Π? conservative.

Now, let e be such that

PA h Vx[(v?exl <-• α( t)) Λ (^x i -• v?ex = JC)]

and let eγ = [e].
We wish to prove that e r is creative (in both S and £') with Id as produc-

tion morphism. To see this, first note that, for any n G ω, if n G X, then PA h
-iα(«), therefore PA h φen\\ moreover, in this case, by the definition of X,
PA h φnn\. Observe also that, if n φ X, then a(ή) is Π? conservative (this is
true also if n G Y9 because provable sentences are trivially Π? conservative).
Furthermore, PA + "φnnl" is consistent, therefore, by the Π? conservativeness
of a(n), PA + "φnnl" + a(n) = PA + "φnnl" + "φenl" is in turn consis-
tent. Now, let m be given; if, for all /, PA h φmiϊ -> ̂ ,/ΐ {a fortiori, if PA h
Vjc(v9mjci -> ̂ e ^ΐ)), then PA h ̂ w m i -• ^ m ΐ , and PA + "φmml" + "φeml"
is not consistent. By what we proved above, this implies that m G Xand PA h
φmm\ Λ φem1. By the remark following the definition of creativeness, this is
sufficient to show that eγis creative with Id as productive morphism. Now, let
K = {m: φmmϊ}. Since K Π X = 0, for all recursively enumerable y c ^ the
corresponding eγ defined as above is creative. Moreover, it is an easy exercise
to show that K (and in general every infinite recursively enumerable set) con-
tains infinitely many recursively enumerable sets mutually incomparable with
respect to m-reducibility. Let Yx,..., Yn,.. . be such recursively enumerable
subsets. It is readily seen that the corresponding domains eYι,... ,eYn,..., de-
fined in a similar way as e γ but with Yx,..., Yn ... in place of Y9 are creative
and mutually incomparable with respect to < w .

Remark 3.1 The above-introduced creative domains are "pathological", in the
sense that they are not creative in the real world. We do not know whether there
are pathological pairs of effectively inseparable (e.i.) domains of S(S')- (Recall
that e,δ are said to be e.i. iff eδ = 0 and there is a total morphism/such that,
whenever h,k are indices (in the sense of [2]) of domains e',b' such that e' 12 e,
d' 3 δ, e'δ' = 0, then e'f{h,k) = δf(h,k) = 0.) Note that, by Proposition 1.1,
Theorem 8.18 of [2] can be extended to 5 and S", therefore, there are pairs of
e.i. domains in both S and S'.

Concluding remark We have not been able to find a reasonable category-
theoretic version of the incompleteness theorems (i.e., one which is not a pedes-
trian transposition of well-known proofs in the language of categories). Our con-
tribution to this problem could be the following: in this paper, we have seen that
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many concepts of recursion theory have a different meaning according as they
are interpreted in the classical recursion category of partial recursive functions
or in a syntactical category like S or S\ This reflects the difference between truth
and provability. Since both these concepts play a fundamental role in the incom-
pleteness theorems, a reasonable conjecture could be that a good analysis of the
incompleteness theorems by category theoretic means should require consider-
ation of both a recursion category, reflecting true arithmetic (or, equivalently,
recursive functions in the real world) and of a p-recursion category, reflecting
formal arithmetic (or, equivalently, recursive functions considered with the eyes
of PA). Of course, the problem is how to connect these categories together. Even
if we are interested in this problem, we think that it is better for it to be dealt
with by mathematicians who are better situated than the author with respect to
the theory of categories.

NOTES

1. More precisely, we fix once and for all two Δo formulas f(x9y,z) binumerating
Kleene's predicate and U(x,y) representing the primitive recursive function U(x)
defined by

( the final element of the computation coded by x
if x codes a computation

0 otherwise

and define φnx, φnx = y, φnx = φmx etc. by means of f(x,y,z) and O(x,y) in the
obvious way; thus, e.g., φnxi is an abbreviation for 3zf(n,x,z), φnx = y is an
abbreviation for lz[f(n,x,z) Λ U(z,y)], and so on.

2. Here, of course, PrFA(x), PrP A r Λ(x), denote PrU{v)(x) and PrU{v)ln(x) respectively
(cf. [3]), where U(v) is the abovementioned binumeration of the axioms of PA, and
U(v) Γ n is U(v) ΛV<ϋ. PrfPA(x,y) and PrfPAtn(x,y) are defined similarly.
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