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Multiset Theory

WAYNE D. BLIZARD*

A multiset is a collection of objects (called elements) in which elements may
occur more than once. The number of times an element occurs in a multiset is
called its multiplicity. The cardinality of a multiset is the sum of the multiplic-
ities of its elements. Multisets are of interest in certain areas of mathematics,
computer science, physics, and philosophy. Section 1 introduces multisets and
surveys the relevant literature. Section 2 develops a first-order two-sorted the-
ory MST for multisets that "contains" classical set theory. The intended interpre-
tation of the atomic formula x EΛ y is "x is an element of y with multiplicity
n". In MST, one can extend the classical notion of a function. Section 3 con-
structs a model of MST in ZFC by interpreting x En y as y(x) = n (multisets
are modeled by positive integer-valued functions).

Introduction In [16] Kamke spells out the assumptions underlying classical
set theory and thereby classical mathematics as a whole:

By a set we are to understand, according to G. Cantor, "a collection into a
whole, of definite, well-distinguished objects (called the 'elements') of our
perception or of our thought . . . ". For a set, the order of succession of its
elements shall not matter. . . . Furthermore, the same element shall not be
allowed to appear more than once. The number complex 1,2,1,2,3, conse-
quently, becomes a set only after deleting the repeated elements.
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A multiset is a collection of elements in which elements are allowed to
repeat; it may contain a finite number of indistinguishable copies of a partic-
ular element. A set is a multiset in which distinct elements occur only once. The
number of times an element occurs in a multiset (its multiplicity) is relevant, and
each occurrence contributes to the cardinality of the multiset. The number of
distinct elements in a multiset need not be finite.

The word "multiset" (often shortened to mset) which abbreviates the term
"multiple-membership set", is now the commonly accepted name for this con-
cept, replacing "bag", "bunch", "weighted set", "occurrence set", "heap", "sam-
ple", and "fireset"— //nitely repeated dement set.

Our survey of the literature indicates that multisets arise quite naturally in
certain areas of mathematics, computer science, physics, and philosophy. In clas-
sical mathematics, however, one cannot deal directly with multisets. If one
wishes to use collections of sets with repetitions, one is forced to consider
sequences of sets, or more generally, families of sets. One could also define a
multiset which contains the element x with multiplicity n to be a function which
contains the ordered pair (x,n). However, as Knuth points out ([17], p. 636)
" . . . this formal equivalence is of little or no practical value for creative math-
ematical reasoning." It is often preferable in many applications to deal directly
with multiple-membership sets. Knuth concludes ([17], p. 636) that "Although
multisets appear frequently in mathematics, they often must be treated rather
clumsily because there is currently no standard way to treat sets with repeated
elements. Several mathematicians have voiced their belief that the lack of ade-
quate terminology and notation for this common concept has been a definite
handicap to the development of mathematics." In [23] Meyer and McRobbie
argue that the lack of an adequate theory of multisets has also impeded the
development of logic and philosophy. In Section 2 we develop a theory MST for
multisets that "extends" classical set theory —MST contains a copy of ZFC.

1A survey of the literature Multisets can be traced back to the very origins
of the concept of number. In ancient times, the number n was often represented
by a collection of n strokes, tally marks, or units. Thus, for example, the number
seven came to be identified with a collection of objects like /////// ([13], p.
132). One can develop ([3], pp. 26-27) an algebra of simple multisets of Γs that
corresponds exactly to the additive arithmetic of the natural numbers. By iden-
tifying a positive integer with the unique multiset of its prime factors, one can
also develop an algebra of multisets that corresponds to the multiplicative arith-
metic of the positive integers ([17], p. 464; [3], pp. 40-43).

With respect to the notion of multiplicity, there is a philosophical view that
states that the plurality in things arises from their diversity. Frege remarks that
"Number is but another name for diversity. Exact identity is unity, and with dif-
ference arises plurality" ([11], s. 35). Leibniz states ". . . it is not true that two
substances resemble each other entirely and are different in number alone . . . "
([20], p. 19). The naive concept of multiset takes a different view. Occurrences
of an element x in a multiset cannot be distinguished. The cardinality of a mul-
tiset (the sum of the multiplicities of its elements) assumes "plurality without
diversity". Indeed, classical mathematics accepts the principle of plurality with-
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out diversity. In algebra, for example, repeated roots of polynomials, although
identical in all respects, are treated as a multiplicity. The polynomial x2 -
2χ + 1 = (x — I ) 2 is said to have two factors and two roots. Repeated obser-
vations in a statistical sample are counted as a multiplicity, each repetition con-
tributing to a calculated probability.

Many references to multisets can be found in the literature of classical
mathematics. In [6] Dedekind observes that each element in the range of a func-
tion can be thought of as having a multiplicity equal to the number of elements
in the domain that are mapped to it. He concludes, "In this way we reach the
notion, very useful in many cases, of systems in which every element is endowed
with a certain frequency-number which indicates how often it is to be reckoned
as an element of the system" ([6], p. 114).

Weierstrass defined real numbers as certain multisets of rational numbers
([4], pp. 18-20; [13], p. 134). A quick way to see this (a simplification of Weier-
strass's approach) is to identify, for example, the real number TΓ = 3.141... with
the multiset that contains the element 1 with multiplicity 3, the element ^ with
multiplicity 1, the element ^ with multiplicity 4, etc. The rational sum of the
elements of the multiset (with repetitions counted) equals TΓ.

It was Cantor's intention that Aggregates' consist only of distinct elements.
Yet Cantor himself defined cardinality as a collection of repeated 'ones' and he
referred to such collections as 'definite aggregates' ([4], p. 86). This would seem
to contradict Cantor's restriction on membership —"definite, distinct objects" —
([4], p. 85) in the same 1895 paper.

Weyl in Appendix B of [27] makes use of multisets: ". . . a n aggregate of
white, red, and green balls may contain several white balls. Generally speaking,
in a given aggregate there may occur several individuals, or elements, of the same
kind (e.g., several white balls) or, as we shall also say, the same entity (e.g., the
entity white ball) may occur in several copies" ([27], p. 238). Weyl applies his
notion of multiset (a set with an equivalence relation) to a variety of problems
in physics, chemistry, and genetics. The equivalence relation approach to mul-
tisets has also been investigated in Monro's [24] which is motivated primarily by
concepts from category theory.

Developments in physics led Parker-Rhodes to define an elaborate math-
ematical system (a theory of 'sorts') to deal with collections of indistinguish-
able objects [25]. Elements of multisets conform to the Parker-Rhodes principle
of indistinguishables — copies of elements behave as identicals in isolation, but
contribute 'severally' to cardinality when they belong to the same multiset. The
system of Parker-Rhodes differs radically from classical mathematics, whereas
the theory MST 'extends' and 'contains' classical set theory.

Levy uses multisets ([21], p. 100) as a conceptual aid while discussing cardi-
nal arithmetic. Although their conceptual advantages are admitted, Levy does
not deal directly with multisets. Hailperin's [12] uses 'heaps' to interpret the log-
ical system used in G. Boole's Laws of Thought. Knuth finds multisets useful
for defining numerical algorithms ([17], p. 441) and for a variety of applications
in computer search-and-sort procedures [18]. Dershowitz and Manna [7] use
multisets to prove that certain types of computer programs terminate. In [15]
Hickman defines multisets as cardinal-valued functions in ZFC and develops
their formal algebra while emphasizing the differences between multisets and
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classical sets. Meyer and McRobbie [23] give " . . . the first sustained investiga-
tion of multisets in a logical and philosophical context . . ." noting that
" . . . computer scientists and mathematicians have been relatively slow in adding
multisets to their technical vocabulary" ([23], notes 3, 4, p. 107). They demon-
strate that multisets have the appropriate degree of abstraction (between sets and
sequences) needed to study relevant implication.

In [28] Whitney investigates the algebraic properties of 'generalized sets'
('sets' whose characteristic functions have ranges more general than {0,1}),
". . . where each element is counted any number of times" ([28], p. 412). Whit-
ney claims that 'generalized sets' are useful in various mathematical theories cit-
ing "chains in analysis situs" as one example ([28], pp. 405, 412). Multisets are
used by Rado in [26] to study families of sets. Rado notes that "The notion of
a set takes no account of multiple occurrence of any one of its members, and
yet it is just this kind of information which is frequently of importance. We need
only think of the set of roots of a polynomial f(x) or the spectrum of a linear
operator" ([26], p. 135).

In Chapter 11 of [22] Manna and Waldinger develop an elementary the-
ory of bags using a primitive binary insertion symbol ©. If an atom u has mul-
tiplicity n > 0 in bag x, then u has multiplicity n + 1 in bag uQ>x. Their theory
BAG admits only finite collections of atoms (no hierarchy of bags) and is devel-
oped to the point of a simple algebra of bags.

Lake in [19] proposes an axiomatization for multisets based on von Neu-
mann's 1925 axiom system for set theory which takes the notion of function as
primitive. We have rejected this approach for several reasons. It is well known
that von Neumann's 1925 axiomatization of set theory automatically gives the
axiom of choice. However, one may wish to work without the axiom of choice.
Fraenkel, Bar-Hillel, and Levy characterize von Neumann's approach (in spite
of later simplifications) as "rather clumsy" and conclude that ". . . it is after all
simpler to take the notions of set and class, or only that of class alone, as the
basic notions of set theory" ([10], p. 135). Indeed, Lake admits that ". . . it
might be thought desireable to have an axiomatization which does not go via
functions. Such an axiomatization . . . could be conveniently written out using
x Gz y (formally a three place predicate) to stand for 'x belongs to y precisely
z times'"([19], p. 325). We use a primitive ternary membership relation e to
define the theory MST.

2 A theory of multisets The naive concept of multiset that we now formalize
has the following properties: (i) a multiset is a collection of elements in which
certain elements may occur more than once; (ii) occurrences of a particular ele-
ment in a multiset are indistinguishable; (iii) each occurrence of an element in
a multiset contributes to the cardinality of the multiset; (iv) the number of occur-
rences of a particular element in a multiset is a (finite) positive integer; (v) the
number of distinguishable (distinct) elements in a multiset need not be finite; and
(vi) a multiset is completely determined if we know which elements belong to
it and the number of times each element belongs to it.

The theory MST is formulated in the first-order predicate calculus with
equality using conventional logical symbols: ~ (not), Λ (and), v (or), -•
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(if . . . then . . .), «•* (iff), V (for all), 3 (there exists), = M (equality for mul-
tisets), = N (equality for numbers), and enclosures ( , ) , ] , [ .

The first-order language L of MST employs two sorts of variable symbols:
mset variable symbols x,y,z,... used to denote msets and elements of msets,
and numerical variable symbols k,ί9m,ή,... used to denote multiplicities of ele-
ments in msets. The two sorts of variables of L are intended to range over dis-
joint universes: M (for multisets) and N (for numbers). Each sort has its own
equality sign: = M (of sorting M X M) and = N (of sorting N x N). The two-
sorted language L is used for convenience only. There is nothing essential that
can be done with L that cannot be done with a first-order one-sorted language
([8], pp. 277-281; [1], p. 42).

The nonlogical symbols of L are {e, ,S, + , ,0) where e is a ternary mem-
bership relation symbol of sorting M X M x N, is a unary function symbol
of sorting N -• M, S is a unary function symbol of sorting N -> N, + and are
binary function symbols of sorting N x N -> N and 0 is a numeric constant
symbol.

An expression of L is any finite sequence of symbols of L. The collection
of numeric terms of L is the smallest collection of expressions of L that contains
the numeric variable symbols, the constant symbol 0, and is closed under the
function symbols S, , and +. We use metamathematical symbols s and t to
denote numeric terms of L. If s and / are numeric terms of L, then St, s t, and
s + t are also numeric terms of L. The mset terms of L are the mset variable
symbols of L together with all expressions of L of the form t where t is any
numeric term of L. It will turn out that t is just the usual von Neumann set asso-
ciated with the number t. We use metamathematical symbols u, v, and w to
denote mset terms of L. The terms of L are the numeric terms of L together with
the mset terms of L. Terms of L name objects —they do not make assertions
about objects.

The atomic formulas of L are all expressions of L of the forms s = N t9

u —M v, and e(u,v,t). The fact that each sort has its own equality sign auto-
matically ensures that a numeric term cannot be equated to a multiset term.
Expressions like e(x,m,π), e(m,y,ή), e(kym,ή)y e(ή,m,x), and e(x,y,ή) are
not well-formed in L since they cannot arise from the substitution of equals in
atomic formulas. For simplicity we will use the single equality symbol =. It will
be obvious from the context whether = N or = M is intended.

The intended interpretation of the atomic formula e(u,v, t) is "u is an ele-
ment of the mset v with multiplicity exactly t" We introduce the dressed ternary
epsilon relation by the definition: u E ' v stands for e(u,v,t) for any mset terms
u and v and any numeric term /. From this point onward, we drop the symbol
e and use the ternary epsilon symbol instead.

The well-formed-formulas, wffs, of L are defined as follows: all atomic
formulas of L are wffs, and if φ and ψ are wffs, then so are ~φ> φ Λ ψ, φ v ψ,
φ-+ψ, φ^Φ\ and for all variable symbols x and ή, so are ixφ, Vx ,̂ lήφ, and
Vήφ.

We introduce the following shorthand notation for numeric quantifiers: for
any wff φ of L, Vnφ stands for V/?(/? Φ 0 -» φ) and 3nφ stands for 3ή(ή Φ
0 Λ ^ ) . We do this to avoid writing ή Φ 0 in almost every formula.

We introduce the undressed binary epsilon relation by the definition:
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for any mset terms u and v, u 6Ξ v stands for 3n u G" υ and u ξέ v stands for
~3n u Gn v oτ Vn ~ u Gn v. The intended interpretation, therefore, of u E v
is "w is an element of the mset v with some nonzero multiplicity". Thus, u E v
is a wff of L and «oί an atomic formula of L.

The variable symbol x (or A?) is said to be bound in a wff ^ if it lies within
the scope of quantifiers Vx or 3x (or W? or 3/?) in φ. A variable symbol occurs
/ree in a wff ^ if it is not bound in φ. We assume that a variable symbol does
not occur both bound and free in a wff (bound variable symbols can always be
replaced by variable symbols that do not occur in the wff). A wff ψ is an L-
sentence if there are no variable symbols (mset or numeric) occurring free in φ.

As in [21], p. 5, we adopt the convention that φ(...) means that the
interesting cases of what is to be said are those where the variable symbols dis-
played in the list . . . are free in φ. Therefore, φ(x) (or φ{n)) does not mean
that x (or n) is a free variable of <p9 nor does it mean that φ(x) (or φ{n)) has
no free variables other than x (or n). When φ(u) (or φ(t)) is used after first
using the notation φ(x) (or φ(n))9 we mean the wff obtained from φ(x) (or
φ{n)) by the "proper" substitution of the mset term u (or the numeric term /)
for the free occurrences of x (or n) if any. By "proper" substitution we mean
that we assume that collisions between variable symbols are avoided. So, for
example, if n is bound in <p(x), then we assume that the bound occurrences of
n are replaced by some other suitable symbol n' before h is substituted for free
occurrences of x to obtain the wff φ{h).

By an L-theory we mean the collection of all L-sentences that are the logical
consequences generated from a collection of axioms. The axioms of the L-theory
MST are the axioms numbered Nl through N8 and I through XII described
below.

If T is a theory, we write T h φ to mean the sentence φ is in T (φ is a the-
orem of T, or φ is provable from the axioms of T). As is normal practice, we
give informal proofs of theorems. We write Yφ if φ is a logical truth. If class
terms of the form {u \ <p(u)} or {t\ φ{t)} are used, the expressions in which they
occur are always reducible to wffs in L (see, for example, 3.1 of [21], p. 9).

The formal theory of vector spaces is a two-sorted first-order theory that
assumes the theory of fields for its scalar variables. Although not always made
explicit, the axioms of the theory of vector spaces include the axioms of the the-
ory of fields. In exactly the same way, MST is a two-sorted first-order theory
that assumes the theory of arithmetic for its numeric variables. The axioms of
MST, therefore, include the following axioms of Peano Arithmetic (adapted
from [5], p. 42):

Nl Vή(~Sfι = 0)
N2 V/ίVm(S/i = Sm -* ή = m)
N3 Vή(ή + 0 = ή)
N4 V«vm((« + SAW) = S(w + m))
N5 VAί(A2 -0 = 0)
N6 V/iVm(« Sm = ή - m + ή).

The axiom schema of induction states: for every wff φ{ή) of L, the universal

closure of
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N7,, (φ(0) Λ vn(φ(ή) -+ φ(Sή))) -* Vnφ{n)

is an axiom of MST.

The theory PA (Peano Arithmetic) has the first-order language {S, + , ,0}
with only the numeric variable symbols. The axioms of PA are Axioms Nl
through N6 and all Axioms N7^ where φ is a wff of the language {S, + , ,0). It
should be noted that Axioms N7^ as stated above are stronger than the induc-
tion schema for PA since the wff φ may contain multiset terms.

For numeric terms s and t of L, we define

s < t stands for m(t = s + n)
s < t stands for lή(t = s 4- ή).

In PA, it is well known that trichotomy and the least number principle hold. In
MST, therefore,

VήVm(ή <mvή = mvm<ή) holds

and, for every wff φ(ή) of L,

3ήφ(ή) -> 3ή(φ(ή) A Vm(m < ή -» ~φ(rh))) holds.

We give names to some special numeric terms of L by defining: 1 stands
for SO, 2 stands for SSO, etc. The class term N = {ή\ή = n] is called the numeric
universe of MST. If we write rh G [ή\ψ(ή)) to mean φ(rh), then V/ί«GN.

The theory PA may have nonstandard models. In a nonstandard model of
MST (a model of MST in which the numeric universe is nonstandard) multiplic-
ities of elements may be infinite in the model. The set ή is the usual von Neu-
mann numeral associated with the number n. If n is nonstandard in the model,
then h will be a non-well-founded set in the model. The existence of nonstan-
dard models of MST need not concern us in the development of the theory itself.

The exact multiplicity axiom of MST is

I Vxvyvnvm((x Gn y Λ X G W y) -+ n = m).

In other words, the multiplicity with which an element belongs to a multiset is
unique.

The axiom of extensionality of MST is

II vxvj(vzv/i(z en χ*+z en y)-+χ = y).

In other words, if two msets have exactly the same elements occurring with
exactly the same multiplicities, then they are equal. The converse of Axiom II
follows by the substitutivity of = in our logic.

The empty set axiom of MST is

III 3jVjcV« - x e n y.

It asserts the existence of at least one mset that does not contain any elements.
In fact, the mset y in III is unique by Axiom II. We denote this unique mset y
by the symbol 0 . Hence Vx x £ 0 .

For any mset term u we define the predicate Set(u) by: Set(u) stands for
u = 0 v Vxv/?(jc G" u -* n = 1). Since Set(0), the mset 0 is called the empty
set.
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We define the msubset relation c by: for all mset terms u and υ, u <Ξ v
stands for VzVn(z E " U -> 3m(« < m Λ Z E m tθ), in which case we say that w
is an msubset of ι>. Clearly Vx(0 ς= # ) . in relation to its msubsets, an mset is
called the parent mset. The relation c is reflexive and transitive. Using Axioms
I and II it is easily shown that <Ξ is also antisymmetric (VxVy (( c £Ξ .y Λ J> <Ξ x) ->
JC = j;)). vxv^((x C J Λ 5^(^)) -> Sέtf (x)) also holds.

By defining the msubset relation <Ξ as above, we have rejected the defini-
tion given by Meyer and McRobbie [23], p. 128. They define x <Ξ y by Vz(z E
x - > z G j ) . Their msubset relation is not antisymmetric and does not preserve
the principle that the 'cardinality' of an msubset be at most the 'cardinality' of
the parent mset.

We say that u is a part of v if u Q v A u Φ 0 Λ u Φ v. We say that u is a
whole msubset of v if VzVn{z E " w -• z E " ι>), and that u is a/w//msubset of
ϋif w c y Λ V z ( z E ί ; - > z E w ) . A whole msubset 'contains' all multiplicities of
common elements, while a full msubset contains every distinct element of the
parent mset.

Later we will prove (using the separation schema) that to every mset x there
corresponds a unique mset x* (called its root set) such that x* ^ x A Set(x*) A
Vz(z E x-> z E x*) —every mset contains a unique full msubset called its root
set.

If u = 0 v VxVy((x E w Λ j> E w) -» x = y), we say that w is simple.
Nonempty simple msets have root sets that contain a single element — all elements
of nonempty simple msets are indistinguishable. If Vz(z E u <-> z E f), we say
that w and v are similar. Similar msets have equal root sets but need not be equal
msets. If VxVjμV«Vm((x E Λ u Λ >> E m u) -+ n = m), then w is called regular (all
elements belong with the same multiplicity).

If we restrict Axiom II to 'sets', we obtain

II* Vx\/y((Set(x) Λ Sέtf (;>)) ~> (*z(z G * «-> z E j>) -> x = y)).

This is ^oί the exact analog of the classical axiom of extensionality since elements
of 'sets' need not be 'sets' themselves. To obtain exact analogs of sets in MST,
we must define 'hereditary sets'.

Let Trans(u) stand for VxVy ((x Ej>Λ.yE«)->JtEw) for any mset term
u. If Trans(u) holds, we say that u is transitive. We show (after we discuss the
axioms of union, replacement and infinity) that to every mset x there corre-
sponds a unique smallest mset TC(x) (called the transitive closure of x) such
that Set(TC{x)) Λ X * C TC(X) Λ Trans (TC(x)). The elements of TC(x) are
exactly the elements of x, the elements of elements of x, etc.

We cannot define Trans(u) by Vy(y E u -+ y <Ξ u) in MST. To see this
informally, let [y]n be the mset containing exactly n copies of the element y.
Let x be the mset {{y],[y]2,[yh, ) that is, x is the 'set' whose elements are
exactly the msets [y]n where [y]x = {y}. We show that this 'set' exists after the
axiom of infinity has been set forth. We would certainly want Trans (TC(x)).
Every mset [y]n is an element of TC(x), but it is not possible for every mset
[y]n to be an msubset of TC(x). Since y E TC(x), 3m y E w TC(x) holds, but
then [y]m+ι £ TC(x).

Let HSet(u) stand for Set(u) Λ Vy(j> E ΓC(w) -> Seί(^)). If HSet(u)
holds, then w is called a hereditary set or /zseί. Clearly, every hset is a set but
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not conversely. In MST the exact analog of the classical axiom of set extension-
ality is

II** VxVy((HSet(x) *HSet(y))^> (Vz(z G x++ z G y) -* x = y).

There are two elementary mset axioms of MST

IV (i) VxV/?3y(.χ GΛ y Λ Vz(z G ^ z = x))
(ii) v x v y ( χ φ y^>vnvmiz(x Gn z*y E m z Λ

Vz'(z' E z ^ ( z ' = ^ v z ' =^))))

Axiom IV(i) states that for any mset x and any number n, there is a unique (by
Axiom II) mset y containing exactly n copies of x and nothing else. Let [u]t

denote the mset that contains exactly t copies of u and nothing else. We denote
[u]χ by [u] and we call it the singleton set containing u since Set{[u]x).

Axiom IV(ii) states that for any two distinct msets x and y and any num-
bers n and m, there exists a unique (by Axiom II) mset z containing exactly n
copies of x9 m copies of y, and nothing else. Let [u, v]sj denote the mset that
contains s copies of u9 t copies of v, and nothing else. We denote [u, t?] l f l by
{u,υ} and we call it the pair set containing u and v since Set([u,v]u{).

We require that x Φ y in Axiom IV(ii) since if x = y but nφm, then IV(ii)
would assert the existence of an mset that contradicts Axiom I. We cannot write
{x,x} in MST since the elements of a pair set must be distinct.

Axiom IV(i) is necessary to ensure the existence of msets whose elements
have multiplicities greater than one. Axiom IV(ii), however, is stated as an axiom
of MST for convenience. Below we prove (p. 55) IV(ii) as a theorem of MST
using Axioms III, IV(i), powerset, replacement, and union.

For mset terms u and υ we define

\ { { u } Λ u , υ } } Ί ϊ u Φ υ

{ { { u } , [ u ] 2 } i f u = υ.

We call (u,υ) the ordered pair set since Set((u,v)). Hence, <«, υ) is always a
'set' of two distinct elements (unlike ZF where Kuratowski pairs (x,x) are sin-
gletons).

For mset terms u and υ we define the simple mset υu to be the unique
msubset of υ that contains all copies of the element u in v (if any) and nothing
else. Define vu = [u]t iff u E ' V. Therefore, υu is a simple whole msubset of
v, and distinct w's in v give rise to distinct υu's. Using Axiom II, we have
vxVj(jx = 0 <-> x £ y) and VxVyVn(yx = [x]n ^ x Gn y).

For simple msets of the form [u]t we define the numeric term \[u]t\ as
follows: \[u]t\ = t for any mset term u. Therefore, for any mset terms u and
v and any numeric term t, \ vu\ = t iϊf u E* v and \vu\ is unique by Axiom I.
For simple msets of the form [u]t we also define the cardinality of [u] t, denoted
by C([u]t), to be i. The cardinality of a simple mset is an mset (in fact, a heredi-
tary set). For any mset terms u and υ and any numeric term t, C(vu) = /iff
u Gt v and C(vu) is unique by Axiom I.

The powerset axiom of MST is

V Vxly(Set(y) ΛVZU G y ++ z £ x)).
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In other words, for every mset x there is a set whose elements are exactly the
msubsets of x. The set y whose existence is postulated in Axiom V is unique by
Axiom II*. For any mset term u, we denote the set of all msubsets of u by
IP(w), and we call it the powerset of u. For example,

V(lχ,yh,ι) = i0Λχ}ΛχhΛχhΛy}Λχ,y}Λχ,yhiΛχ,yh,i}.

Informally, if x is a 'set' with n distinct elements, then Ψ(x) contains exactly 2n

distinct elements. If x is a nonset with n elements (repetitions counted), then
Ψ{x) contains strictly less than 2n elements because singleton msubsets do not
repeat in P(x) since Set(Ψ(x)). Vx Ψ(x) Φ 0 also, since Vx 0 E Ψ(x).

Our formal definition of IP(x) is equivalent to the informal definition in
Hickman ([15], p. 213). Why require that JP(x) be a setΊ Hickman answers:
". . .we could see no good reason for introducing repeated elements into a
powerset. However . . . this does mean that one of the cornerstones of classi-
cal set theory, Cantor's powerset theorem, fails for multisets" ([15], p. 213).

In fact, it is possible to formulate a reasonable definition of a power mul-
tiset of x ϊoτ finite msets x which preserves Cantor's theorem. Conceptually, we
think of x as if it were a set (we think of the elements of x as //they were all
distinct). We take the classical powerset of x and then undo the 'distinctions'
made in the first step. The result (with repetitions counted) is the power multiset
P(x). We define P(x) informally as follows: (JP(x))* = P(x) (so y E P(x) <-•
yGx).lfy = 0 , then^ E 1 P{x); and if y Φ 0 , then^ Gk P(x) where

/ \x \\ / n \ n\
kmS \\y,\) and U-SϊoΓ^oϊ

is the number of combinations of n objects taken m at a time, and where the
product Y[ is taken over distinct elements z of the msubset y and where

zey*

\xz\ =niffz E"xand \yz\ = m iίΐ z E m y. For example, if x= [0,{0}]3,i

andj> = [ 0 ] 2 , then k = ί j = 3. With the same mset x, if y = [0,{0}]2,i

then k = I I I ) = 3. If the mset x contains n elements, then P(x) contains

exactly 2n elements. We do not use P(x) in MST because for certain infinite
msets the combinatorial formula generates infinite multiplicities. For example,

if X= [*i,*2>*3> •] 2,2,2,... a n d - V ^ U l » ^ 2 . ^ 3 > 11,1,1,... = {*1»*2>*3» )»

then y c x and y Gk P{x) where k = f I ί I ί I . . . . To avoid such dif-

ficulties we require that Vx Set(Ψ(x)) as in Axiom V. Before discussing Can-

tor's powerset theorem for msets, we introduce functions between msets.
Multisets that are functions (as defined below) are denoted by symbols

fg,h,.... We define functions between msets by first defining functions be-
tween root sets. The definition of a function between root sets is just the clas-
sical definition of function. For any mset terms u and v, the mset/is a function
from w*tθϋ* (written/: u* -*v*) iff

(i)Set(f)*
(ii) VZ(Z E/-» 3Zi3£2Ui E W* ΛZ2 E i;* ΛZ = <Z\>Zi») A
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(iii) VziUi G u* -• 3z2(z2 £ υ* Λ <ZI,Z2> G/)) Λ

(iv) vziVz2vz2'(«zi,Z2> G / Λ <zi,zi> G / ) -+ z2 = z£).

The function/: w* -• y* is an injection iff

(v) vziVzίvz2(«zi,z2> e/Λ<zί,z2> G / ) - » Z I = z ί ) .

The function/: u* -+ v* is a surjection iff

(Vl) VZ2U2G ^*->3Zi(Zi G W*Λ<Zi,Z2> G/)).

The function/: u* -> v* is a bijection iff (v) and (vi) hold.
For functions between arbitrary msets we require that images of indistin-

guishable elements of the domain must be indistinguishable elements of the
range, but images of distinct elements of the domain need not be distinct ele-
ments of the range.

A function / from mset x to mset y is 'rooted* in the function / from x*
to y*. We think of x as partitioned into whole simple disjoint msubsets xz, and
y as partitioned into whole simple disjoint msubsets yz>. Depending upon the
nature of the 'root' function / from x* to y* certain msubsets yz> will be of the
form yf(Z) where z E x. We think of the function / from x to y as 'acting upon'
all copies of z in xz and some copies of/(z) in y^Z) (although which copies of
f(z) in yf(Z) cannot be determined). Therefore, all the elements of the msubset
xz Q x are mapped by/to some msubset of y^z) in y. We now give the formal
definitions.

Let u and υ be msets. A function from u to υ is defined to be a function
from u* to v*. Therefore every function between msets is a set of ordered pair
sets. Let/: u-+v mean that/is a function from u to υ (we think of/as a func-
tion between multisets).

The function /: u -> υ is an injection iff

(i)/: w* -> y* is an injection and
(ii) vzize u*-+ \uz\ < \vΆz)\).

The function f:u->visa surjection iff

(i)/: w* -> f* is a surjection and
(ii) vz(zG w*-> |ι/J > \vΆz)\).

The function/: w -• υ is a bijection iff it is an injection and a surjection;
that is, iff

(i)/: w* -> y* is a bijection, and
(ii) Vz(zG w*^ 1^1 = | ϋ / U ) | ) .

These definitions can be shown to be equivalent to those in [15], p. 213.
If x <Ξ yy then the identity map/: x* -»x* c j * is a function f: x-+y which

is an injection (the natural embedding) of x into j>. Given/: {x} -̂  {y] where
/ = {(-^J^)}* the function/: [x]2 -+ [y]wo is a n injection. Since copies of y in
[.yhoo a r e indistinguishable, we cannot determine which copies of y are images
of x and which copies are not images of x. The function/: [x]\o -+ [y]9 is a
surjection. One copy of y is the image of more than one copy of x, but since
all copies of y are indistinguishable, we cannot determine the copy of y for which
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this is the case. If/: [x,y\ -• {z,z'} where/ = {<x,z>,<.y,z'>} then/, as a func-
tion between sets, is a bijection. However,/: [x,y]ιo,2-+ U>£']s,5 is neither an
injection nor a surjection. Given the surjection/: [x]2 -» [zh, if w e 'increase'
the domain to [x,y]2,ι then the function g: [x,y]2,\ -* U k is no longer a sur-
jection.

Msets of equal 'cardinality' need not have a bijection between them. The
msets [x9y]2tι and [x9y,z] both contain three elements, but there can be no
bijection between them since multiplicities in the domain do not equal multiplic-
ities in the range.

For mset terms u and v, we define the binary relations,

u < v stands for "there is an injection/: u -• υ"
u ~ υ stands for "there is a bijection/: u -* y"
u < v stands for u < v Λ ~ u ~ v.

Hickman ([15], p. 215) shows that Cantor's theorem (Vxx < P(x)) fails for
multisets. If ~Set(x) then 3yln(y En x A n > 1). For any function/: x-* Ψ(x)
it must be that \xy\ > \Ψ(x)f{y) \ = 1 since Set(Ψ(x)). Hence there is no injec-
tion from x into Ψ{x) when ~Set(x). However, Cantor's theorem is provable
in MST for all sets x. The proof is identical to the classical proof ([14], p. 93).

Cantor's theorem is provable in MST for finite msets x using the power
multiset P(x). Define the function/: x* -• (P(*))* byf(y) = {y] c x for each
y E Jt*. The function/between sets is an injection. The function/: x-> P(x)
between msets is also an injection since for all y E x*, ify Gn x then/(j>) =

{y} Gk F(x) where k = ( , ' ^ ' , ) = ( n | = n. Therefore, if y en x then
\ \ { y } y \ J \ i /

/(^) GΛ P(x), for all j E x*. Hence, x < Ψ(x). Assuming that x « ^(JC) gives
a bijection g: x* -> (P(x))* = P(x), which can be used (exactly as in the clas-
sical proof) to generate a contradiction. Therefore, for all finite msets x, x <
P(χ).

Since every bijection is an injection and « commutes, VxVy (x ~ j -* (x <
j Λ^ < x)). However, Hickman ([15], p. 215) shows that the Schroder-Bernstein
Theorem VxVy((x <yΛy<x)-+x~y) fails for multisets, using the following
example:

let x = [xi,x2,X3>- 12,4,6,... and
l e t JK = [ ^ 0 ^ 1 , ^ 2 , y * > ' ] 1 , 3 , 5 , 7 , . . . -

The function/: x* ->y* defined by f{xn) = yn makes/: x->y an injection so
that x < y. The function g: y* -> x* defined by g ( ^ ) = xn+ι makes g: y -* x an
injection so that j> < x. There cannot be a bijection h: x->y since all multiplic-
ities in x are even and all multiplicities in y are odd. Therefore, x Φ y.

The axiom of foundation of MST is

VI Vy(y ψ 0 -> 3x(xE j> Λ VZ(Z E X -• z ί ^))).

It states that every nonempty mset contains an Έ -minimal element' (an element
from which it is disjoint). Thus our defined binary membership relation E is
well-founded. Axiom VI disallows infinitely descending E-chains within an mset
of the form . . . E x3 E x2 E X\ since the msubset whose elements are the ele-
ments of the chain would have no E-minimal element. Therefore, 4extraordi-
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nary' msets x such that x = {x} and E-loops of the form Xγ E X2 E . . . E xn =
Xι are ruled out in MST. It follows that Vx x £ x, or Vx xx = 0 , or msets x
and {x} are disjoint. VxVy(x E j> -• y £ x) also holds, or in other notation,
vxvy(yx Φ 0 -+xy = 0).

The union axiom of MST is

VII vxiz'vzvn(z E" z' ++ iy(z Gn y A y Ex) Λ
(vyvm((z E w ̂  Λ j> E x) -• m < π) v
(Vm3j3/:(z E^^Λ^EJCΛm</r) -*
Vyvm((z Gmy/\yex)^>n< m)))).

In words, for any mset x, there is an mset z' which consists of #// elements of
elements of x. The multiplicity n of z in z' equals the maximum multiplicity of
z as an element of elements of x, if such a maximum exists. If the multiplici-
ties of z as an element of elements of x are not bounded above, the multiplic-
ity n of z in z' equals the minimum multiplicity of z as an element of elements
of x. Such a minimum multiplicity always exists by the well-ordering < in PA.

The mset z' in Axiom VII is unique by Axiom II and is called the union
of x. For any mset term u let Uv denote the union of υ. For mset terms u and
v9 we define the binary mset union operation U by:

uU v = U{u,υ) if u Φ v and
u U u = U{u] otherwise.

By Axiom II, we have Vx(;t U x = x).
For all numeric terms s and t, we define a binary function max as follows:

[t if s < t
max(s,t) = \ .

[s otherwise,

which is well-defined by the law of trichotomy in PA.
Our formal mset xUy has the same properties as found in the literature

([15], [17], [22], and [23]); that is,

vxvjvzv/?(z Gn x U y ++ [(z en x Λ z £ y) v
U ί i Λ z en y) v 3k3l(z ek XΛZ e ι y A n = max(kj))]).

For finite msets x, the maximum multiplicities of elements of elements of
x always exist. For certain infinite msets like x = {{y], [y]2, [yh, } the max-
imum multiplicity of elements of elements of x does not exist; thus Ux = {y},
that is, the minimum multiplicity is used instead. Let x Φ 0 . The multiplicity
of any y E x is irrelevant in Ux. Hence, Ux = Ux*. The unions of similar
msets are equal; that is, all msets with the same root have the same union —
Vxvy(x* = y* -> Ux = Uy). The converse is false since U{0) = U 0 = 0 but
{0}* = {0} Φ 0 * = 0 . In MST we have

Vχ(Ux = 0 < - > x = 0 v V y ( . y E x - » . y = 0 ) ) o r

V x ( U x =0<+χ=0v3nx= [0]n).

For j ^ 0 j U 0 = Uίj>,0} = y. Also, in general, (Ux)* Φ Ux* since if
(Ux)* = Ux* = Ux then Vx Set(Ux), which is nonsense. If Set(x), then Ux
need not be a set. For example, if x = {[.yhj then Set(x) but ~Set(Ux) since



MULTISET THEORY 49

Ux = [y]2- However, if every element of x is a set, then Ux is a set indepen-
dent of x itself. If HSet(x) then HSet(Ux) and Ux is equivalent to classical set
union. We have chosen to define Ux to include all elements of elements of x
(with maximum multiplicity when the maximum exists, and minimum multiplic-
ity otherwise) in order to preserve the desired relation Πx c: Ux <Ξ Ux, which
will be proved shortly. However, one consequence of this approach is that there
are msets x and y such that x <Ξ y but Ux ί Uy. If, for example, x = {[z]2} and
y = {{z}Λz]2Λzh, . } 9 t h e n x ^ y b u t U x = [z]2 £ U y = {z}.

We now define the von Neumann numerals in MST as follows: for any
mset term u,

Conn(u) stands for VyVz((j Gu/\z€:u)-+(yEzvzEyvy = z))l
Lim(u) stands for Trans(u) Λ Conn(u) Λ U Φ 0 Λ Vy(j E w -»

.y U {j} E w); and
VNN(u) stands for HSet(u) Λ Trans(u) Λ Conn(u) Λ ~Lim(u) Λ

Vy(j E w-> ~Lim(y)).

For example, the set P({ 0,{0}}) = { 0,{ 0},{{0}},{ 0,{0}}} is transitive but
not connected (pick 0 and {{0)}). We require HSet(u) in the definition of
VNN(u) to exclude msets like [0] 2 and {0,[0]2,{0,[0]2}J. Using the axiom
of infinity we show later that the class term {ι/| VNN(u)} is a set.

The numeric-mset correspondence axiom is

N8 0 = 0 Λ SO = (0) Λ vn(§h = ήU {n}).

VNN(n) is a wff of L and it is straightforward to show that VNN(O) Λ
Vή(VNN(ή) -> VNN(Sή)) holds. By the induction schema, we have VήVNN(λ).
Using the separation schema, we also show later that vx(VNN(x) -> 3m x = m)
holds. The numbers of PA are mapped by to their mset associates (the von
Neumann numerals) and this association is a 1-1 correspondence. We use the

correspondence in the next axiom to state formally when a class term is and
is not finite. We will also need the correspondence to define the cardinality
of msets (it was Robin Gandy who observed that the correspondence is, in fact,
necessary in MST).

The additive union axiom of MST is

VIII Vxlz'VzVn(z Gn z' <-• z G Ux Λ
am(3//: m-^{y\yex* Λzey}->
(3A-3/(v/(/< m-> (ft e(k)'XAz G ( / ) ' / / ) ) Λ

n= Σ {k)rU)i)))Λ(~*m*ff:m-^ly\yex*Λzey}-+zenUx))
i<m

where/: m -j^> {y\y G x* Λ Z G y] stands for the formal statement in L "fis
a bijection from the mset m onto the mset equal to the class term [y\y G x* Λ
zEj^j £ x*", where// is the image of / E m under/(that is,/} =/(/) is some
jy in x* containing the element z), where /: (or /) equals the numeric term that
codes the finite sequence <(/:),> (or <(/),» of length m where (/:), is the mul-
tiplicity of/ in x (or (/)/ is the multiplicity of z in/) , and where the expression
n — Σ (^)/ (0/ is formally expressible as a wff in the language of PA.

i<m

It is well-known that GodeΓs ^-function is formally expressible in the lan-
guage of PA, and that it can be made to behave like any finite sequence in PA
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and, therefore, like any finite sum in PA —a finite sequence of partial sums (see,
for example, [9], pp. 11, 114).

In words, Axiom VIII states that, for every mset x, there is a unique (by
Axiom II) mset zf which contains all elements z of elements y of x. Thus, the
mset zf has exactly the same elements as the mset Ux. The multiplicity n of each
such z in z' is determined as follows:

1. if z belongs to at most a finite number of elements y of x, then n =
Σ \xy\ * \yz\ where ύ\t finite sum Σ *s taken over the finite number
y y

of msets y in x that contain z as an element; and
2. if z belongs to infinitely many elements y of x, then n equals the mul-

tiplicity of z in Ux. The net effect is that the multiplicity n of z in z'
equals:

(i) the sum of the products of the multiplicity of z as an element of ele-
ments y of x times the multiplicity of that same y in x, when this sum
is finite, or

(ii) the maximum of the multiplicities of z as an element of elements of x,
when this maximum is finite, or

(iii) the minimum of the multiplicities of z as an element of elements of x,
which is always finite.

The mset zf in Axiom VIII is called the additive union of x. For any mset
term v, we denote the additive union of v by lily. For mset terms u and v, we
define the binary additive union operation li) as follows:

[ty{u,υ] ifuΦv
u lil v = <

[l±)[w]2 ifu = v.

If x is finite, then the sum of products of multiplicities of elements of elements
of x is always finite. The mset x lϋ y has the following property:

vxvyvzwz(z en x i±J y <-• [(z en x Λ Z φ y) v
(z £ x A z e" y) v 3k3l(z GkxΛzeιyΛn = k + / ) ] ) .

The binary operation Iii was first introduced by Knuth [17] but corre-
sponds exactly with Weierstrass's "sum" in [4], pp. 19-20, Hailperin's heap sum
" + " in [12], p. 89, and Meyer and McRobbie's product "•" in [23], p. 128. Hick-
man [15] does not introduce the li) operation. He states incorrectly ([15], p.
214) that Knuth replaces U by ϋ) when, in fact, Knuth uses both operations.
This may in part explain why Hickman sees "no logical reason" for introduc-
ing the lϋ operation between msets.

It should be noted that the additive union Axiom VIII is not independent:
it is provable using the other axioms of MST (most notably, the Peano, union,
and replacement axioms). We will not give the proof.

If x is an infinite mset such that some mset z belongs to an infinite num-
ber of elements of x, then the sum of products for z as an element of elements
of x is not finite, and cannot therefore serve as the multiplicity of z in l±iχ. If
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this is the case, we use the multiplicity of z in Ux instead. If x — {{z},[z]2>
[ z ] 3 , . . . }, both the sum of products and the maximum of multiplicities of z as
an element of elements of x do not exist. Thus \3x = Ux = [z}

If x Φ 0 the multiplicities of msets y G x are relevant to Ux, and so, in
general, Ux Φ Ux*. Generally (Ux)* Φ Ux*, since (Ux)* is always a set, but
Ux* need not be a set. Clearly, U0 = U{0] = 0 . Since VzVn(z Gny++z E 2 "

y U y) and Vn(n Φ 2 n), we have that if y Φ 0 , then y U y = U[y]2 Φ y.
Also, y U 0 = y since Vn(n + 0 = n).

Since Ux and Ux contain all elements of elements of x, (Ux)* = (Ux)*.
Also, Ux c Ux since if z E* Ux then either z E* Ux or z Gn Ux, where n >
nx + n2 + . . . + A7m > m α x f / ? ! , ^ , . . . , ^ } > min{nx,n2,... ,wm). Hence,
£ < fl.

The axiom schema of separation of MST states that for every wff φ(x,n)
of L with free variables including x and n but excluding j> and n', the univer-
sal closure of

IX^ VxVnVnf((φ(x,n) Λ φ(x,ri)) -+n = nf) -*
Vz3jVxW2(x E* J ^ [X]« C Z Λ φ(x,n))

is an axiom of MST.
We require that φ(x,ή) be 'functional' since if there is more than one n for

some x G z then the mset y is not well-defined. In all such axioms IX^, we have
y^z since VxV/?(x <Ξ" y-> [x]n c ^ ) .

The 'limitation of size' principle is the requirement that [x]n <Ξ z: the mul-
tiplicity of each x in y is no greater than its multiplicity in the given mset z. Msets
that exist by the separation schema are always msubsets of already existing
msets.

If the wff φ(x,n) is x Gn z then φ(x,n) is 'functional' by Axiom I and
y — z in IX^. If φ(x,n) is x Φ XΛ n = 1 then .y = 0 ^ z in IX^. If v?(x,«) is
X = Z / Λ X E " Z then y = z^ in Axiom IX^; that is, y is the simple whole msub-
set zZ' ^ z that contains all copies of z' in z if any. If zr £ z then zz> — 0 ^ z.

We can now prove Vx(F7V/V(x) -> 3m x = m). Suppose ly(VNN(y) Λ
— 3m y = rh) holds. Since {x| VNN(x)) is a set and since ~3m m x — ύι κn — \
is a wff φ(x,n) with free variables x and n (but not j> and n'), the separation
schema gives us that [x\ VNN(x) Λ ~3rh x = m AΠ =1} is a set. It is nonempty
by our assumption, so by Axiom VI it contains an E-least element z. Now z Φ 0
since 0 = 0 by N8. Therefore z = y U {>>} for some y such that VNN(y) and
j> = /?. But then z = yU [y] = ή U [ή] — Sn by N8 which contradicts ~3m z =
m. We proved earlier that VήVNN(ή) holds. Therefore, the range of the cor-
respondence is exactly the set of von Neumann numerals; that is, Vx(3ή x =
n++ VNN(x)).

We now use the separation axioms IX^ to prove the existence of root sets,
intersection msets and relative complement msets. If the wff φ(x, n) is x = x Λ
n = 1 then the consequent of Axiom IX^ is

VZ3JVXVA?(X e n y *+ (\x\ £ Z/\n = 1)).

The mset y in IX^ is the root set z* of z such that Vz Set(z*). Therefore, every
mset z has a unique full msubset z*. Clearly 0 * = 0 . Theorems of MST
include
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Vx(x*)* = x*, Vx(Set(x) ++χ = χ*),
V x V y ( x e j ^ x e . y * ) , and VxVy(x Q y -+ x* c / ) ,

The converse of the last sentence is false since, for example, [0]Λ+i ί [ 0 ] Λ .
If the mset z in IX^ is Uz and the wff φ(x9n) is 3z'(x E Λ Z ' Λ Z ' E Z ) Λ

Vz' (z' E z -> 3ra(x G w z' Λ Λ < AW)), then the unique mset y in IX^ is called the
intersection of z. For any mset term v, the intersection of v is denoted by Πίλ
The separation schema gives immediately Πx c Ux, and we have the desired
relation Πx c Ux C (+|*.

In general, Πx is the unique mset that contains all elements of elements of
x that belong to every element of x. The multiplicity of an element in Πx is the
minimum multiplicity of that element as an element of every element of x. The
minimum multiplicity always exists since < is a well-order in PA.

For any mset terms u and v, we define the binary intersection operation Π
as follows:

( Γ\{u,v] Ί ϊ u Φ υ

Π { u ] ifu = υ .

If u Π v = 0 we say that u and v are disjoint.
For all numeric terms s and t, we define the binary function min as follows:

[s \ϊs<t
min(s, t) = <

[t otherwise.

The function min is well-defined by the law of trichotomy in PA.
The mset x Π y has the properties of mset intersection found in the liter-

ature ([15], [17], [22], and [23]), namely,

VXV^VZVA?(Z G ^ Π J H 3/c3/(z E* XNZGL1 y i\n = min{kj))).

Let x Φ 0 be some mset. For any y G x, y Πy = Π{y] = ^ b y Axiom II.
Hence, the multiplicities of elements y E x are irrelevant to the definition of Πx.
Hence, Πx = Πx*. In general, (Πx)* Φ Πx* since Πx* is not always a set but
VxSetiiCix)*). For any y E x where y Φ 0 , yΠ 0 = Π{y,0} = 0 . If 0 Ex,
then Πx = 0 . If elements of x are pairwise disjoint, or if a single element of x
is disjoint from any other element of x, then Πx = 0 . Also, Π 0 = Π{0} = 0 .
I f x = {[z}Λz]2Λzh, . ) t h e n Π x = { z } .

It is easy to prove VxVj(x l±) j> = (x U y) (±1 (x Π j>)) since, in general,
n + m = max(n,m) + min(n,m). Therefore, in particular, AΊ + 0 = max(Az,0),
so that we have VxVy(x Π y = 0^χ\jy = x^)y). Since x Π {x} = 0 by
Axiom VI, x U {x} = x i±) {x}. In general, however, Πx = 0 does not imply
Ux — ϋx. For example, consider the mset x = {{z),{.y),[.y]2) where j ^ z . We
have Πx = 0 but Ux = [z,y]\t2

 a n d βlje = [z,^]i,3 =£ Ux.

The identities (x Π j>)* = V Π ̂ * and (x U y)* = (x l±l j ) * = x* U ̂ *
are easily proved in MST. However, in general, x* Uj>* ^ x * U^*. For fur-
ther identities in the algebra of multisets (distributive laws, De Morgan laws, etc.)
the interested reader is referred to [17], p. 636, and [15], pp. 215-216. The binary
operation l±l is 'stronger' than both U and Π in the sense that l±J distributes over
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both U and Π but U and Π do not, in general, distribute over W. When
restricted to hereditary sets in MST, the algebra of msets is identical to the
algebra of sets in ZFC.

We now define the relative complement using the separation schema. Since
PA h VmV/:(/r < m -> 3\n(m = k + n)), we denote this unique n by m — k
which is defined for all m and k such that k < m. For an mset z let y' <Ξ z and
let φ(x,n) be the wff ( X 6 " Z Λ I ^ / ) V 3m3k(x e m z Λ X Ek y' Λ £ < m Λ

n = m — k). φ(x,n) is 'functional'. The unique mset j> in Axiom IX^ is called
the relative complement of y in z. For any mset terms u and u such that υ <Ξ
w, the relative complement of v in u is denoted by u — υ. Clearly, for all such
mset terms u and v, u — v <Ξ w. We note that if the mset j ' above contains all
copies of x in z (if 3m (x G W / Λ X G m z) holds), then neither disjunct of
φ(x,n) is satisfied and, therefore, x£z — y'. One can show that Vy(j - 0 =
JΛJ^- J> = 0 ) , VyVzVn(z G ^ / ^ Z G ^ 1 } ' ) , and VχVy(VzW?(z GΠX-^
z e " j ) β vzvn{z En y - x ^> z En y)) hold, the last of which states that "x
is whole in j iff y — x is whole in y".

Unlike ZFC where elements occur at most once, in MST an element may
occur in an msubset and in its relative complement. If this is the case, the nature
of indistinguishability dictates that we cannot distinguish between copies in the
msubset and copies in its relative complement. We can determine how many
copies belong to each, but we cannot identify which copies are which.

In MST, therefore, there are many msets x and y for which x Q y A (x Π
(y — x) φ 0 ) holds. Hickman characterizes this situation as "unintuitive,"
"unattractive," "disturbing" and "inconsiderate" ([15], pp. 212, 214, 216). His
distress is difficult to understand. The fact that a subset and its relative com-
plement are disjoint in ZFC is simply a special case of the more general situa-
tion in MST. Therefore, <P(,y),U,Π,-,0,j> is not a Boolean algebra, since
for x e Ψ(y), x Γl (y - x) Φ 0 and xU (y - x) Φ y. However, x ϋ (y - x) =
y always holds.

If the complementation operator is restricted to sets, then all is well; that
is, (Set(y) /\x<^y)-+ (Set(x) Λ Set(y - x) Λ X Π (y - x) = 0 Λ X U (y - x) =
y). If x is whole in y, then x Π (y - x) = 0 . If x Π (y - x) = 0 then x U
(y - x) = x (ϋ (y - x). Therefore, if x is whole in y, both x Π (y - x) = 0
and x U (y — x) = y hold. The complementation operator behaves classically
when restricted to sets and whole msubsets. Whole msubsets are 'set-like' in the
sense that elements do not spill over into the relative complement.

The replacement schema of MST states that for every wff φ(x,y) of L with
free variables including x and y but excluding y' and z\ the universal closure of

X, vxvyvy'{(φ{χ,y) A φ(x,y')) -+ y = y') -•
vziz'vyvn(y e Λ z' ++ [*x(x G" z Λ φ(x,y)) Λ
vxvm((x em z Λ φ(x,y)) -> n < m)})

is an axiom of MST.
In words, Axiom X^ states that if the wff φ{x9y) is 'functional', then for

any mset z there is a unique (by Axiom II) mset z' that is the 'image' of z under
φ. If there is more than one x in z that is 'mapped' to some y by φ, then the mul-
tiplicity n of y in z' is the least multiplicity of all x in z such that φ(x,y).

The 'least multiplicity' condition is necessary because without it, if we were
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to replace two distinct elements x and x' of z with different multiplicities in z
by the same mset y (using, for example, the wff φ(x,y) as x = x r\y = 0 ) , then
the mset y would have two different multiplicities in z\ contradicting Axiom I.
We could have required that φ(x,y) be Ί - Γ (VxVx'Vy ((<£>(*, j>) Λ φ(x',y) -+
x = x')) but this is too strong a condition on φ(x,y).

Ignoring the effects of the 'least multiplicity' condition for a moment,
axioms of the form Xφ represent exact replacement: elements in the 'range'
occur with the exact multiplicity as do their 'pre-images' in the 'domain.' If
downward replacement is required (if n copies of x in z are to be replaced by
fewer than n copies of y in z'), the separation schema must be used first to 'scale
down' the 'domain' to the required multiplicities, and then exact replacement will
result in the desired 'range' mset.

The form of the replacement axioms X^ does not permit us to deduce the
separation schema from the replacement schema in the usual way. The multiplic-
ity of some element in the 'range' mset z' must be the multiplicity of some
'associate' mset in the 'domain' mset z. Thus, if the 'domain' is to be a parent
mset and the 'range' a possible msubset, one can never generate nonempty
proper msubsets.

Since elements of z are replaced by at most the same number of elements
in z\ the mset z' is 'limited in size' by the given mset z. We note also that in
axioms of the form Xφ, if Set(z) then Set(z'). The converse is not true, since
'least multiplicity' may have been invoked.

If we attempt to construct an mset containing an element with infinite mul-
tiplicity by replacing every element of an infinite mset z (Axiom XI) by 0 , for
example, we would fail. Every element x in z has finite multiplicity in z and there
is a least such multiplicity n. The 'least multiplicity' condition gives z' — [ 0 ] Λ .

We will shortly define the cardinality of a finite mset to be the sum of the
cardinalities of its simple whole parts. To justify this definition we now prove
that every mset is the union of its simple disjoint whole msubsets:

Theorem Vx(x = U{xy\yEx*}).

Proof: Let x be some mset. Then every xy <Ξ x exists and Set(x*) by the sepa-
ration schema. We 'replace' each y E x* by the mset xy. The result is the set
z = [χy I y G x*}. Then Uz = U [xy | y E x*} is an mset by Axiom VII. Since
VxVyVn(y Gn x^y Gn xy), x = U[xy\y Gx*) by Axiom II.

We now prove the existence of cross products in MST:

Theorem VzVz"3z'"VxVyV/«x,.y> G/ z'" +» 3n3m(x Gn z Λ y em z" Λ / =
n - m)). In words, for any msets z and z" there is an mset z"' whose elements are
ordered pairs (x,y). The multiplicity of each pair (x,y) in z"' is the product of
the multiplicity of x in z and the multiplicity of y in z".

Proof: Let z and z" be arbitrarily given msets, and x an arbitrary but fixed ele-
ment of z- Apply replacement to the mset z" as follows: replace each ymz" by
(x,y). Clearly this is a 1-1 replacement. If we call the result of this replacement
{x} x z\ we have y Gm z" <-> (x,y) G m {x} x z"'. We now apply replacement
to the mset z: replace each x in z by the mset {x} X z" and call the result of
this replacement z'. Then we have x Gn z <-• {x} x z" En z' since this is also
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a 1-1 replacement. Put z"f = ϋz''. It is then easy to show that <x,y) Gz z'" *+
x Gn ZAy G m z" Λ / = n m.

The mset z'" above is unique by Axiom II and is called the cross product
of z and z". For mset terms u and *;, the cross product of u and t; is denoted
by u x v. In general, x x y ^ j x x but x x y ~ y x x.

Theorem Axiom IV(ii) is provable from the other axioms of MST.

Proof: The set 0 exists by Axiom III. The set 1P(P(0)) exists by Axiom V.
Given msets x and y such that x Φ y and numbers n and m, the msets [x]n and
[y]m exist by Axiom IV(i). Using the wff φ(x',y') as {xf = 0 -*y f = [ x ] J Λ
(x' = ( 0 ) -*;;' = [;>]„,) the replacement Axiom X^ applied to P ( P ( 0 ) ) gives
the mset z\ where [x]n E

ι z' Λ [y]m G1
 Z ' Λ V Z ( Z G Z ^ Z = [χ]nyZ = [y]m).

The mset Us' is the required mset z in Axiom IV(ii) which we defined to be
[x,y]n,m> Hence, VxVy(x Φ y -» VnVmlz(x G n z Λ J G W Z Λ VZ'(Z ' G z ̂
U'^vz'^)))).

One could argue that the notion of 'exact replacement' would be better
served if the replacement schema had the following effect: the multiplicity of
y in the range equals the sum of the multiplicities of all x's in the domain such
that φ(x,y) holds, if the sum is finite. Otherwise the maximum of the multiplic-
ities of the preimages is used, if it exists. If the sum is not finite and the maxi-
mum does not exist, then the minimum of the multiplicities of the preimages is
used. One could revise Axioms X^ to give such 'additive replacement' axioms.
However, using Axioms Xφy a theorem schema of 'additive replacement' is
provable in MST (the proof is difficult and lengthy), [3], pp. 97-101.

The infinite mset axiom of MST is

XI iy(0 G } Ά V X ( X G ^ X U {x} ey)).

One can show (exactly as in ZFC, see [10], p. 47), that if IN is the smallest (with
respect to <Ξ) mset y that satisfies Axiom XI, then HSet(ΊN)9 Lim(lN), and IN =
{0,{0) , {0 , {0)} , . . . ) = [x\VNN(x)}.

Using the separation schema with φ(x,n) as x Φ 0 Λ n = 1 we obtain the
setΉ = {{0},{0,{0j},... ) c N. Using the wff x = fiΛy= [z]n as <p(x,y)
in the replacement schema, we obtain the infinite set {{z}9 [zh, [z]z,... ) which
provided useful examples when we discussed union, intersection, and additive
union. Call this infinite set x. Then Ux = ϋx = Πx = {z} since the only mul-
tiplicity of z as an element of elements of x that exists is its minimum multiplic-
ity. We have proved Vzly(Set(y) Λ VX(X G y ++ 3n x = [z]n)) Therefore, for
a given mset z, the collection of all simple msets of the form [z]n (that exist by
Axiom IV(i)), is itself a set in MST.

We now construct the mset TC(x). Given the mset x and the infinite set IN
(defined above), we replace each ή in IN by the mset Unx where U°x = x, Uιx =
Ux, Un+{x = UU*x. Since N is analogous to the classical set ω in ZFC, we
have the standard recursion theorem on IN. The replacement wff <p(n,y,x) is
y =z \jnx where x is a parameter. We note that our recursive definition is such
that VπVz(z G Un+Xx <-> 3z'(z' G U*x Λ Z G Z'). We call the result of this
replacement the mset IN'. The elements of IN' are x, Ux, U U x , . . . . Using the
wff y = x*, we replace each element of IN' by its root set to obtain the mset IN".
The elements of IN" are x*,(Ux)*,(UUx)*, . . . . Define TC{x) = UN". Infor-
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mally, therefore, the mset TC(x) is x* U (Ux)* U (UUx)* U . . . which con-
tains the elements of x, the elements of elements of x,.. .etc. Every element of
TC(x) occurs at most once in TC(x) so that Sef (ΓC(x))^Clearly x* g TC(x).
If y G z and z G TC(x), then 3AZ(Z G ( U " X ) * Λ J G ( U ^ X ) * ) and, therefore,

.y G ΓC(x). Hence Trans(TC(x)). TC(x) is the smallest transitive set with x*
as an msubset, and we have Vx ΓC(x) = TC(x*).

Theorem Vx((Set(x) Λ Trans(X)) ++ TC(x) = x).

Proof: The <- direction is obvious. For the -> direction, let x be such that
Sei(x) Λ Trans(x) holds. Since x = x* and Vx(x* c TC(x)), x c ΓC(x). To
show that ΓC(x) c x, let z G ΓC(x) and assume z £ x. Then {z G TC(x)\z£
x) ^ 0 . To each such z, Bnz > 1 such that z G (U^x)*, but Vn < nz z <£
(U"x)*. (Each nz>\, since otherwise z G x*. Recall also that ΓC(x) = x* U
(Ux)* U (U2x)* U ) We pick a particular z G TC(x) such that z ί x, but
π^ is /eαsί among the nz's. Therefore z G (U^x)* Λ nz > 1. Therefore, 3j>(.y G
( U ^ X ) * Λ Z G J ) holds.

If nz ~ 1 then >> G x*. Hence Z G J A J G X - ^ Z G X since Trans(x). But
z ί x. Therefore, ^ > 1.

If j ^ x , thenj^G TC(x) /\y£x/\ye (Un^"ιx)*9 so that ny < n-z which
contradicts that /?̂  is a /eα.s/ nz.

Hence, y G x and zG.yΛjμGx->zGx since Trans (x). But z ί x. There-
fore, {z G ΓC(x)|z ί x) = 0 and ΓC(x) c x. Hence TC(x) = x as required.

In particular, therefore, since Vn(Set(n) Λ Trans(n)) we have VA2 ΓC(/I) = /z.

The choice mset axiom of MST is

XII Vy[[j> ^ 0 Λ Vx(xGj>-+x Φ 0 ) Λ
v x v z ( ( χ e } Ά z e j Λ x ^ z ) ^ i Π z = 0)] -•
3J^/(VXV«(X G π ^ - ^ 3^'ίΛ ' G " / Λ X ' G X Λ

VX"((X" GXΛXV G / ) ->X/r =X'))) Λ

Vx'Vtf (*' G" ̂ ' -• 3X(X £ " 3; Λ X' G X)))] .

Any mset y' that satisfies Axiom XII is called a choice mset for j . The elements
x' in y' occur with the same multiplicity as do their corresponding elements x
in the mset y. The multiplicities of the 'chosen' elements x' in x do not matter.
It is obvious that a choice mset y' for an mset y is not unique unless, of course,
every element x of y is a simple mset (when only one 'choice' for each x' G x is
possible). If we add the condition Set(y) to Axiom XII, then y' is called a choice
set for j> since Se/^y). If we add the condition HSet(y) to Axiom XII, then
HSet{y') and the resulting wff is equivalent to the classical axiom of choice
(AC) of ZFC.

Theorem XII is equivalent to

XII* vy({y # 0 Λ vx(xGj>->x Φ 0 ) Λ

VXVZ((X GJΛZGJΛX^Z)->X(ΊZ=0)) ->

aya/(/: J - J 7 A VX(X G J> ->/(*) G x))).

Proof: XII implies XII* since for the given mset j there exists a choice mset y .
For each x G y9 there is a unique mset x' such that {x'} = x Π (.yr)*. We define
the function/: j>* -* ( j ' )* by the rule: for each x G j>*,let/(x) G x Π (jO*.
Then/: j> -^.y' and Vx(x G ̂  ->/(x) G x). XII* implies XII since for the given
mset y there is a choice function/on y. Let ranf- \z' \{z,zf) G / ) . If we replace
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each element/(x) in ranf* by [f(x)]n iff x E77 y and call the result y'\ then the
mset Όy" is the required choice mset yf in Axiom XII.

Theorem XII is equivalent to

XII** vy((y Φ 0 Λ vx(x e y -+ x Φ 0)) ->
ly'iAf' y-+y'Λ v*(* e j> -+/(χ) e *))).

Proo/. Since XIΓ* obviously implies XII* which implies XII, XIΓ* implies
XII. To show that XII implies XII** we mimic the classical proof in [10], p. 56.
Let y Φ 0 be an mset that does not contain 0 as an element. We replace each
x in y by the mset {x} x x and call the result y". Since this is an exact 1-1
replacement, VxWi(x EΛ y <-• [x] X x G" y"). Since y Φ 0 , >>" =£ 0 . Since
Vx(x€:y-+x Φ 0 ) we have Vx({x} x x E y" -+[x] x x Φ 0 ) . If {x} x x Φ
{z} x z then x Φ z. If ({x} x x) Π ({z} x z) Φ 0 , then there is an element
(z\z") such that <z',z"> E (x) x xand (z',z") E {z} x z. If this is the case,
then z' E {x} and z' E {z} and, therefore, z' = x = z which contradicts our
choice of x and z. Hence, distinct elements of y" are disjoint, and the mset y"
satisfies the conditions in the antecedent of Axiom XII. By Axiom XII, y" has
a choice mset/such that:

VxWz(x e * y^ (x) x x E/ 7>'/ /^<x,x/> E V ) ,

where <x,x'> E {x} X x. We have, therefore, Vx(xE j/-> K^x') E / Λ X ' E X ) ) .
L e t / = (/)* and let jμ' = {x'K^x') E/} . Clearly,/is a function from j * to
7' so that/: j> -•.y'. We have proven, therefore, that

3^3/(/: ^ -> J r Λ Vx(x E ̂  ->/(x) E x)).

Therefore, XII implies XII**.
We define a translation ' from wffs <£> of ZFC to wffs <p' of L as follows:

(x = y)' is HSet(x) Λ HSet(y) ΛX = y
(xeyY is HSet(x) ^HSet{y) ΛX <Ξι y
(~ψy is - ^ ' , (ψvf l) ' is ^ ' v^ r

(0 -* 0)' is ψr -* 0 r, (ψ ^ ΘY is ^ ; ^ 0'

(3x^) r is 3x(HSet(x) Λψ')

(vxψ)' is Vx(HSet{x) -• i//).

Theorem i 7 ^ α/?j wy/ ̂  o/ ZFC, // ZFC h φ then MST h φ'.

Proof: If <̂  is an axiom of ZFC, then φ' is an obvious special case of an axiom
of MST and is, therefore, a theorem of MST. The ' translation preserves rules
of inference, so that the ' translation of a proof of φ in ZFC is a proof of φ'
in MST.
If ZFCr = {φ'\φG ZFC}, then the theory MST contains a copy ZFC' of ZFC,
that is, ZFC' C MST.

If we had translated the atomic formula x E y of ZFC as Set(x) A Set(y) A
x e ι y in MST, then the translations of axioms of ZFC would not, in general,
be theorems of MST. For example, the translation of the classical axiom of ex-
tensionality would be VxVy(vz((&?/(z) A Set(x) A Z E 1 X) ̂  (Set(z) A Set(y) A
z E 1 y)) -* x = y). This is clearly false in MST. For example, consider the sets
ix,y] and {x) where x Φ y, Set(x) and ~Set(y). They satisfy the antecedent
but they are certainly not equal.

With ZFCr at hand, we proceed (exactly as we would in ZFC) to construct
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the cumulative hierarchy V = (J Va9 the class On of ordinals, the class Card
aGOn

of cardinal numbers, etc. The axiom of foundation of ZFC (a theorem of MST)
proves that V = ( j Va = {x\HSet(x)}. (See, for example, [10], p. 94).

aGOn

Therefore, the hsets of MST are exactly the elements of V.
We can also construct an Ma hierarchy for multisets. If we define,

for each a E On, Ma = {x\x* G F J we would obtain only msets whose
elements are hsets. Under this definition, for example, we would 'miss'
all msets with root set { [ 0 ] 2 ) In order to 'catch' all msets, we define M
as follows: M o = 0 , Ma+ι = {x\x* e Ψ(Ma)}; Mλ = [j Ma if λ is a limit

ordinal; and M = (J Ma. To prove that we have indeed 'caught' all msets of
a(Ξθn

M S T , s u p p o s e t o t h e c o n t r a r y t h a t 3x x £ M h o l d s . T h e c l a s s t e r m [y\y G
TC({x}) Λy£ M] c TC({x}) is an mset z. Since x<Ξ TC({x}) AX <£ M w e have
z Φ 0 . By Axiom VI, there exists an G-minimal element x' in z (xf G z A X' Π
z = 0 ) . Hence every element of x ' is in M. We replace each element of (x')*
by its ordinal rank in M. The union of the resulting mset is the ordinal β. Every
element of (* ')* is an element of Mβ, so (jcr)* c M ^ ^ J C ' ) * G P(M^)). If this
is the case, x' G M ^ which contradicts JC' ί M. Therefore, V x i G M holds.
The multiset universe {x\x = x] of MST is exactly the class M.

In order to define the cardinality of msets we require an operation H such
that Vx HSet(H(x)) and VxVy(x Φy-+H(x) Φ H{y)). The operation H when
applied to distinct msets should give distinct hereditary sets. Distinct msets either
contain distinct elements, or contain an element in common with distinct mul-
tiplicities. This elementary fact suggests the following definition: for all mset
terms u and υ, define

H(v) = {(H(u),m)\u Gn VA 1 < m < n}.

For example,

H(0) = 0,
H(i0)) = {<H(0),i>}9

H([0]2) = [<H(0)Λ>,<m0)92»,
H([[0]}) = [<H([0}),i)},
H([[0]2]2) = {<//([0]2),ΐ>,<//([0]2),2>},

H([0Λ0}]2t3) = {<//(0),i>,<//(0),2>,<//({0}),i>,

<//({0)),2>,<//({0}),3>}.

It is straightforward to show that if is well-defined and 1-1.

Theorem Vy HSet(H(y)).

Proof: H(y) = {(H(x),m)\x G Λ y A 1 < m < n}.
We prove Vy HSet(H(y)) by induction on the rank of y in M. If the rank

of j>is 1, thenj>= 0,H(0) = 0 , andHSet(0). We assume HSet(H(x)) for
all x G M with r(x) < ]8. Let r( j ) = j 8 + 1. To show that HSet(H(y)), we note
that H{y) is a set of ordered pair sets by definition. Each first component is an
hset by the induction hypothesis. Each second component is an hset since V«
HSet(ή). Therefore, the only way in which H(y) could fail to be hereditary is
if some (H(x),m) in H(y) is such that H(x) = m (since then (H(x),m) =
{{H(x)},[H(x)]2}). However, this can never happen, since all H(x) are sets of
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ordered pairs, but m for m > 1 is never a set of ordered pairs. Therefore, H{y)
is an hereditary set, and HSet(H(y)) for every mset y in M.

We first define the cardinality of hsets, and then the cardinality of msets
in general. For any mset u such that HSet(u), we define the cardinality of u,
written C(u), to be the cardinal K E Card assigned to u in our copy ZFC' of
ZFC. There are several ways in which this assignment can be made depending
upon the presence or absence of AC ([21], pp. 83-84). Since we assume AC
throughout, C{u) is the least ordinal equinumerous to u. For any mset u, we
define the cardinality of w, written C(u), by C(u) = C(H(u)).

An mset u is infinite if C(u) > Ko (where > is the ordering of the cardi-
nals in ZFC). An mset u infinite if C(u) < Ko, or equivalently, if u = 0 v 3n
C(u) = ή holds. If Set(u), then u « H(u). If ~Set(u) and w is finite, then
repeated elements in u are counted as distinct elements in H(u). If u is infinite,
then C(w) = C(w*) since each element of u contributes at most a finite num-
ber (its multiplicity) to C(u).

In general, for all msets x, C(x) > C(x*). If C(x) = C(x*), then either
x is infinite or SW(x) holds. If C(x) > C(x*) then x is finite and ~Set(x)
holds. One can show that Vx(vyvz((>> E x Λ z E x ) - > . y = z)-» (C(x) =
0 v 3« C(x) — ή), that is, every simple mset is finite. Other theorems include:
VxVy(x < y -* C(x) < C(^)), Vxv^(x c ^ -> C(x) < C(y))9 VxVy((x < y Λ
J> < x) -> C(x) = C(^)) and VxV^(x « y -• C(x) = C(^)). However, all the
converses are false — consider the two msets [x,^]2,i and {x,^,z]

The theory MST can be modified to allow urelements by methods similar
to those used for ZFC. There are several ways in which this could be done (see,
for example, [10], p. 25, footnote 1. One could also adapt the technique used
in [2], pp. 7-11.)

It is important to note that our two-sorted approach to the theory MST
provides a general strategy for the formalization of a whole family of non-
classical set theories. Instead of the axioms of Peano Arithmetic, one could use
axioms (stated in numeric variable symbols) for a variety of algebraic structures.

3 A model of MST To establish the relative consistency of MST, we con-
struct a model of MST in ZFC by interpreting multisets as positive integer-valued
functions. We assume ZFC throughout. Recall that the language L of MST is
{e/,S, + , ,0}. We construct an L-structure F with two domains: the set ω of
finite ordinals and a hierarchical class F of functions. The numeric variable sym-
bols of L are to range over the set ω, and the mset variable symbols over the
class F. Let ώ be the set ω less 0 . We define the class F of ά3-valued functions as
follows: Fo = 0; Fa+i = {x: dom x-> ω\dom x <Ξ Fa}\ Fλ = (J Fa if Lim(λ)

and F = (J Fa. In other words, the range (range(x)) of each function x in
a<Ξθn

F is a subset of ω. The domain {dom x) of each function x in F is a set of func-
tions in F of lesser rank than x (where the rank r(x) of x in F is the least ordi-
nal a E On such that x E Fa — this is different from the usual rank function in
ZFC).

Let us compare the first few levels of the Ma and Fa hierarchies: Fo =
Mo = 0, Fx = Mx = {0}, F2 = (0,((0,1»,«0,2>) « 0 , π > ] , . . . )



60 WAYNE D. BLIZARD

whereas M2 = {0,{0), [ 0 ] 2 , , [0]«, }. F2 contains a countably infinite
number of functions. F3 = {x: dom x-+ ω\dom x c F2] contains uncountably
many functions of F and contains the first functions of F with countably infi-
nite domains (for example, x: F2 ->• (1)). Consider the function x: F2 -• ω
defined by x(0) = 1 and V« > 0 x({(0,n)}) = n. This function x in F3 is the
interpretation in F of the mset [0,{0j,[0] 2,[0] 3, . h, 1,2,3... of MST (which
is an element of M3 = {x|x* e F3 U JP(M2)}). The function x: {{<0,13>}} -*
{1066} is in F3 (since rfom x Q F2) and is the interpretation in F of the mset
[[0]i3hθ66 of MST (in M 3). The function x: {0,{<0,7>},{<0,1985>}}-> {1} is
in F3 (since dom x <Ξ F2) and is the interpretation of the set {0,[0]7,[0]i985l =
[0,[0]7,[0]i985]i,i,i of MST (in M 3). The seta of MST correspond to the sub-
class ( i G F\range(x) = {I}} of the class F F4 = {x: dom x^> ω\dom x <Ξ F3]

contains the first functions of F with uncountably infinite domains (like x: F3 ->

{1}).
Equality in F is equality of sets in ZFC: two functions x and y in F are

equal iff x and y are equal sets of ordered pairs. The two domains of F, ω and
F, are disjoint except for 0 . No element of ώ is a set of ordered pairs, but every
element of F is a set of ordered pairs.

Some useful facts about the structure of F which we need in order to prove
that F is a model of MST are: r(x) is never a limit ordinal; if y E dom x then
r(y) < r(x); if r(x) < a, then x e F α ; if α < 0, then Fα c Fβ; for each α E On,
Fa = {x E F|r(x) < α}; and for each α E On, F α + 1 = FaU {x G F\r(x) =
a + 1).

Let φ be a wff of L. The interpretation of <p in F, denoted by F(<^), is
defined by induction on the logical complexity of φ as follows: F(Λ: = y) is
xGFΛyGFΛX = y, Ψ(n = m) is nEωΛmGωr\n = m, W(e(x,y9n)) is
xGFΛyGFΛnGωΛy(x) = n, Έ(~ψ) is ~F(ψ), F(i^v^) is Ψ(ψ) v F(0),
F(^-*β) is F(^)->F(0), Ψ(lnψ) is 3Λ(«EώΛF(^)), W(Vnψ) is WZ(ΛZ E ω -̂
F(^)), Ψ(3xφ) is 3Jc(jceFAF(^)), andF(Vx^) is Vx(xG T7-^ F(ψ)). Clearly,
if φ is a wff of L, then F(^) is a wff of ZFC. By 'V holds in F" we mean
ZFC h F ( ^ ) .

In F(^), numeric quantifiers are restricted to the set ώ, and mset quanti-
fiers to the class F When writing W(φ) for some particular wff φ of L, these
restrictions on quantifiers are to be understood —they will not be written out
explicitly. Elements of sets defined below are understood to be restricted to the
class F or the set ώ, as appropriate.

Therefore, F(x E π y) is y(x) = n. Since x G y is 3n x Gn y, Ψ(x E y) is
3n(n E ω /\y(x) — n), or simply x E dom y. It is straightforward to show that
W(Set(x)) is x = 0 v range(x) = {1} and that F(# c j ) is dom x c ί/om j Λ
Vz(z E ί/om x -• x(z) < j(z)). For any function y in F, the function z =
{<JC,1>|Λ: E ί/ora ^} in F(r(z) = r( j ) since ί/ora z = ώ m jμ) is the 'root set of
f in F.

To interpret the unary function symbol of L we define a function also
denoted by . We define : ω-»Fby ή = {(m9l)\m G n] for all n E ω. Equiva-
lently, 0 = 0 and fl U {«} = ft U {<Λ,1>} for all n E ω. So

1 = {<0,1>} and
2 = {<0,1>,<{<0,1>},1>).
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The function ": ω -> F i s a 1-1 embedding of the set ω into the class F. One can
show, for all n G ω, that h G Fn+U so that the range of " is a subset of Fω. We
will extend this function to ": F-» V C F shortly.

The other nonlogical symbols of L (S, + , ,0) are interpreted in F as the
usual successor, addition, multiplication, and zero of the set ω. In other words,
for each n G ω, Sn = n U {«}, + is defined by Axioms N3 and N4, is defined
by Axioms N5 and N6, and 0 = 0 .

To prove that F is a model of MST, we prove that every axiom θ of MST
holds in F—that is, ZFC (-F(fl). Our choice of ω and our definitions of ",
S, +, , and 0 are such that Axioms N1-N6, N8, and all induction Axioms N7^
hold in F. With respect to Axiom N8, we note that singleton sets {0} and [n]
of MST become the functions (<0,1>) and {</i,l>} in the model.

Axiom I holds in F simply because elements of F are functions. Axiom II
holds in F since two functions that agree at all arguments are equal. Axiom III
holds in F since the empty function 0 G Fx. Since {(x,n)} models [x]n and
{(x,n),(y9m)} where xΦy models [x,y]ntm, Axioms IV(i) and IV(ii) hold in
F. For Axiom V we note that for any function x E F, the 'powerset' function
y is defined by:

dom y — {z: dom z-* ω\dom z £Ξ dom x A
Vz'U' G dom z^z(z') <x(z')} and

range (y) = {1}.

To show that y is indeed in F, let r(x) = a + 1. To prove that y G F9 we first
show that dom y <Ξ Fa+χ. If z G dom y, then dom z <Ξ dom x <Ξ Fa and, there-
fore, z G Fa+Ϊ. Hence dom y c Fa+ι and, therefore, y G Fa+2. Further, since
x G dom y9 r(y) = a + 2.

F (Axiom VI) is equivalent to Vy(dom y Φ 0 -> 3x(x G c/om ̂  Λ dom x Π
<iom j ; = 0 ) ) . Given dom y Φ 0 , let x G rfom ^ be of least rank. If z G tfora
x, then r{z) < r(x) and z $. dom y (since JC is of least rank in dom y). There-
fore, dom x Π dom y — 0 and Axiom VI holds in F.

For Axiom VII, we note that for any x G F the 'union of x function' z' is
defined as follows:

dom z' = U {dom y\y G dom x] and for each z G dom z', define z'(z) by
(i) z'(z) = mαx{j(z)|zG dom y Ay Gdomx] if the set (j(z) |zG ί/om

,y Λ y G ί/om x) ^ ώ is bounded above in ω, and
(ii) z'' (z) - min{y(z)\z G dom J Λ J E dom x], otherwise.

The function elements in dom z' are 'the elements of elements of x* interpreted
in F. To show that z' G F, let r(x) — a + 1. Hence, dom x Q Fa. Therefore,
every y G dom x is in Fa. If z G ί/o/π z r then r(z) < r(y) and z E Fa. Since
cforn z' c F α , z' G Fa+ι (and so z ' G / 7 ) .

Similarly, for Axiom VIII, for any function x G F t h e 'additive union of
x function' z" is defined as follows: dom z" = ώ m z' = U { ώ m j | j G cίom x}
and for each z G dom z\ define z / r(z) by

(})z"{z) = Σ ( j ί ^ ^ ί J ' J k e dom y Ay G ώ/w x) if the set [y\z G

ί/om y A y G fifom x) is finite, and
(ii) z" {z) - z'(z), otherwise.
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The function z" is in F by the same argument that established that z' is in F
(since dom z" = dom z').

To show that the separation schema of MST holds in F, consider a wff
φ(x,n) of L with free variables including x and n but excluding n' and y. We
have that F (Axiom IX^) is VxVnVn'{{φf(X,AZ) Λ φ'{x,n')) -* n = AZ') -*
Vz3.yVxVA7(j>(x) = # <-• x G rfom Z Λ « < z(x) Λ <£>'(x,A2)) where φ'(x,n) is
F(<£>(X,AZ)), a wff of ZFC, with the same variable symbols as φ(x,n). We note
that the conjunct [x]n ^ z in Axiom IX ,̂ becomes {(x,n)} c z\ that is,
dom{{x,n)} c rfom ZΛ {<X,AI>} (X) < z(x), or simply xGdom Z Λ « < z(x). Let
φ' (x9n) be such that the antecedent of F (Axiom IX^>) holds, and let z be an
arbitrary function in F. Using separation in ZFC, we define a subset of ύfo/w z
(which we call dom y) as follows: dom j = j x G ί/ora z\ 3n(n E ω Λ « < z(x) Λ
φ'(x9n)}. For each x G dom y, we define j ( x ) = A? <-> V?'(X,AZ) Λ A? < z(x). The
function j> is well-defined since for every x G dom y there is at most one n such
that φ' (x,n) holds (we assumed that φ' (x,n) is functional). To prove that the
function y is in F, let r(z) = α + 1. Then dom y c rfom z Q Fa and ^ G F α + 1

as required. Therefore, Axiom IX^ holds in F.

The replacement schema of MST also holds in F. For any replacement
axiom Xφ of MST, consider its interpretation F (Axiom Xψ):

v*vyvy'((<*'(*,;/) Λ φ'(X,y'))-+y = y') ->
Vziz'vyvn(z'(y) = n <-> [3x(z(x) = n Λ ^ ' ( X , ^ ) ) Λ
vxvm((z(x) = m Λ ̂ '(x,^)) -* A2 < AW)])

where ^ ' ( ^ J 7 ) is Ψ(φ(x,y)), a wff of ZFC with free variables including x and
y but excluding ^ and z'. Let φ'(x,y) be such that the antecedent of F (Axiom
X^) holds, and let z be an arbitrary function in F We apply ZFC replacement
to the set dom z using the wff φ' (x,y) to obtain a new set which we call dom
z'\ y G dom z' +* ix(x G dom z Λ ^ ' ( X , ^ ) ) . We define a function zx with
domain dom z' as follows: for every y G dora z', define

Z'(y) = n ++ [3x(z(x) = n Λ ^ ' ( X , ^ ) Λ

vxvm((z(x) = m Λφ' (x,y)) -> n < m)].

To show that z r G F , let /3 = U [ r ( . y ) | j G ί / o m z / ) . Every j G rfom z' is in/7^.
So ύfom z' Q Fβ and z' G /^+i as required. Therefore Axiom X^ holds in F.

Before we discuss Axiom XI, we note that x U y is not, in general, a func-
tion in F when both x and j> are in F In particular, if there is some z G ώ w x Π
dora y such that x(z) =£ y(z), then x U j is not a function (both (z,x(z)) and
<£>.y(£)> are elements of x U y). This is not the case wi thxU {<x,l» however.
If x G F, then x U {<x,l» G F since the domains are disjoint. If dom x Π
dom{(x, 1>) = dora x Π {x} =£ 0 , then x G fifom x. But x G dom x implies that
r(x) < r(x), which is absurd. Therefore, the ordered pairs in x together with
<x, 1> always form a new function in F

The interpretation of Axiom XI in F is 3y( 0 G ύfom ^ Λ Vx (x G dora j> -»
x U «x,l>} G dom y)). Put dom y = [ή\n G ω) which is a set —the image of ω
in F under the embedding ". Since 0 G ω, 0 = 0 G dora j . If x G dom y then
x = « for some n G ω. If n G ω, then « U {A?) G ω and AI U {Π} = ή U {<A7,1» =
x U «x,l)} G dom y as required. Since F (Axiom XI) says nothing about the
range of y, we simply put range(y) = {1}. By induction one can show that
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Vn ή E Fn+i. Therefore, every ή E domy is in Fω = (J F n . Since ώ m >> <Ξ Fω,
j> E Fω+ι, and the function j is in F as required. / 7 < ω

For Axiom XII, we consider a function y in F with cfom j> ̂  0 and Vx(x E
Jom j -* ί/om x ̂  0 ) and VxVz((x E cίom .y Λ Z E dora j> Λ X Φ Z) -> ώ m x Π
ύfom z =£ 0 ) . By replacement in ZFC, the set {cfora ΛΓ|ΛΓ E dom y] is nonempty,
and its elements are nonempty pairwise disjoint sets. By the AC of ZFC there
exists a choice set, which we call dom y\ containing a single function xr from
each dom x. For each such x' E dom y' we define y' (x') — n iff x' E Jom x Λ
J ( X ) = n. It is easy to show that y' is a 'choice function' for the function y as
required by F (Axiom XII). To show that y' is in F, let r(y) = α 4- 1 so that
<iora j / c f α . Since each x E rfom y <Ξ F α , each such x E F α + 1 is such that ύfom
x ^ Fa. To show that t/om ^' ^ F α , if x' E ί/om ^' then x' E ώ m x c Fa.
Therefore, dom yf ^ Fa and y' E F α + i as required.

Theorem For α«y w//"<̂  of L, if MST h ̂  /AβΛ ZFC V Έ(φ).

Proof: If φ is an axiom of MST, we have shown in every case that φ holds in
F; that is, ZFC h F(<^). Since the F-interpretation respects rules of inference,
the F-interpretation of a proof of φ in MST is a proof of W(φ) in ZFC.

Therefore, the L-structure F is a model of MST. It follows that MST is
relatively consistent; that is, if ZFC is consistent, then MST is consistent. If
MST h φ Λ ~i/s then ZFC h F ( ^ Λ ~ψ), then ZFC h F(ψ) Λ ~F(ψ), a contra-
diction in ZFC.

In ZFC, we extend the function : ω -• F to the function : V-* F as fol-
lows: for each y E F, define y = «x,l>|x E y}. For each j E V, y « j) by the
bijection x ~ <x,l>. The range of the extended function is the class V =
{x\x G F j . I n fact, V= \J Va where Va = {x|x E Kα} for every a E O«.

To prove that V C F, one can prove the

Theorem For every a E On, Va <Ξ F α .
Proof: By induction on the ordinal α.

For every wff <£> of ZFC, we define the reinterpretation of φ in F, denoted
by φv, as follows:

(x = j ) ^ i s x E F Λ J E F Λ X = J ;

( x E ^ ) ^ i s x E F Λ J ^ E K Λ J ' W = 1; (~i^)f is ~ψΫ\
(ψvθ/is ψ*vθv; (3xφ)vis 3x(xE V/\ψv); and
(Vx^)^is Vx(xE V-+Φv).

If <̂  is a wff of ZFC, then φΫ is also a wff of ZFC. Diagramatically, for a wff
<? of ZFC:

' translation /
φ > φ

F-reinterpretation \ / F-interpretation

φV F(φ').
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The ' translation was defined on page 57. We wish to prove that ZFC V φ^ ++
Ψ(φ') for every wff φ of ZFC. One must first prove the

Theorem For every mset y of MST, ZFC h W(HSet(y)) ++ y G V.

Proof: By induction on the rank of y in M using the equivalence HSet(y) <->
Set(y) Λ vx(x G y - HSet(x)).

Theorem //> /s a wff of ZFC, then ZFC h φΫ++Έ(φ').

Proof: By induction on the logical complexity of φ. For example, if φ is x G .y,
then<^κis (* G j>)κ or x G V Ay G / Λ J ( J C ) = 1. Ψ((xGy)') is F(//&tf(x) Λ

HSet(y) AX G1 j ) or xG K Λ J G F Λ J>(X) = 1 by the previous theorem. Sim-
ilarly when φ is x — y. The induction then proceeds by cases, assuming the
equivalence holds for subformulas of φ.

Corollary For any wff φ of ZFC, ZFC h φΫ iff ZFC h Έ(φ').

Theorem For any wff φ of ZFC, if ZFC h φ then ZFC h φ Ϋ.

Proof: If ZFC h φ, then MST h φ'\ but then ZFC h W{φf)\ then ZFC h φΫ.

Therefore, the class V (a cumulative hierarchy of {l}-valued functions) is a
model of ZFC. The class Fis also a model of ZFC' if we interpret HSet(x) Λ
HSet(y) AX G1 y by x G VAy G VAy(x) = 1. Therefore, just as the class F
of ω-valued functions models the mset universe M, the subclass V of M of {1 }-
valued functions models the hset universe {x\HSet(x)}.

For any wff φ of ZFC,

ZFC \-φ => MST h <£>'

Z F C h ^ ^ ^ Z F C h F ί ^ ' )

where the double arrows represent metamathematical implications. To show that
all arrows hold in both directions, we prove the following

Theorem For any wff φ of ZFC,

(\)ZFCVφ^φΫ

(ii) if MST h φ' then ZFC h φ and
(iii) if ZFC h F ( ^ ) then MST h φ'.

Proof: (i) By induction on the logical complexity of φ. Recall that y = {(x,
\)\x G y] so that ZFC h x G y ++ (x,l) G y +* j>(jc) = 1. (ii) and (iii) follow
from the previous diagram and (i).

Therefore, all arrows hold in both directions in the above diagram.
A theory T' is a conservative extension of a theory T if

(i) L(T) Q L(T) and
(ii) for every wff φ of L(Ύ), T h φ <^> T' h φ.

The => direction is 'extends' and the <= direction is 'conservatively'. The theory
MST is not a conservative extension of ZFC since the languages are disjoint

L(ZFC)= (G) andL(MST)= [e/,S, + , ,0}.
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However, the theory MST is a conservative extension of the copy ZFC' of ZFC.
The most we can say about MST and ZFC is: for every wff φ of L(ZFC),

ZFC h ^ ^ M S T Vφ'}

NOTES

1. A second edition (1986) of Hailperin [12] replaces the word "heap" by the word
"multiset". Some readers will be interested in the investigation of combinatorial prop-
erties of msubsets of a finite multiset in Ian Anderson's Combinatorics of Finite Sets,
Clarendon Press, Oxford, 1987. I am grateful to John Amson for pointing out the
use of multisets (AΓ-subsets) in S. Eilenberg, Automata, Languages, and Machines,
Vol. A, Academic Press, New York, 1974. T. J. Smiley has pointed out the use of
multisets (or "bags") in the theory of Petri nets. See, for example, W. Reisig, Petri
Nets: An Introduction, Springer-Verlag, Heidelberg, 1985, and Appendix A in J. L.
Peterson, Petri Net Theory and the Modelling of Systems, Prentice-Hall, Englewood
Cliffs, N.J., 1981. P. B. Thistlewaite, M. A. McRobbie, and R. K. Meyer make sub-
stantial use of the concept of multiset in their Automated Theorem-Proving in Non-
Classical Logics, Pitman, London, 1988. Possible uses of "bags" in the theory of
relational data bases are suggested by R. R. Yager, "On the theory of bags," Inter-
national Journal of General Systems, Vol. 13 (1986), pp. 23-37. "Bags" are also used
in Alan Bundy's The Computer Modelling of Mathematical Reasoning, Academic
Press, New York, 1983. Recent work in the theory of multisets includes "A founda-
tion for multiset theory using BCK-linear logic" (M. W. Bunder, Department of
Mathematics, University of Wollongong, Australia) and "A geometrical approach
to multiset orderings" (U. Martin, Department of Computer Science, Royal Hollo-
way and Bedford New College, University of London) which is to appear in the
Journal of Theoretical Computer Science.
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