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The Difference Model of Voting

SVEN OVE HANSSON

Abstract A participant in a voting procedure may be concerned not only
that the outcome should be as good as possible but also that her own vote
should be cast for some alternative that is as good as possible. A high pri-
ority for the latter means unwillingness to compromise. Two formal models,
one ordinal and one cardinal, are developed for voting in which the individ-
ual preferences are combinations of these two types of values. A close rela-
tionship is shown to hold between the two models. Formal results are
obtained on conditions for voting sequences to be "stable" in the sense that
no collection of voters will have incentive to unilaterally defect from the way
they voted (Nash equilibria). Furthermore, computer simulations of the three
person case are reported. In these it is shown how the incidence of instabil-
ity, multi-stability (more than one stable outcome), and tie-stability (tie as the
only stable outcome) varies with different priorities between the two types of
values.

1 Introduction Social choice theory traditionally "conflates Choice' and
'preference'", and treats them "as essentially synonymous concepts . . . A pref-
erence is a potential choice, whereas a choice is an actualized preference". (Reyn-
olds and Paris [5], cf. Friedland and Cimbala [1]) In other words, the theory
represents collective decision-making as a mechanical aggregation of individual
preferences over the set of possible outcomes of the decision process.

This feature of the formalism impedes the representation of procedural pref-
erences. A participant may, for instance, prefer a unanimous decision, prefer to
vote in the same way as some other person, or prefer to be part of the major-
ity. Her voting behavior will then depend both on her preferences over the pos-
sible outcomes and on her preferences over procedural properties of the decision
process. In order to achieve a convenient representation of such combined pref-
erences, an extension of the classical, Arrovian framework is needed.

One procedural factor that seems to be important to many participants in
voting procedures is her or his own vote. The participant may be concerned not
only that the outcome should be as good as possible (according to some stan-
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dard), but also that her own vote be cast for some alternative that is as good as
possible (according to some, perhaps most often the same, standard).

This can be seen most clearly in cases where someone refuses to compromise
to achieve a second-best alternative. Let us consider majority voting to decide
between the three alternatives X, Y, and Z. A certain participant may at the same
time (1) strictly prefer X to Fand Fto Z, and (2) consider it to be against her
principles to vote for anything but the best alternative, i.e., X. Then she will not
join a coalition and vote for Y even if this would change the outcome from Z
to Y. Such preference patterns can, to mention just one example, account for
votes received by political candidates whose chances to get elected are negligible.

The present study will be devoted to decision processes where each partici-
pant has two concerns:

(1) She prefers the outcome to be as good as possible (according to her own
standards).

(2) She prefers the alternative that she votes for to be as good as possible (ac-
cording to her own standards).

A participant who gives greater priority to (1) rather than (2) is a result-oriented
(or compromise-willing) participant. Someone with the opposite priorities is prin-
cipled with respect to her own voting.

2 Voting procedures The classical Arrovian model will be extended as fol-
lows in order to accommodate procedural preferences.

Definition 2.1 A voting procedure is a quadruple (3,A,S,r) such that:
(i) 3 = <1,... n) is an π-tuple of individuals, namely those individuals that take

part in the voting procedure, /is the (unordered) set of elements of 3.
(ii) A = [x,y... } is the set of alternatives that the voting procedure aims at

choosing between. A U {λ} is the set of outcomes, where λ is the tie
outcome.

(iii) S = {si,... sm} is the set of strategies that are available to the participants
in the voting procedure.

(iv) An «-tuple TΓ = <«i,.. . an) of elements of 5 is a voting pattern. It denotes
that for each k, the kth individual performs according to strategy ak.

(v) r, the social choice function, is a total function from the set of voting pat-
terns to the set of outcomes.

This definition is uncommitted as to the structure of the set S of strategies. That
set may be identical to the set of alternatives, in which case each participant has
to vote for one of the alternatives. The set of strategies may also consist of sub-
sets of the set of alternatives, or of (ordinal or cardinal) rankings of the alter-
natives.

The preference relations of the participants will be constructed to refer to vot-
ing patterns instead of alternatives:

Definition 2.2 A preference prof He is an Λ-tuple (R{,... Rn), where each Rk

is a reflexive, transitive, and connected relation over the set of voting patterns.
Rk is the preference relation of the A:th individual in 3. The relations Pk and Ik

are defined as follows:
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πPkπ' <-• πRkπ
f & -ι(π'Λ*π)

τlkτ' <-• TΓ/?**"' & ir'Λ*π.

The following shorthand notation will be used:

Definition 2.3 Let Λ: G / and let TΓ and TΓ' be voting patterns. Then:
(i) v(k,π) is the kth element of TΓ (i.e., it denotes how k votes in TΓ).
(ii) diff(τ9 TΓ') is the set of elements k of I such that v(k, TΓ) Φ v(k, TΓ').

Definitions 2.1 and 2.2 constitute a game format for voting. They make it pos-
sible to apply the traditional concept of Nash equilibria, i.e., strategy combina-
tions from which no collection of voters will have incentive to defect (Luce and
Raiffa [3], Myerson [4]). At least two versions of this notion of stability are plau-
sible:

Definition 2.4 A voting-pattern TΓ' defeats another voting-pattern TΓ iff TΓ' Φ
TΓ and for all k G diff'(TΓ, TΓ') : τ'Pkτ. A voting-pattern TΓ is A-stable (absolutely
stable) iff there is no TΓ' such that TΓ' defeats TΓ. It is R-stable (result-stable) iff
there is no TΓ' such that TΓ' defeats TΓ and r(τr') Φ r(π). An outcomexG A U {λ)
is A-stable (R-stable) iff there is a voting pattern TΓ such that r(τr) = x and that
TΓ is A-stable (R-stable),

As should be obvious, the relation "defeats" is antireflexive and asymmetric. It
is not in general transitive.

Theorem 2.5 A-stability and R-stability for outcomes do not coincide for vot-
ing procedures in general.

(For proofs of this and following theorems, see the Appendix.)
The present study will be concerned with voting procedures whose strategies

are the same as their alternatives (i.e., S = A). (For some basic results in the more
general framework, see Hansson [2].) Furthermore, attention will be restricted
to procedures that satisfy the following condition:

Definition 2.6 A voting procedure satisfies nonobliquity iff (i) S = A, and
(ii) for all voting patterns TΓ and TΓ', if v(k9 TΓ) Φ r(π) for all k G diff(π, TΓ'), then
r(τr ')=r(τr).

Nonobliquity implies that if only those who do not vote for the outcome change
their votes, then this will not change the outcome. The outcome of TΓ cannot be
changed in "oblique" ways, i.e., ways other than that some of those who voted
for (τr) in TΓ vote for something other than r(τr).

Nonobliquity implies, and is stronger than, the condition of non-negativity
(also called monotonicity), namely that if someone who did not vote for the out-
come changes her vote to vote for the outcome, then the outcome will not be
changed.

Simple and qualified majority procedures (without abstentions) are among
the voting procedures that satisfy this criterion.

3 Aggregative and single-based preferences Classical social choice theory
has been devoted to preferences that are consequentialist in the following sense:
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Definition 3.1 A preference relation Rk over voting patterns is consequen-
tialist iff for all TΓ and TΓ', if r(τr) = r(τr') then TΓ/̂ TΓ'.

The following wider class of preference relations includes the consequentialist
preference relations:

Definition 3.2 A preference relation Rk over voting patterns is aggregative
for the A:th individual iff for all TΓ and TΓ', if r(π) = r(τr') and v(k, TΓ) = v(k, TΓ'),
then TΓ/̂ TΓ'.

A preference relation that is aggregative for the kth individual may only refer
to the outcome and to the way in which the A:th individual votes. The votes cast
by others are taken into account only to the extent that they influence the out-
come. (Not all realistic preference patterns are aggregative. As an example, pref-
erences for unanimous decisions are not aggregative.)

The following definition provides a simplified notation for aggregative pref-
erences:

Definition 3.3 Let Rk be an aggregative preference relation. Furthermore,
let x and x' be outcomes, and let s and s' be strategies. Then [A:,S]Rk[x\s'] is an
abbreviation for: for all voting patterns TΓ, TΓ', if r(π) = x, v(k, TΓ) = s, r(τr') = x\
and v(k,π') = s', then πRkπ'. [x9s]Pk[x'9s'] and [x,s]Ik[x\sf] are defined
correspondingly.

One interesting class of aggregative preference relations are those that conform
with an (underlying) preference relation over outcomes in the following way:

Definition 3.4 An outcome ordering >k is a reflexive, transitive, and con-
nected preference relation on A U {λ}, i.e., on the set of outcomes. Furthermore,
to each outcome ordering >k are associated >k and =k , defined as follows:

x>ky++x>ky & -ι(y>kx)

x=ky^x>ky &y>kx.

B(k) is the set of best alternatives according to the >k ordering, i.e., x G B(k)
iff for all y G A U {λ}: x >ky. b(k)\s an (arbitrary) element of B(k).

Definition 3.5 Let Rk be an aggregative preference relation on the voting
patterns, and let >k be an outcome ordering. Then Rk conforms with >k iff for
all*,*' GA U {λ} andy9y' G A:
(i) [x,y]Rk[x\y] iff x >kx\ and
(ii) [x,y]Rk[x,y'] iff y*ky'.

An aggregative preference relation is single-based iff there is an outcome order-
ing to which it conforms.

Single-based preference relations can be used as a model to represent the com-
bination of, and conflict between, result-oriented and principled voting. (It
should be noted that with a single-based preference relation, the voter applies
the same standards of goodness to the outcome as to her own vote.)

In the Arrovian framework, the tie outcome is not covered by the individ-
ual preference relations. The present framework does not share this limitation.
In particular, a single-based preference relation may very well conform with an
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outcome ordering such asλ>kx>ky>kzorx>kλ>ky>kz (λ represents
tie and x9y,z the other possible outcomes.) In most of what follows, however,
such preferences will be excluded by the following condition:

Definition 3.6 An outcome ordering >k on A U (λ) satisfies tie avoidance
iff x>k\ϊoτ al lxG,4.

The following result is obtained for single-based preferences that satisfy tie
avoidance:

Theorem 3.7 Let r be a nonoblique social choice function. Furthermore, let
all individuals have single-based preferences that satisfy tie avoidance. Then an
outcome x is A-stable iff it is R-stable.

When A -stability and R-stability coincide, the word "stability" will be used to
cover both concepts.

In a given voting procedure, for each preference profile TΓ there is a (possi-
bly empty) subset of A U {λ} that is the set of stable outcomes for TΓ. TWO pref-
erence relations Rk and Rk are interchangeable with respect to outcomes if the
replacement of one of them by the other in a preference profile can never change
the set of stable outcomes. The following theorem characterizes one class of pairs
of preference relations that are interchangeable in this sense:

Theorem 3.8 Let (Rx,... Rk,.. .Rn) be a preference profile all of whose ele-
ments are single-based and satisfy tie avoidance. Furthermore, let Rk be a pref-
erence relation that satisfies the same two conditions and is such that:
(1) there is an outcome ordering >k with which both Rk and Rk conform, and
(2) for all x G A andy G A U {λ}

[x,x]Rk[y,b(k)] iff [x,x]R'k[y,b(k)]

and

ly,b(k)]Rk[x,x] iff [y,b(k)}Rf

k[x,x].

Furthermore let r be a nonoblique social choice function. Then {R\,.. .Rk,
. . . R n ) has exactly the same stable outcomes as (R\,...Rk,...Rn).

Example 3.9 Let S = A = [x,y]. Then the following two preference relations
satisfy the conditions of Theorem 3.8.

[x,x] [x,x]

[y,χ] [χ,y]
[χ,y] [y,χ]
[y,y] [y,y]
[λ,χ] [λ,χ]
[λ,y] [λ,y]

4 The difference model Under the conditions given in Theorem 3.8, the set
of stable outcomes is uniquely determined if the following are known for each
Rk: (1) the outcome ordering (>^) to which it conforms, and (2) for all x and
y whether or not [x,x]Rk[y,b(k)] and whether or not [y,b(k)]Rk[x,x].

If x is not among the best alternatives (i.e., x φ. B(k)), then the formula
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[x,x]Rk[y,b(k)] can hold only if x >ky. The formula [x,x]Rk[y,b(k)] can
be interpreted as "x is so much better than y that it is better to join a coalition
and vote for x, if x can then be achieved, than to vote for a best alternative
if the outcome will then be y". In other words, for [x,x]Rk[y,b(k)] to hold
(when x £ B(k)), x must be sufficiently much better than y.

The phrase "sufficiently much better than" suggests the possibility of a car-
dinal model. Such a model can be constructed as follows:

Definition 4.1 A difference model for (single-based preferences on) an alter-
native set A is an ordered pair (u,c), where u is a function that to each element
x of A U {λ} assigns a real number u(x), and c is a non-negative real number.
The number c is called the difference limit. Let {u,c) be a difference model for
the alternative set A. Furthermore, let Rk be a single-based preference relation
that conforms with the outcome ordering >k. Then Rk conforms with <w,c> iff
for <ύ\xGA\B(k) and y,zG A U {λ}:

(1) y*kz iff u(y)*u{z),
(2) [x,x]Rk[y,b(k)] iff u(x) - u(y) > c, and
(3) [x,x]Ik[y,b(k)] iff u(x) - u(y) = c.

A close relationship holds between difference models and single-based prefer-
ence relations, as can be seen from the following two theorems:

Theorem 4.2 Let (Rx,... Rk,... Rn) be α preference profile, all of whose
elements are single-based and satisfy tie avoidance. Furthermore, let Rk be a
preference relation that satisfies the same two conditions and is such that Rk and
Rk both conform with the same difference model <«,c>. Then, if r is a non-
oblique social choice function, (Rι,... Rk,.. .Rn) has exactly the same stable
outcomes as (R\,.. .Rk,.. .Rn).

Theorem 4.3
(1) For each difference model (u,c) with c> 0, there is at least one single-based

preference relation Rk that conforms with (u,c).
(2) For each single-based preference relation Rk, there is at least one difference

model (u,c) with c> 0 such that Rk conforms with (u,c).

5 Computer simulations The difference model is well suited for computer
simulation studies.

5.1 Standardization of the model Since the stability properties are invari-
ant under linear transformations, no generality is lost by the following standard-
ization that is practical for simulation studies:

Definition 5.1.1 Let <w,c> be a difference model for the alternative set A.
Furthermore, let gmax be the highest value of u (x) assigned to any x G A U {λ},
and let gmin be the lowest value. Then <w,c> is a standardized difference model
iff:
(1) gmin = 0, and
(2) gmax = 0 OT gmax = 1.
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The gmax = 0 case obtains only for difference models that correspond to com-
pletely indifferent outcome orderings (i.e., x =ky for all x,γ E A U {λ}). When
tie avoidance obtains, gmax = 1, and u(x) = 0 obtains only for x = λ.

5.2 The simulation program Having been given the input specifications, the
simulation program produces, for each individual, a random (standardized) dif-
ference model that satisfies tie avoidance. It is then determined which (if any)
of the outcomes are stable. The result is stored, and the process is repeated, with
new random difference models for each case, until statistics from the required
number of cases have been obtained.

The input specifications are the number of participants, the difference limit
of each participant, the number of alternatives, and the type of voting procedure
(simple majority or unanimity).

To assign a random (standardized) difference model to an individual, the pro-
gram proceeds as follows: (1) Tie is assigned the value 0. (2) Each nontie out-
come is assigned a random value between 0 and 1. (3) The model is standardized
by multiplying all values with \/gmax, where gmax is the highest of the values as-
signed in the second part of the procedure.

All runs were made on a personal computer. The program is available upon
request.

5.3 Results Three series of runs are summarized in Diagrams 1, 2, and 3.
Each diagram is based on a series of 11 runs, namely with the difference limits
0.0, 0.1, 0.2,... 1.0. The curves are drawn by interpolation from the points de-
termined in these runs. Each of the points from which Diagrams 1 and 3 are
drawn has been determined with a standard deviation not bigger than 0.5%. Each
of the points on which Diagram 2 was based has been determined with a stan-
dard deviation not bigger than 0.7%.

Diagram 1 shows the results when there are three participants and three al-
ternatives, and the decision is made by simple majority. All three participants
had the same difference limit, which is represented along the horizontal axis.

Furthest to the left in the diagram, where the difference limit is 0, we have
a situation commonly referred to in Arrovian social decision theory: namely,
three participants, three alternatives, simple majority, and no procedural pref-
erences. There is either no stable outcome or exactly one stable outcome. The
theoretically predicted probability of the former case (5.56%) was confirmed in
the simulations (5.8%, standard deviation 0.2%).

As the difference limit is increased, the probability that there will be no stable
outcome diminishes. When the difference limit is 0.5, this probability is around
0.1%. At that point, another occurrence has grown in frequency: namely, the
existence of two or three stable outcomes. (The probabilities for this are around
11.6% and 0.7% respectively, when the difference limit is 0.5.)

With a further increase in the difference limit, the existence of more than one
stable outcome is gradually replaced by another phenomenon: that the tie out-
come is the only stable outcome. The probability for this is around 0.4% when
the difference limit is 0.5 (simulation result) and 22.2% when it is 1.0 (theoret-
ical prediction; the simulation result was 22.1%).
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100% -

m ~~ ^ - ^ ^ ^ 1 (not tie) ^ ^ ^ ^

^*~ No stable outcome
•*"*** *» 1 stable outcome (tie)

_Λ n / •*"* ̂ ^ - 1 stable outcome (not tie)
• ^ «. 2 stable outcomes
- " ... 3 or more stable outcomes

1 (tie) /

.2 . . .

0 % - -^ *****""""— ——-—.—,- ^^»—•—** "**«»«.... Difference
I • • • ' Γ limit

0 0.5 1.0

Diagram 1. 3 participants, f majority, 3 alternatives.

In the series of runs summarized in Diagram 2, the input differed from that
of Diagram 1 only in one respect: the number of alternatives was increased from
3 to 5. (Thus the input conditions were 3 participants, \ majority, and 5 alter-
natives.) The overall picture is much the same as in Diagram 1. However, the
probability of exactly one stable outcome decreased, and increased probabilities
were found for all three other possibilities: instability, more than one stable out-
come, and tie as the only stable outcome.

In Diagram 3, the voting procedure is a unanimity procedure, and the rest
of the input conditions are as in Diagram 1. (Thus the input conditions were 3
participants, rule of unanimity, and 3 alternatives.) Here, the general picture is
much different from that of Diagrams 1 and 2. In particular, cases with no sta-
ble outcome do not occur.

5.4 Discussion In social choice theory, it is commonly assumed that voting
procedures should be as close as possible to a particular ideal or norm. Accord-
ing to this ideal, whatever the preference profile, there should be exactly one sta-
ble outcome, and it should not be the tie outcome.

Besides this ideal, there are three other possibilities:

(1) Instability: there is no stable outcome.
(2) Multi-stability: there are two or more stable outcomes.
(3) Tie-stability: there is exactly one stable outcome, which is the tie

outcome.
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100% -

^ ^ X 1 (not tie)

^*~ No stable outcome \
•*"** β ^ 1 stable outcome (tie) \

50% - %*'\***00' 1 s t a b l e outcome (not tie)
*^"^ ^ 2 stable outcomes /
~ ^**..- 3 or more stable outcomes / *tιe'

/

2 /
. - . /

• V< " S N
0% - " ^ Λ ^ Γ ^ - p I • " f ^ f ^ ' ί " ^ ^ 1 difference

0.5 1.0 h m i t

Diagram 2. 3 participants, f majority, 5 alternatives.

100% Hj
^ ^ No stable outcome

•*"*** #^- 1 stable outcome (tie) ^
•^**^*- 1 stable outcome (not tie) /
• ^ ^ - 2 stable outcomes . ^ 1 (tie>
- ** 3 or more stable outcomes

/

/

50% - / — % / ^S/

v' V /\
/ v / X

\ / \ / \ 1 (not tie)

V \ / \

^ 2 "^..
0 % - r" - n * M M "*- _"»-- Difference

Π i « « i I r—T J r — T | i m i t

0 0.5 1.0
Diagram 3. 3 participants, rule of unanimity, 3 alternatives.
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Instability is obviously a problematic situation. Whatever the outcome, there is
a coalition that has something to gain by reopening the issue and repeating the
voting procedure. Therefore, the decision process would seem to have a tendency
to go on forever. In contrast, multi-stability and tie-stability involve no such ten-
dency.

In actual political life, majority moves to reopen an issue seem to be fairly
uncommon when preferences are unchanged. One possible explanation for this
is that instability may have a smaller role in practical decision-making than what
has been theoretically predicted.

However, this does not necessarily mean that the "ideal" case (one single,
nontie, stable outcome) is more common than in theory. Instead, a decreased
occurrence of instability may have been bought at the price of an increased oc-
currence of multi-stability and tie-stability. Unwillingness to take part in com-
promises is, as these simulation studies have shown, one possible mechanism for
such an exchange.

6 Appendix Following are proofs of the theorems presented above.

Proof of Theorem 2.5: The theorem will be proved by the following example:
The set of alternatives is [x,y,z], and the set of individuals is {1,2,3}. The

voting procedure is by simple majority. Each individual has aggregative prefer-
ences (cf. Definitions 3.2 and 3.3).

Individual 1 ranks [z9x] as best and [y,y] as second-best.
Individual 2 ranks [z,z] as best and [y,y] as second-best.
Individual 3 ranks [y,z] as best and [y,x] as second-best.
All three individuals rank the rest of the possibilities lower than their second-

best, in an order that need not be specified.
Outcome y is /^-stable since there is a voting pattern —namely, < y9 y,x) —

that is not defeated by any TΓ with r(τr) Φ y. However, outcome y is not A -sta-
ble since all voting patterns with this outcome are defeated by < y,y,z} except
(y,y,z) itself, which is defeated by (x,z,z).

Proof of Theorem 3.7: The proof consists of two main parts. In Part 1, it will
be proved that if there is an /^-stable voting pattern TΓ with r(τr) = λ, then there
is an A -stable voting pattern TΓ' with r (τr ' )=r(τr) = λ. In Part 2, it will be
proved that if there is an ^-stable voting pattern TΓ with r(π) Φ λ, then there is
an A -stable voting pattern TΓ' with r(τr') = r(τr). Since it is obvious that A -sta-
bility implies /^-stability, this is sufficient to prove the theorem.

Part 1: Let TΓ be an R-stable voting pattern with r(τr) = λ. TΓ' is constructed
as follows: If v(i,ττ) G B(i), then v(i,ττ') = v(i,τr). If v(i,ττ) <£ B(i), then
v(i,τr') = b(i).

Let i G diff(τ,τ'). Then υ(i,ττ') >, v(i,τ). Also, by r(τr) = λ and the
tie avoidance condition, it follows that r(τr') >, A*(TΓ). Thus [r(π')9υ(i,π')]
Pi[r(τc),v(i, TΓ)] for all / E diff (TΓ, TΓ'). Thus if TΓ' Φ TΓ then TΓ' defeats TΓ. Since
TΓ is /?-stable, r(τr') = λ.

Let TΓ" be any voting pattern that defeats TΓ'.
Suppose that r(τr") = λ. Since TΓ" defeats TΓ', it follows from Definition 2.4

that dtff(ττ',τr") Φ 0 , and that [r(τr"),ι;(/,τr")]P/[r(τr'),ι;(/,τr')] holds for all
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/ G diff(π',π"). This, however, is impossible according to Definition 3.5, since
r(τr") = r(τr')andι;(/,τr')G£(/). Thusr(τr") Φ λ.

Next, let / be an element of diff(τ,τ"). There are two cases according to
whether or not i G diff(π', TΓ").

Case (i): / G diff(π',π"). Since TΓ" defeats TΓ', we have (by Definition 2.4)

[r(τ")Mi,**)]Pilr(ic')Mi,*Ί].
Case (ii): i £ diff'(TΓ',TΓ"). It follows from r(τr) = λ, r(τr") ^ λ and tie avoid-

ance that r(τr") >, r(τ'). From this and y(/,τr") = v(i,π'), it follows (by Def-
inition 3.5) that [r(τ")Mh*Ί]Pilr(τc')Mi,*')].

Thus in both cases, i.e., for all i G diff(τ,τ")> it has been shown that
\r(τ*)MUτm)\Pi\r(τ')MU*Ίy

Since A (TΓ') = r(τ) and v(i,π') > f t;(/,τr), we have |>(τr'),ι;(/,τr')]
Rdr(π)9v(i,π)]. From this and [r(π"),ι;(/,τr'')]P/[r(τr'),ι;(/,τr')], it follows
that [r(ic')Mi,*")]Pi[r(Ίc)Mi,*)]

Thus if TΓ' can be defeated by any voting pattern TΓ", then r(τr") Φ r(π) and
TΓ" defeats TΓ. Since TΓ is /^-stable, this is impossible; so there can be no voting
pattern that defeats TΓ'. It follows that TΓ' is A -stable if TΓ is R-stable.

Part 2: Suppose that there is an jR-stable TΓ with r(τr) Φ λ. We need to find
an A -stable TΓ' with r(τr') = r(τr). This will be done in the following three steps:

(A) Construct a particular voting pattern TΓ' with r(τr') = r(τr).
(B) Prove that for all TΓ", if TΓ" defeats TΓ', then r(τr") Φ r(τr').
(C) Prove that for all TΓ", if TΓ" defeats TΓ', then there is a voting pattern TΓ*

such that r(τr*) = r(τr") and that TΓ* defeats TΓ.

Since these properties of TΓ* contradict the R-stability of TΓ, it can be con-
cluded that there is no TΓ" that defeats TΓ', i.e., that TΓ' is A -stable.

Part 2A: Let A'(τr) be the set of individuals such that υ(i9 TΓ) = A (TΓ).
For each subset w of Λ^TΓ), a voting pattern τrw is defined as follows:

(1) If v(i,TΓ) G B(i) or / G w, then υ(i,τrw) = v(i,TΓ).
(2) Otherwise, v(i,πw) = b(i).

According to nonobliquity (Definition 2.6), there is at least one w G AΓ(τr) such
that K(πw) contains a minimal set of r(π) voters for r(πw) = r(τr). More pre-
cisely, r(πw) = r(τr), and there is no proper subset w' of w such that r ( v ) =

/•(*•).

Let TΓ' = TΓ̂  for any such minimal set w. Then r(τr') = A (TΓ).
Part 2B: Let TΓ" be a voting pattern that defeats TΓ'. We are going to prove

that r(τr") Φ r(τr'). Suppose that TΓ" defeats TΓ' and that r(τr") = r(τr').
Let / G diff(τ\ TΓ"). Suppose that v(i9 TΓ') G B(i). Since i G diff'(TΓ', TΓ") and

TΓ" defeats TΓ', it follows by Definition 2.4 that [A*(τr"),ι;(/,τr")]P/[r(τr'),
ι;(/,τr')]. This, however, is impossible (by Definition 3.5) since r(τr") = r(τr')
and f(/,τr') GB(i).

It can be concluded that if /G diff{-κ\TΓ"), then υ(Uτf) £B(i)At follows
by the construction of TΓ' that A (τr")=£r(τr').

Part 2C: We now have to prove that for all TΓ", if TΓ" defeats TΓ', then there
is a voting pattern TΓ* such that r(τr*) = r(τr") and that TΓ* defeats TΓ.

Let TΓ" be any voting pattern that defeats TΓ'. We construct TΓ* as follows:
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If υ(i,π") = r(τr"), then t;(/,τr*) = r(τr"). Otherwise, iψ',τr*) = v(i,τc). It
follows by nonobliquity that A*(TΓ*) = r(π").

Let i be any element of diff(π,π*). Then ϋ(/,π*) = v(i,ττ") = r(τr*) =
r(τr"). Furthermore, since TΓ" defeats TΓ', either v(i9v") = v(i,π') or [/-(TΓ"),

y(/,τr")]P/[>(τr'),t;O',τr')]. These will be treated as separate cases.
Case (a): v(i9TΓ") = v(i9π'). Then v(i,π') = r(τr"). By the construction of

TΓ', for all / either v(i, TΓ') SB{i) or v(i, TΓ') = J*(TΓ'). In the latter case, we would
have r(τr') = t;(/,π') = v(i,τc") = r(π"), which is impossible according to
Part 2B of the present proof. Thus v(i,τc') E B(i). Since r(π*) = r(τr") =
v(Uτc'), it follows that r(π*) E fi(ι).

Suppose that f(/, TΓ) E B(i). Then, by the construction of TΓ' it follows that
υ(i9τr') = f(/,τr). Thus ι;(/,τr) = v(i9iτ") = ι>(/,τr*), contrary to / E diff(τr,τ*).
It follows that y(/,π) ί 5(/).

From r(τr*) E B(ι), v(/,π*) = r(τr*) and v(i,π) £ B(i) it follows that

[r(ic*)Mi,**)]Pi[r(*)Mi,*)].
Case(b): [r{τ")Mi,*Ί]Pilr(τ'),v(i,*')].
We first observe that by the construction of τr\ if v(i,TΓ') =̂  f(/,TΓ), then

v(i,ic') = b(i). Therefore, f(/,τr') >/ v(/,π) for all /. From this and r(τr') =
r(τr) it follows that for all /, [r(ic')9v(i9ic')]Ri[r(τc)9υ(i9τc)].

From this and [/•(τr"),f(/,τr")]P/[r(τr'),2;(/,τr')], it follows that [r(τr"),
υ(i,τ")]Pi[r(τ)9υ(i9τ)] or, equivalent^, [r(τm)Mi,**)]Pi[r(v)Mi,*)].

Summarizing cases (a) and (b), if / E diff(π,TΓ*), then [r(π*)9v(i,TΓ*)]
P/[r(τr),ι;(/,τr)]. Thus TΓ* defeats π. This concludes the proof.

Proof of Theorem 3.8: In the proof we will assume that Λ, is a preference
relation that conforms to an outcome ordering >, and for which it is known, for
all x and y, whether or not [x9x]Ri[y,b(i)] and whether or not [y,b(i)]
Rj[x,x]. It will be shown that this information is sufficient to determine which
voting patterns are (^4-)stable.

Part 1: A voting pattern TΓ will be called a candidate (for stability) iff for
all/, either v(i,π) = r(τ) or v(i,π) EB(i).

Let TΓ be a voting pattern that is not a candidate, and let TΓ' be such that for
all /: If v(i,π) = r(τr) or v(i,π) E B(i)9 then v(i,π') = v(i,π). Otherwise,
υ(i,τ') = b(i).

If r(τr) = λ then by tie avoidance A (TΓ') >, r(τr) for all / E /. If r(τr) Φ λ
then by nonobliquity r(τr') = r(τr). Thus in both cases, r(τr') > f r(τr) for all
is I.

Let / E dtff(τ9τc'). Then from r(τr') >/ r(τr) and ι;(/,τr') > f v(i,*κ) it fol-
lows that [r(τc')9v(i9τc')]Pi[r(ic)9v(i9τc)]. Thus TΓ' defeats TΓ.

Since all noncandidates can be defeated, in our search for stable voting pat-
terns we need only consider the candidates.

Part 2: Let TΓ be a candidate. Suppose that it can be defeated by a voting pat-
tern TΓ' such that r(τr') = λ. Furthermore let TΓ" be a voting pattern such that for
all /, if / E diff(π',TΓ), then v(i,TΓ") = b(i) and that otherwise v(i9TΓ") = v{i,TΓ).

Let / E diff(π",π). Then / E diff(πf

9τr), and therefore, since TΓ' defeats TΓ,
[r(τr'),ι;(/,τr')]P/[r(τr),ι;(/,τr)]. By tie avoidance and r(τr') = λ it follows
that r(τr") >, r(τr'). From v(i9τ")SB(i)9 it follows that ι;(/,τr") >/ u(/,τr').
Fromr(τr") >/ r(τr') and f(/,τr") >,f(/,τr'), it follows that [A (TΓ"),I;(/,TΓ")]
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Ri[r(Tc'),v(i9ic')]. From this and [r(π')9v(i9π')]Pj[r(π)9v(i9π)]9 it follows
that [r(τ")9υ(i,*Ί]Pi[r(τ)Mi,*)].

Thus if TΓ can be defeated by a voting pattern with the outcome λ, it can be
defeated by a voting pattern TΓ" such that if i G diff(π", TΓ), then v(i, TΓ") G B(i).

Part 3: Let TΓ be a candidate. Suppose that it can be defeated by a voting
pattern TΓ' such that r(τr') Φ λ. Furthermore let TΓ" be a voting pattern such that
for all i e /, if υ{i9τ

r) = A (TΓ') then y(/,τr") = r(τr'), and if υ(i9π') Φ r(τr') then
v(i,π") = v(i9π). By nonobliquity, r(τr") = r(τr').

Let i G diff(π9π"). Then y(/,τr') = r(τr') = ι;(/,τr") = r(τr"). Thus i G
diff(π,π'). Since TΓ' defeats TΓ it follows that [r(τc')9v(i9τc')]Pi[r(τc)9υ(i9τ)]9

or, equivalents, that [r(π*),ι;(/,π")]P/[r(π),t;(/,π)]. Thus TΓ" defeats TΓ.
It can be concluded that if a voting pattern TΓ can be defeated by a voting pat-

tern with a nontie outcome, then it can be defeated by a voting pattern TΓ" with
that outcome and with the property that if / G diff(π, TΓ"), then v(i, TΓ") = A (TΓ").

Part 4: It follows from Parts 2 and 3 that to determine whether a candidate
TΓ is stable or not, it is sufficient to determine whether it is defeated by any voting
pattern TΓ" such that if / G diff(π9 TΓ"), then either v(i9 TΓ") G B(i) or v(i, TΓ") =
r(τr"). From the fact that TΓ is a candidate, it follows that either y(/,π) = r(π)
or ι;(/,τr) GB(i).

We may therefore conclude that comparisons between expressions of the
forms [x9x] and [y9b(i)] are sufficient to determine the stability of outcomes.
The theorem follows straightforwardly from this result.

Proof of Theorem 4.2: This follows directly from Theorem 3.8 and Defini-
tion 4.1.

Proof of Part (1) of Theorem 4.3: We will assume that <w,c> is a difference
model, and construct from it an outcome ordering >z and a preference order-
ing Rj. We will then prove that /?,- conforms with >, (so that it is single-based)
and that it conforms with <«,c>. To prove this we need, according to Defini-
tions 3.5 and 4.1, to prove the following:

(i) For all x9x' G A U {λ} and y G A:
[x,y]Ri[x'9y] i ffx^ x'

(ii) For all x9 G A U (λj andy9y' G A:
lx,y]Ri[x9y'] iff y^y'

(iii) F o r a l l j c , j G ^ U {λ}:
x >/y iff u(x) > u(y)

(iv) For all x eA\B(i) and y G A U {λ}:
[x9x]Ri[y,b(i)] iffu(x) - u(y) > c, and

(v) Fora\\x<ΞA\B(i)3LndyeAU{λ}:
ly,b(i)]Rilx,x] iff u(x) - u(y) < c.

The construction will be as follows:

x >ιy holds iff u(x) > u{y).

To define Ri9 the following series of definitions will be used:

s(x)=u(b(i))-u(x)

If JC = 6(ι), then t(x) = 0. Otherwise, t(x) = \J(c2 + 2 c-s(x)).
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m(x,y) = ^((s(x)2) + (t(γ)2))

[x,y]Rdz,w] iff m(x,y) < ra(z,w).

Verification:

(i) The construction yields that [x,y]Rj[x',y] iff m(x\y) < m(x,y), iff

\ls(x')2 + ί ( j ) 2 < V*(*)2 + ί(j>)2, iff 5(JC;) < S(JC), iff u(x) >
κ(x'), iff x>iXr.

(ii) The construction yields that [x,y]Rj[x,y'] iff m(x,y') < m(x,j>), iff

Vs(x)2 + t(y')1 < V*(x)2 + /(j>)2, iff t(y') < /(>>), iff s(y') <
s(.y), iff w(^)>w(j '), iff yτ>iy'.

(iii) Holds by definition,
(iv) By the construction, [x,x]Ri[y9b(i)] iff m(x,x) < m(yyb(i)), iff

Vs(x)2 + /(x)2 < yjs(y)2 4• t(b(i))2, iff s(x)2 + c2 + 2 c 5(x) <
s(y)2, 'ήϊs(x) + c<5(7), iff W(JC) - u(y) > c.

(v) This is proved in the same way as (iv).

Proof of Part (2) of Theorem 43: We will assume that Rt is a preference rela-
tion that conforms to an outcome ordering >/. We will construct a difference
model (u,c) such that for all x and y:

(a) x>iy iff u(x)*u(y)9

(b) [x,x]Ri[y,b(i)] iff « W - u(y) > c, and
(c) lx,x]Idy,b(i)] iff u(x)-u(y) = c.

Suppose that >, is not strict, i.e., that there are two elements x and x' such that
x =i χ\ Then according to (a), u(x) - u(y). To simplify the proof we will as-
sume that >z is a strict preference relation. Then there is a unique best element
b(i) in the >z-ordering.

Construction:
The elements are assumed to be numbered in the >/-ordering: Xι,x2i.. .xn

with X\ = b(i).

We will use 1 (arbitrarily) as a difference limit. Furthermore, we will have
use for a very small number, δ. Let δ = (\)n+x.

The values of u(xm) will be determined recursively, from xx downward.
u(xχ) is assigned an arbitrary number.
For each xm in order, u{xm) is assigned a value according to whichever of

the following three procedures is applicable:

(1) If there is an xk such that xk >, xm and [x*>**]7/[*m>*(0]> then let

u{xm) = u(xk) - 1.
(2) If there are xk and xk+i such that x^ >, xk+λ >z xm and that [xk,xk]

Pi[Xm>b(i)]Pi[xk+ι,xk+ι]9 then let w(xw) = u(xk+x) + (W(XAΓ) -
« ( ^ + i ) ) ((/i + l - m ) / ( / i + l ) ) - l .

(3) If [Xit>^]^/Um»6(/)] for all xk >, xw then let w(xm) = «(xm_i) -
U + δ ) .

Verification:
We are going to prove by induction that the construction satisfies the desired

properties (a)-(c). It follows straightforwardly that (a)-(c) hold for [X\,X2\- For
the induction we will assume that the three properties hold for [x\,,...xm-\}.

Case (1): u(xm) was assigned a value according to Procedure 1 in the con-



590 SVEN OVE HANSSON

struction. Then there is an xk such that xk >/ xm9 [xk,xk]Ii[xm,b(i)]9 and
u(xm) = u(xk) - 1.

To prove property (a) it is sufficient, by the induction hypothesis, to prove
that u(xm) < i/(xw_i). Suppose not. Then from u(xm) = u(xk) - 1 and
u(xm-ι) < u{xm) we have u(xk) - u(xm-χ) > 1. Thus, by the induction hypoth-
esis, [xk,xk]Ri[xm-l9b(i)]. By this and [xk,xk]Idxm,b(i)] it follows that
[Xm,b(i)]Ri[xm-ι,b(i)]9 which is impossible since xm-\ >, xm

To prove property (b)9 it is sufficient by the induction hypothesis to show
that for all x' with as yet assigned values, [x'9x']Ri[xm,b(i)] iff u(xf) -
u(xm) > 1.

From [xk,xk]Ii[xm,b(i)] it follows that [x'9x'}Ri[xm9b{i)] iff [x\xf]
Ri[xk,xk],thus iff A:' >/jfyand, by the induction hypothesis, iff u(x') > u(xk),
i.e., iff u(x') - u(xm) > 1.

To prove property (c), it is sufficient by the induction hypothesis to show
that for all x' with as yet assigned values, [x\x']Ii[xm,b(i)] iff u(x') —
u(xm) = 1. Since >, is a strict ordering, there can be no x' other than xk such
that [x\x']Ii[xm,b(i)]. By the induction hypothesis, u(x') = u(xk) iff x' - xk9

thus u(xf) — u(xm) = 1 iff A:' =xk.
Case 2: u(xm) was assigned a value according to Procedure (2) in the con-

struction. Then there is an xk such that xk >, xk+ϊ >, xm, [jcjt,JC ]̂/̂  [Jcm96(/)]
P / [ ^ + i , ^ + 1 ] , andu(xm) = u(xk+{) + (u(xk) -u(xk+ϊ)j (« + 1 -m/n + 1) - 1.

To prove property (a), it is again sufficient, by the induction hypothesis, to
prove that u(xm) < u(xm-χ). Suppose not. Then from w(xm_i) < u(xm),
u ( x k ) > u ( x k + ι ) a n d u ( x m ) = u ( x k + ι ) + ( u ( x k ) - u ( x k + ι ) y ( n + l-m/n + l ) - l
it follows that u(xk) — u(xm-χ) > 1. Thus, by the induction hypothesis, [Λ^ Xλ:]
PilXm-ub(i)].

u(xm-χ) was assigned a value according to one of the three construction
procedures. This will give rise to three subcases.

Subcase (a): w(xm_i) was assigned a value according to Procedure 1. Then
there is anxr such that [xr,xr]Ii[Xm-ub(i)] and u(xm_{) = u(xr) - 1. Then by
the induction hypothesis and [xk,xk]Pi[xm-\,b(i)], it follows that [xk,xk]
Pi[xr9xr]9 so that u(xr) < u(xk)9 thus u(xr) < u(xk+\). From this and
u{xm_x) = u(xr) - 1, it follows that u(xk+i) - u(xm_x) > 1. Thus, [xk+l9xk+ι]
Ri[xm-i,b(i)]. Then [xk+ι9xk+ι]Rj[xm9b(i)]9 contrary to the conditions.

Subcase (β): u(xm^\) was assigned a value according to Procedure 2. Then
there is anxr such that xr >iXr+ι >iXm-u [Xr>Xr]Pi[xm-ub(i)]Pi[xr+ι9xr+ι]9

and u(xm_λ) = u(xr+ι) + (u(xr) - u(xr+ι)) (n + 1 - (m - \)/n + 1) - 1.
Suppose that xr>iXk. Thenxr+i >, x̂ > so w(xr+1) >u(xk). Since w(xm_1) >

w(xr+1) — 1 and u(xm) < u(xk) — 1, it can then be concluded that u(xm) <
w(jcm_i), contrary to our assumptions.

Suppose that xr =i xk. Then by the strictness of >i9xr = xk. It follows di-
rectly from the expressions defining u(xm) and w(xw_i) that u(xm-\) — u(xm) =
(u(xk) — u(xk+χ)) (l/n + 1). Since u(xk) — u(xk+ι) > 0, it can again be con-
cluded that u(xm) < u(xm-\)9 contrary to what we have supposed.

Next suppose that xk >/Xr. Thenx^! >/*,., thus [xk+ι,xk+i]Ri[xr,Xr] We
also know that [xm,b(i)]Pi[xk+ί9xk+ι] and that [Jtr,#r]P, [Jtm_i,&(/)]. It fol-
lows from these three conditions that [xm9b(i)]Pi[xm-ι9b(i)]. Thus xm >,
xm-\9 contrary to the conditions.
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Subcase (y): u(xm-ι) was assigned a value according to Procedure 3. Then
[xr,xr]Pi[Xm-\>b(i)} for all xr such that xr >,xm_i. Thus [xr,xr]Pi[Xm>b(i)]
for all such xr. From this and [Xk,Xk]Pi[Xm>b(i)]Pi[Xk+ι>Xk+\]i it follows that
xk+ι = xm_x and Xk = xw_2 According to the construction of u(xm-\), it follows
that u(xm-\) = u(xm-2) — (1 + δ). According to the construction of u(xm), it
follows that u(xm) - u(xk+ι) + (u(xk) - u(xk+ι)) (/i + 1 — m/« + 1) - 1 =
w(*w-i) + (w(xm-2) - u(xm-i))' (n + 1 - m/n + 1) - 1 = w(xw_i) + (1 + δ) •
(rt + 1 - m/w + 1) - 1. Since (1 + δ) (n + 1 - m/n + 1) < 1, it can be concluded
thatw(x w )< u(xm-χ).

Thus in all three subcases, property (a) is satisfied.
To prove property (b), it is sufficient by the induction hypothesis to show

that for all x' with as yet assigned values, [x\x']Ri[xm>b(i)] iff u(x') -
u{xm)> 1.

From [XktXAPAXmMWPλXk+uXk+i)* it follows that [x\x']Ri[xm,b(i)]
iff xf >i xk. By the construction, x' >z xk iff u(xr) - u(xm) > 1.

To prove property (c), it is sufficient by the induction hypothesis to show
that for all x' with as yet assigned values, [x\x']Ii[xm,b(i)] iff u(xf) —
u(Xm) = l Since in the construction, Procedure 2 was chosen for assigning
u(xm) a value, there is no x' such that [#',*']/,•[#„,,&(/)]. Furthermore, since
u{xk) > u(xm+i) > u(xk+\), there can be no x' such that u(x') - u(xm) = 1.
Thus property (c) holds.

Case 3: u(xm) was assigned a value according to Procedure 3 in the con-
struction. Then it is the case that [Xk,Xk]Pι\Xm>b{i)] for all xk >, xm and that
u(xm) = u(xm_ι) - (1 + δ ) .

To prove property (a) it is sufficient, by the induction hypothesis, to prove
that u(xm) < u(xm-χ). This follows directly by the construction.

To prove property (b) it is sufficient by the induction hypothesis to show that
for all x' with as yet assigned values, [x\x']Ri[xm,b(i)] iff u(x') - u(xm) > 1.

By the conditions for Case 3, [xf

9x
e]Ri[xm9b(i)] iff*' >iXm. By the con-

struction, u(xr) - u(xm) > 1 iff x' >ι xm. Thus property (b) holds.
To prove property (c), it is sufficient by the induction hypothesis to show that

for all x' with as yet assigned values, [x\x']Ii[xm>b(i)] iff u(x') — u(xm) = 1.
According to the conditions of Case 3, there is nox' such that [x'9x']Ii [xm, b(i)].
According to the construction, there is also no x' such that u(xr) — u(xm) — 1.
This is sufficient to prove that property (c) holds in this case, thereby conclud-
ing the proof.
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