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A Variable-Free Logic for Mass Terms

WILLIAM C. PURDY

Abstract This paper presents a logic appropriate for mass terms, that is, a
logic that does not presuppose interpretation in discrete models. Models may
range from atomistic to atomless. This logic is a generalization of the au-
thor's work on natural language reasoning. The following claims are made
for this logic. First, absence of variables makes it simpler than more conven-
tional formalizations based on predicate logic. Second, the capability to deal
effectively with discrete terms, and in particular with singular terms, can be
added to the logic, making it possible to reason about discrete entities and
mass entities in a uniform manner. Third, this logic is similar to surface
English in that the formal language and English are "well-translatable,"
making it particularly suitable for natural language applications. Fourth, de-
duction performed in this logic is similar to syllogistic and therefore captures
an essential characteristic of human reasoning.

/ Introduction This paper presents a logic appropriate for mass terms, that
is, a logic that does not presuppose interpretation in discrete models. Models may
range from atomistic to atomless. This logic is a generalization of the logic for
reasoning in natural language presented in Purdy [5]. It is also related, in its ob-
jectives, to the generalization of first order logic defined by Roeper [8].

Claims made for this logic are the following. First, the absence of variables
makes it simpler than more conventional predicate logics such as [8]. Second,
the capability to deal effectively with discrete terms, and in particular with sin-
gular terms, can be added to the logic, making it possible to reason about dis-
crete entities and mass entities in a uniform manner. Third, this logic is similar
to surface English, in that the formal language and English are "well-translat-
able" (see Culίk [3]), making it particularly suitable for natural language appli-
cations. Fourth, deduction performed in this logic is similar to syllogistic, and
it therefore captures an essential characteristic of human reasoning.

The first claim is supported by the body of this paper. The definition of the
language, its semantics, its axiomatization, and the proofs of soundness and com-
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pleteness are simpler and more straightforward than the more conventional for-
mulation given in [8]. Support for the second claim can be found in Section 4.
The third and fourth claims are essentially those made for the discrete version
of this logic. Support for these claims can be found in Purdy [5] and [6]. No
claims are made for solving the many linguistic and philosophical problems re-
lated to mass terms.

2 Definition of the language The language described in this section is the
same as £;v, presented in [5], but without singular predicates. The semantics of
£N is suitably generalized to permit nonatomic interpretations.

2.1 Syntax The alphabet of £N consists of the following. (Define ω+ :=
ω-{0}.)

1. Predicate symbols (R = UjGω+ Λ/, where (R,= {Rj:i E ω}.
2. Selection operators [<ΛΊ ,...,&„>: n E ω+, ktE ω+, 1 < / < Λ }.
3. Boolean operators Π and ~.
4. Parentheses ( and ).

£N is partitioned into sets of rt-ary expressions for n E ω. These sets are de-
fined to be the smallest satisfying the following conditions.

1. For each n E ω+, each Rf E (RΛ is an n-ary expression.
2. For each m E ω+, for each R™ E (Rw, (k\,..., km)Rψ is an rt-ary ex-

pression where n — max(£;)!<;<;,„.
3. If X is an n-ary expression then (X) is an π-ary expression.
4. If XΊs an m-ary expression and Y is an /-ary expression then (XΠ Y) is

an ft-ary expression where n = max(/, m).
5. If Xis a unary expression and 7is an (n + l)-ary expression then (XY)

is an «-ary expression.

In the sequel, superscripts and parentheses are dropped whenever no confusion
can result. Metavariables are used as follows: Rn ranges over (Rn; R ranges over
<RX; X, Y, Z, W, Frange over £N; and X", Yn,Zn, Wn

9 Vn range over /2-ary ex-
pressions of £N. Applying subscripts to these symbols does not change their
ranges.

2.2 Semantics An interpretation of <£AΓ is a pair β = <(2,T> where Q =
<^4,c > is a nonempty set partially ordered by inclusion, possibly having a least
element 0, and T is a mapping defined on (R. For each Rn E (RΛ, T(R n ) c ^ Λ

and satisfies:

1. if <#! , . . . ,βrπ> E Tίi?77), then <#! , . . . ,an) is a nonzero element of An;
2. if (au. ,.,an) G T(i?Λ) then for all nonzero (bu... 9bn) ^ (au...,

flπ>:<ii WeW;
3. if for all <&i, . . . , & „ > £ <<*! , . . . , ^ > , there exists < c l 5 . . . ,c n > c (bu...,

bn) such that < d , . . . ,c Λ > E T ( Λ Λ ) , then < ^ , . . . ,an) E T ( i ? Λ ) .

H e r e < α 1 ? . . . , an) is n o n z e r o :<=> for 1 < / < n: ύrf ^ 0, a n d {bu.. .,bn) Q

(au - - , ÂZ> :<=» for 1 < / < /i : 6/ £ #/.
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If a = <#i, a2,... > E ̂ 4ω, then a is nonzero if for all n E ω+, <#i , . . . , #„>
is nonzero. If β = (bΪ9 b2,... > E >lω also, then β c α if for all Λ E ω+, (bγ,
...,bn) c<fl, flΛ>,

Let a = <#i, a2,... > E ̂ 4ω be a sequence of elements of ^4. Then A" E £ΛΓ
fe satisfied by a in 0 (written 0 Hα X) iff α is nonzero and one of the following
holds:

1. X = Rn and {au... ,an) E T ( X ) ;
2. A" = <A:i,... ykm)Rm and for all nonzero β ^ a, there exists nonzero

7 ^ ^ < c ^ , . . . , c ^ w > hΎ/?w;
3. X = y and for all nonzero j8 g α: 3 1̂  y;
4. X= YΠ Zand 3 Nα yand 0 Nβ Z;
5. X = y ^ 7 ^ 1 and for some nonzero aeA: <α> t=α Y

ι and <α> hα Z" + 1 .

Here β Ψa Y is an abbreviation for not (£f l=α Y), and <Z?i,..., bn) \=a Y (or
<Z?!,..., bn) 1= y when there is no possibility of confusion) is an abbrevation

f o r β t<bι,...,bn,aι,a2,...> Y
X is true in ϋ (written β \= X) iff $ t=α X for every nonzero a E Aω. X is

valid (written N X) iff X is true in every interpretation of £N. A 0-ary expres-
sion of £N is called a sentence. A set Γ of sentences is satisfied in β iff each
ΛΓEΓis true in 3.

The intuitive notion is that X E £M is satisfied by a in β if and only if
(ai,..., an) is nonzero and is included in the denotation of X This notion im-
plies certain properties of mass terms, which in turn motivate the semantics. First,
if β K* X then 0 \=β X for any nonzero β <Ξ a. Second, whereas it is possible
that 3 K, Xand β ^ X, or that £J Nα Xand 0 ^ X, or that 0 ^α Xand β ¥a X,
it is not possible that β Nα X and 0 Nα X Third, β )raX iff 0 t=α X.

The first property is known as the distributive property of mass terms (see
Bunt [2] and Roeper [7]). It is imposed on basic expressions by the second re-
striction on the denotation function T. The first and second properties together
motivate the definition of satisfaction for X = Ϋ. As a consequence of the def-
inition of satisfaction for X = f, £f \=a X iff V/3 g a : β Ψβ X iff Vβ c α : ly c
β: 0 ky X This together with the third property motivates the so-called cumu-
lative property of mass terms (see [2],[7]) which is assured for basic expressions
by the third restriction on the denotation function T. For more on mass terms,
see [2] and [7]. Roeper [7] gives a clear and concise presentation of the neces-
sary background for a logic of mass terms. Bunt [2] provides a comprehensive
review of the lingusitic and philosophical issues as well as a logic of mass terms.

The following lemma and corollary establish the distributive, cumulative, and
complement properties in the general case.

Lemma 1 (schema) (/) If $ \=a X then V nonzero β ^ a : 0 ¥β X\ (ii) if
V/3 c a : 3γ g β: 0 f=7 X then 0 |=α X.

Proof: Proof is by induction on the structure of X. The basis follows directly
from the definition of satisfaction and the definition of T. The induction step
involves four cases.

Case 1. X = <k x , . . . , km)Rm. (i) and (ii) follow directly from the definition of
satisfaction (2) and the transitivity of inclusion.
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Case2, X—Ϋ. (i) follows directly from the definition of satisfaction (3) and the
transitivity of inclusion, (ii) V0 <Ξ a : 3γ c= β: $ YΊX implies V0 c= a : 3γ Q β:
V δ c γ S |?tδy (definition of satisfaction (3)). Now suppose β #aX. This im-
plies 3 nonzero β' Q a : β ¥β> Y (definition of satisfaction (3)), which implies 3
nonzero βf <Ξ a : V nonzero y' <Ξ β' 3 \=y, y(induction hypothesis (i)), i.e., -ι(V
nonzero β <Ξ a : 3 nonzero y ζ β:β Ψy Y). But this contradicts the preceding
result for δ = γ. Hence ύ Nα X.

Case 3. X = YΠ Z. (i) and (ii) follow directly from the definition of satisfac-
tion (4) and the induction hypothesis.

Case 4. X = YZ. (i) follows directly from the definition of satisfaction (5) and
the induction hypothesis, (ii) V/3 c α : 37 c β: β t=7 X implies V/3 c a : 3γ c
β: 3c G A : <c> \=y Y and <c> \=y Z (definition of satisfaction (5)). This implies
V0 c α : 37 c |8: 3c G ̂ 4 : V nonzero } ς r v nonzero rf c c:(d) \=δ Y and
<rf> Nδ Z (induction hypothesis (i)). Hence Vβ ̂  a:Vd £: c:3δ Q β:ld Q d:
{d) Hδ y and {d) \=δ Z. This implies <c> hα Z (induction hypothesis (ii)), which
implies β \=a YZ (definition of satisfaction (5)).

Corollary 2 (schema) β \=a X iff β t=α X.

2.3 A Boolean structure The semantics of the previous subsection defines
a Boolean structure for £N. Use of this structure simplifies the soundness argu-
ment to be presented in the next section. Define \X\ := [a:β \=a X}. Then
Î T Π K| = |^T| Π |>^|, where Π is set intersection. Further define \X\* :=
{a:Vβ£a(β#βX)}. Then |A"|* = | ^ | . Now let L be the image of £N under
I I. It is straightforward to verify that L is a pseudocomplemented meet-
semilattice with lower bound 0 . It follows from lattice theory (see Gratzer [4],
Thm. 1.6.4) that S(L) = {|^|*: \X\ G L}, the so-called "skeleton" of L, is a
Boolean lattice with meet Π, complement *, and join U, defined |Λ"| U | Γ | :=
(\X\* Π | y | * ) . But by Corollary 2, \X\ = \X\. Hence \X\** = \X\ and so
S(L) = L. Thus L is itself a Boolean lattice.

The following abbreviations in £N are motivated by this Boolean structure.

1. XU Y:= (XΠ Ϋ)

2. XQ Y:=XΠ Ϋ
3. I=r:=(lcy)Π(yci)

4. T:=(RloQRι

o).

The situation can be summarized as follows. L is a Boolean lattice with meet Π
such that \X\ Π \Y\ = \XΠ Y\, complement * such that | ^ | * = \X\, join U
such that IX\ U | Y\ = |XU Y|, bounds |Γ | and \T|, and ordered by inclusion
such that \X\ c |yj_iff \X c γ\ = \τ\. The expression XYhas the Boolean
property: \XY\ = \T\ iff \X\ c | y | M t follows immediately that:

1. V « : 5 h α ^ c riff vα: (β Nα ^implies 5 K Y)

2. Vα : 0 t=α X = y iff Vα : (0 l=α ̂ i ff β Nα y)
3. Vα : 3 Hα ̂ y iff Vα:ίl (= α Jίc y.
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2.4 Additional abbreviations The following abbreviations are introduced
to improve readability.

1. AX^^J^Y

2. XnXn_x - X{Y := (Xn(Xn-i ••• (XiY) -)
3. ^ y Λ

2 rΛ

2., y 1

2 : = ( . .(^1rΛ

2)yB

2-i) YΪ)
4. Rn :=(n,...,\)Rn.

Using the previously stated results for L, it is easy to see that:

1. β\=Xn •.. XxY
n iff for some (du... 9dn) GAn: {dx)¥Xx and and

(dn)¥Xn*.nd(du...,dn)tYn

2. 3 t = Λ J n . . ΛXιY
nifffoτaΆ<kdι,...,dn)eAn:({dι) ¥ Xx and •••

and <dn> ¥Xn) implies (du... ,dn> N Yn

3. S N A ^ y * * ••• y?iff f o r s o m e < r f 0 , r f i , . . . , ^ > e ^ Λ + 1 : < ^ i ^ o > l =

y? and <</2, rfi> 1= r | and and (dn, dn_x) \= Y% and (dn) ¥ Xx and
<tfo>N*2.

Intuitively then, ZXY2 renders "some X is F to some Z"; ΛZΛXY2 renders "all
JΠs r to all Z"; and ZXYl O r f renders "some X is Γ2

2 composed with y? to
some Z".

5 Axiomαtίzαtion of £N The universal closure of an «-ary expression Γ̂ G
JCTV is defined to be the nullary expression (ΛT)"X. The axiom schemas of £N

are the following:

BT The universal closure of every schema that can be obtained from a tautolo-
gous Boolean wffby uniform substitution of metavariables of £N for sen-
tential variables, Π for A , and ~ for -i.

Cl Xn • Xx(ku...ykm)Rm £Xkm... XkιR^ where n = max(kj)x^m.

C2 Xn - - Xx<kl9.. .,km)Rm ^Xkm XkιR
m where n = max(kj)x^Mm.

E G (ZTΠ A zxn A xn... Λ ^ Λ z r Λ + 1 ) c Λ ^ . AXxχγn+ι.
SS (AZXΠ AXΆ ••• Λ J ! Λ Z Γ + 1 ) C AXn ••• Λ ^ Λ Z Γ + 1 .

Di ( j / n ••• nxnτn AXn... Λ ^ 1 ( r m n z 1 ) ) ^ ( Λ ^ W •«. Λ A r

1 r m n
Λ^O AXXZ

1) where n = max(/, m) andy = min(/, m) + 1.
D2 ( Λ ^ W AXxY

m Π Λ J / . AXXZ
1) C ΛJfΛ - Λ ^ ( r 7 2 Π Zz) wΛere

« = max(/, m).
N AXn - ΛAΓ! F7 7 Ξ AΓΛ . - . AΓiF".

The inference rules of JÊ y are the following.

MP From X° and X° e r ° infer r °

El From (K° Π RTΠ ARXΠXn - - • Xx ARYU+1 ) , where R G (Rt does not

occur in * , A\,. . . , ^ Λ , r Λ + 1 , or V°, infer ( ^ Π ^ XxXYn+ι).

The restriction imposed on the unary predicate R by inference rule El is ab-
breviated by the phrase R is fresh.

The set T of theorems of £N is the smallest set containing the axioms and
closed under MP and EL
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Theorem 3 (Soundness) XeΎ only if (= X.

Proof: It suffices to prove that the axioms are valid and that validity is preserved
by the inference rules. Proofs will be given for Axioms C2 and Dl and Inference
Rule EL The others are similar.

(i) Axiom C2 is valid.
4)rXn - Xx<kΪ9.. .9km)Rm iff 3(dl9 . . . 9dn) G A": ((dx) ¥ Xx A . . . Λ

(dn) ¥Xn) A (du... ,rfπ> 1= <kl9...9km)Rm (Section 2.4) iff 3<rf1,... 9dn) G
An: «dx) YXXA Λ<</Π> K Y J Λ V<έ?!,..., en) c <rf l 5..., </„> : <* l f ...,en)Ψ

<ku..., km)Rm (definition of satisfaction (3)) iff l(dx,..., dn) G An: «rf!> f=
A"i Λ Λ (dn) ¥Xn) A \t(ex,..., en) c (dx,..., dn) : 3 nonzero </ i , . . . ,/„> c
<έ? l f . . . , en) : V nonzero (gl9... 9gn) c < / l f . . . ,/π> : < & i , . . . , ^ > ^ / ? w (def-
inition of satisfaction (2)) implies l(dkί,..., dkm) G ̂ 4 m : ((dkι) (= Λ^, Λ Λ
<rf̂w> h l j Λ V ^ , . . , ^ ^ , . . . , ^ ) : ] nonzero (fkl,...JkJ Q

(ekι,..., ekj : </Λ l,. . . ,7^) t= i?m (definition of satisfaction (3)) implies 3<rf̂ 1,
. . . , ^ m > G ^ w : ( < ^ 1 > h ^ 1 Λ > - Λ < ^ > N ^ w ) Λ < ^ 1 , . . . , ^ w > H ^ ( L e m -
ma 1) iff ΰ)rXkm'- XkχR

m (Section 2.4). Thus 0 1= AΓΛ Xγ<ku..., km)Rm

implies 3 \=Xkm A^jiP whence by Section 2.3, β \=Xn Xχ(ku..., km)Rm c
^ m X^R**. Since 5 is arbitrary, Axiom C2 is valid.

(ii) Axiom Dl is valid.
s N ̂ ,-rn n ̂ r n ΛA^ - AXX(jm n zι) iff 3 N Z / Λ Λ β t=

Z J Λ £ί t= ΛA^ ΛA^! ( 7 W Π Zι) (definition of satisfaction (4)). β 1= AXΆ -
Λ ^ ( r m n z 7 ) iff v(du...,rfΛ> G Λ * : «rf!> N x x A . . Λ < J Λ > N j r j ^<rf i ,
...9dn)¥Ym Π Z'(Section 2.4) iff v<rf l f . . . ,rfΛ> G^^rKc/ i ) HAr

1Λ ••• Λ
<rfΛ> 1= Ar

Λ) -> ((rfj , . . . , 4 > l = Γ Λ ( r f 1 , . . . , r f / > l = Z / ) (definition of satisfaction
(4)), which implies (V(du... ,dm) G Am: ({d^ N Xx A Λ <rfw> h * m ) ^
<dl9...,dm) ¥Ym)A(V(dι,...9dι)eAι:«dι) \ = X X A . . . Λ < C / / > N A T / ) -

<£/!,...,£//> HZ') iff 3 HΛArw ••• Λ ^ Γ Λ S H Λ J / - ΛAr

1Z
/(Section 2.4)

iff 3 H AXm - ΛA^JF'" Π AX1 . . . AXXZ
1 (definition of satisfaction (4)). Thus

β ϊXjTΠ Π X n T Π AXΆ AXX (Ym Π Z 7) implies S N Λ I W AXX Ym Π
ΛA /̂ AXXZ

1 whence by Section 2.3, β (= (A} Γ Π Π XnT Π ΛXW

AXx(Ym Π Zz)) c ( Λ A ^ •• Λ J 1 Γ W Π Λ J / - Λ ^ Z 7 ) . Since 3 is arbitrary,

Axiom Dl is valid.
(iii) Rule El preserves validity.

Suppose t=(F°Π RTΓ) ARXDXn XXARYH+X)9 where R is fresh, but
there exist interpretations β such that β N V° Π A^ A r

1 A r F Λ + 1 . In such inter-
pretations, 3<rf,rf l5... 9dn) GAn+ι :(d) tX and (dx) ¥Xι and ••• and <</„> H
A^ and (d9dl9...,dn) V Yn+ι. Since /? is fresh, among the interpretations β
there are interpretations β' such that T^i?) = {(d)}. But then £ί' 1= V° Π i?ΓΠ
Λ.RA" Π Xn A r

1ΛJRy"+1, which contradicts the assumption of validity.

Next, completeness of the axiomatization is shown. The proof is in the style of
Henkin. But because of the absence of atomicity, the construction of an inter-
pretation is not the standard one. Therefore the proof of the satisfiability the-
orem is given in full. First some definitions are needed._An expression of the
form YιZn+ι is an image. For example, Y_lY\(Y\Z_5 Π F 2 ) , Y\(Y\Z5 Π F 2 ) ,
and Y{Z5 are images, whereas Y\Z5 Π F 2 and F 2 are not. Let Γ c £N be a
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set of sentences. Γ is consistent iff it does not contain Xx,..., Xn such that Xx Π
• Π Xn is in T. Γ is complete iff for every sentence X G £N, either X or X
is in Γ. Γ is saturated iff it is complete, consistent and contains RT, ΛRX and
Xn Xx*RYn+l for some R G (Άx whenever it contains Xn XxXYn+ι

where 7 W + 1 is not an image. Γ* is the set of sentences obtained from Γ by uni-
form substitution of R\i for Rj in each XG Γ. Thus only unary predicate sym-
bols with even index occur in Γ*, leaving a denumerably infinite number of fresh
unary predicate symbols. Notice that the axioms do not reference any particu-
lar predicate symbol except RQ. Therefore any uniform substitution of distinct
unary predicate symbols for distinct unary predicate symbols that leaves RQ fixed
preserves consistency and inconsistency.

Lemma 4 Let Γ Q £N be a set of sentences. IfT*is consistent it can be ex-
tended to a saturated set of sentences Γ+ c £N.

Proof: Let Wu W2,... be an enumeration of the sentences of £N such that
if Wi = Xn - XxXYn+\ where Yn+ι is not an image, then WM =R}TΠ
ΛRJX ΠXn ••• XXΛRJ Yn+ι for somey such that j is odd and R) does not oc-
cur in Wk for k < /. Let Γo = Γ* and Γ/+1 = Γ, U {Wi+ι} if it is consistent and
Γ/+i = Γ, otherwise. Let Γ+ = U/e«Γ/.

(1) Γ + is consistent since each Γ, is.
(2) Γ+ is complete, for suppose X £ Γ+ and X £ Γ+. Then for some /,

Wjι,...,WJne Ti such that Wh Π Π Wjn Π X G T and for some V (say
i < Γ) Wkι,..., W'km e ΓΓ such that WkιΓl Π W'km(Λ X G T. But then by
Axiom BT and Rule MP, WhC\ - Π WjnΠ W'kιΠ Π ̂ m G T, contradict-
ing the consistency of I>.

(3) Γ+ is saturated, for suppose Wi = Xn ^iXY n + ι G Γ, for y"^1 not an
image. Then Γ/+1 contains RTΠ ΛRX Π Xn - - - XXARY"+1 for some fresh R
unless there are WJl,...,WJme Γ, such that W^Π Π WjmΓ\ RTΠ ΛRX Π
XΛ 'XλARYn+ι G T. But by Rule El, this implies WΛn - Π WJmnXn - -
XιXYn+ι G T, contradicting the consistency of Γ/.

Theorem 5 (Satisfiability) Let Γ c ̂  fte α set of sentences. IfT*is consis-
tent there is an interpretation β = <β,T> of £N satisfying Γ*.

Proof: Let Γ + be a saturated set of sentences extending Γ*. It suffices to show
that β satisfies Γ+. Let β be the subalgebra of unary expressions of the Linden-
baum algebra of Γ + (see Bell and Machover [1]). Then d is a Boolean algebra
whose universe is the set of equivalence classes of unary expressions of £N de-
fined: X~ Yiff Λ Γ ( 1 = Y) G Γ+. Let |JSf| be the equivalence class of X

The partial order of β is defined: \X\ c | y | iff ΛT(XQ Y) G Γ+. Some
simple properties of this partial order are the following. These properties are
based on the theorem schemas ΛΛ^Γand ΛXY= AT(XQ Y), which follow di-
rectly from the axiomatization.

(i) Λ^Tand Λ Λ Ύ = Λ Γ ( Z C T) imply ΛT(XQ T). Hence |Γ | is the up-
per bound of d.
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(ii) From (i) and Axiom BT, ΛT(TC X). Hence \T| is the lower bound
ofα.

(iii) XTeT+ iffXT(£Γ+ iff ΛXT(£Γ+ iff ΛT(XQ T) £ Γ+ iff \X\ is
nonzero in d.

(iv) ΛXYET+iff ΛT(XQ 7) E Γ + i f f \X\ c | y | in Q.

For each RnG(Άn define T(Λ Λ ) := {< |^ i | , . . . ,\Xn\> :XXTΠ ••• Π ^ Γ Π
ΛA^ . . . ΛXXR" E Γ + } . T satisfies the requirements for a denotation function
(see Section 2.2). That the first requirement is satisfied follows from the defini-
tion of T and property (iii) above. Satisfaction of the second requirement fol-
lows from Axiom SS and property (iv). That the third requirement is satisfied
can be seen as follows. Suppose V nonzero <| Wx | , . . . , | Wn |> Q <| Vx | , . . . , | Vn |>: 3
n o n z e r o < | £ / 1 | , . . . , | £ / I I | > c (\wx\>... 9\wn\) : <| Ux\9... ,|C/Λ|> E T ( Λ Λ ) but
< | K ! | , . . . j K n | > ί J F C ^ T h e n t ^ Γ , . . . , UnT9AUxVu . . . , AUnVn9AUnjj
Λ ί / ^ " E Γ + and Λ KΛ Λ VxR

n E Γ + ( Γ + is complete). Hence Vn - F ^ 7 2 E
Γ + a n d B ^ ^ . . ^ ^ E C R i such that i ^ Γ , . . . , Λ Λ Γ , Λ / ? I K I , . . . ,ΛRnVn,ΛRn •••
ΛRIR" E Γ + ( Γ + is saturated). By the initial assumption and properties (iii) and
(iv) above, 3QU . . . , Qn: ^ Γ , . . . , ρ Λ Γ, Λ Q ^ ! , . . . ,ΛQnRn9ΛQn - - AQxR

n E
Γ+, and so by Axiom EG, Qn - Q\Rn E Γ+. But because T satisfies the second
requirement, *Qn Λ Q ^ E Γ + whence by Axiom N, Qn β j i?" E Γ+,
contradicting the consistency of Γ+.

The proof will actually establish the more general claim: for each Xn E £N,
< | F 1 | , . . . , | F A Z | > H ^ i f f V n o n z e r o < | ^ 1 | , . . . , | ^ / 2 | > g < | F 1 | , . . . , | F Λ | > : 3 n o n -
zero<\Uι\f...9\Un\)Q<\Wι\9...9\Wn\):ΛUn ••• A I / ^ " E Γ + . P r o o f i s b y
induction on the structure of Xn. The basis follows directly from the definition
of satisfaction, the definition of T , and the requirements for a denotation func-
tion. The induction step involves four cases. Axiom BT and Rule MP are used
implicitly.

Case 1. Xn = < * Ί , . . . , km)Rm, where n = max(/: y)i< y<w.

< | K 1 | , . . . , | K π | > N A r Λ i f f v n o n z e r o < | » l | > . . . > | » ; | > c < | κ 1 | , . . . , | K Λ | > : 3
nonzero <| ^ | , . . . J ^ Λ |> ^ <| ̂  | , . . . , | ^ | > : <| C/^11,..., | C/ ŵ|> t= i ? w (defini-
tion of satisfaction) iff V nonzero <| Wx \,..., | Wn |> c <| Vx \,..., | Vn |> : 3 non-
zero <\Ux\9...9\Un\> c < | ^ | , . . . , | ^ | > : v nonzero <|QΛ:1I lQitml> £
< | i 4 j , . . . , | i 4 m l > : 3 nonzero < | P * J , . . . , | P ^ | > c < | Q ^ | , . . . , |Q^m |> : Λ P ^
• ΛPkιR

m E Γ + (induction hypothesis) iff V nonzero <| ^ | , . . . , | Wn |> c
< | ϊ ^ | , . . . ,|K,|> : a nonzero < | ^ χ | , . . . , | P n | > c <| Wx\,... ,\Wn\) : A P ^ W •••
ΛPkιR

m E Γ + (transitivity of <Ξ). The proof for this case is completed by prov-
ing the following claim.

Claim *Pkm - - ΛPkιR
m E Γ + iff Λ P Λ APx(ku . . , A:m>i?w E Γ+.

The only if direction follows directly from Axiom C2. For the if direction,
suppose ΛPkm - - - ΛPkιR

m £ Γ+. Then Pkm P ^ J P E Γ + ( Γ + is complete)
and therefore RkιTΠ Π RkmTΠ *Rk™Pkl Π >- Π rκRkmPkm Π Λ/?^W

ΛRkιR
m E Γ + for some Λ^,. . . ,Λ^m E (Ri (Γ + is saturated). Hence Λ ^

Λ Rx(ku...,km)Rm E Γ + , where Rj = Pj if j £ [ku. ..9km] (Axioms C l

and N), and by Axiom EG, Pn Pχ(kx,..., km)Rm E Γ+. That is, /\Pn
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APx(kx,...,km)Rm G Γ+ and so APH ΛPx(kx, . . . , km)Rm £ Γ+ (Γ+ is
complete).

Case2. X = Ϋ.
< l ^ i | , . . . , | ^ l > NA^iff v n o n z e r o < | F F 1 | , . . . , l » ; | > c < | κ 1 | > . . . , | K Λ | > :

<| Wx I , . . . , I Wn |> # Y (definition of satisfaction) iff V nonzero <| Wx | , . . . ,
|Wς,|> S <|Fk| |»^ |>:3 n o n z e r o < | C / 1 | , . . . , | t / Λ | > c < | ^ 1 | , . . . , | ^ | > : v
n o n z e r o < | Q 1 | , . . . , | Q Λ | > c < | c / 1 | , . . . , | ^ | > : Λ ρ Λ l AQXY£ Γ + (induction
hypothesis). But Λ Q Λ ΛQXY<£ Γ + iff QΛ QXYG Γ + ( Γ + is complete) iff
for some Rx,L..9RnG (RX:RXTΠ ••• Π i ? J Π A / ^ Q J Π ••• Π ΛRnQn Π
Λ/?Λ Λ i ? i ? E Γ + ( Γ + is saturated). It follows from properties (iii) and (iv)
above that |Λf | is nonzero and |Λ, | Q | β , | in (L By transitivity of c , v non-
zero {\WX\9... ,\Wn\) c φ ^ , . . . , |KΛ |>: 3 nonzero <\R{\,... ,|ΛΠ|> c < | ^ | ,
. . . , IW^ |>: Λ / ^ ΛJR] F G Γ+, which supports the claim.

Case 3. Xn = F m Π Z 7 where « = max(/, m).
<\Vx\9...9\Vn\)\=Xnifΐ < | F 1 | , . . . , | F m | > h r « a n d < | F 1 | , . . . , | F / | > h Z 7

(definition of satisfaction) iff V nonzero <| Wx \,..., | Wm |> g <| Fj | , . . . , | Vm |> :
3 n o n z e r o < | ί / 1 | , . . . , | C / m | > c < | ^ 1 | , . . . , | ^ w | > : Λ ( 7 w ••• Λ ^ r e Γ + a n d
V nonzero < | ^ | , . . . , | ^ | > c 0 ^ 1 , . . . ,|K/|> : 3 nonzero <\QX\,... , |β/|> £
<| FF! I , . . . , I fF,|> : ΛQ/ ΛQXZ

1 G Γ + (induction hypothesis). Now observe
that in general, (V/3 c α : 3 7 c /3: φ(γ)) Λ (V/8 C α : aδ c β: ^(δ)) iff VβQa:
37 c β: (φ(y) A 3δ c γ : ^ ( δ ) ) . Using this observation, the last condition
can be modified: iff V nonzero <| Wx \,..., | Wn |> c <| Vx \,..., | Vn |> : 3 non-
zero <| t / i l , . . . , | t/Λ|> c < | ^ | , . . . , | J F Λ | > : ΛC/W ••• A ^ y " G Γ + and 3 non-
zero <\QX\,... , |QΠ |> c <| ux\,... ,| Un\): ΛQ/ ΛQXZ

1 <Ξ Γ+. According to
properties (iii) and (iv) above, Q{Γ, AQI Ut G Γ+. This implies Λ Q W Λζ^ Ym G
Γ + (Axiom SS) and hence AQH ΛQx(Ym Π Zι) G Γ + (Axiom D2). Con-
versely, suppose V nonzero <| Wx \,..., | Wn |> ^ <| vx \,..., | Vn |> : 3 nonzero
< | G i | > . . . , | β ι , l > e < | W i | , . , | » ; | > : Λ Q l f ••• ΛQx(Ym Γ) Zι) eΓ+. Then
Λ β m ΛQiy m ,ΛQ / Λ Q 1 Z / e Γ + ( A x i o m D l ) a n d h e n c e < | K 1 | , . . . , | K m | > l =
y w and <| Vx \,..., | F/|> (= Z 7 (induction hypothesis) whence <| Vx \,..., | Vn |> N
F w Π Z 7 (definition of satisfaction).

Cα^e 4. Xn = F ^ ' 7 7 where m = n + 1.
<l Vγ I , . . . , I Vn\) \=Xn iff for some nonzero | V\ : <| F|> N Yι and <| F | , | Kj | ,

• > I Vn\y ^ Zm- Proceeding as in Case 3, it can be seen that the preceding
statement holds iff V nonzero <| W\, \ Wx \,..., | Wn\) Q <| F | , | Vx \,..., | Vn\):
3 n o n z e r o < | ί / | , | l / 1 | , . . . , | ί / Λ | > c < | ^ | , | ^ 1 | , . . . | W ; | > : Λ ^ . . . Λ ^ Λ C / Z ^ G

Γ + and 3 nonzero <|β|> c <| U\): ΛQY1 G Γ+, which implies QTΠ ΛQY1 Π
ΛUn ΛUXΛQZm G Γ+, whence AUn ΛUxY

ιZm G Γ + (Axiom EG). Con-
versely, suppose V nonzero <| Wx \,..., | Wn |> ^ <| Fi | , . . . , | Vn |> : 3 nonzero
< | t / 1 | , . . . , | t / Λ | > c < | ^ 1 | , . . . , | ^ | > : Λ ( / Λ . . Λ ί / 1 F 1 Z W G Γ + . Since ϋJΓand
Λ(// C / / G Γ + , Λt/Λ ΛC/ 1 y 1 Z m GΓ + impl ies(7 Λ . C/ 1y 1Zm G Γ + b y Axiom
EG. Let Zm = Mι -•• MxN

m+i

9 where / > 0 and 7VW+/ is not an image. Since
Un- Ux Y

ιMι MxN
m+ι G Γ + and Γ + is saturated, there exist R,RX,...9

Rn,Rn+x,. ..9Rn+ι G (Ri such that RT Π RXT Π ••• Π Rn+/T Π ΛRY1 Π

Λ / ? ! C/! Π Π ΛRn+ιMι Π Λ ^ ARXARARH+1 ARn+xN
m+ι G Γ + .

Hence Λ ^ ARXARMJ MxN
m+ι G Γ + (Axiom EG), i.e., Λ # Λ
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ΛRxΛRZm E Γ+. By Axiom SS, V nonzero \Q\ c \R\: ΛQY1 Π ΛRn

ΛRιΛQZm E Γ + and hence <|Λ|> 1= Yι and <|Λ|, j Vx | , . . . , | Vn\) t= Zm (induc-
tion hypothesis) whence <| V\ | , . . . , | Vn\) t= YιZm (definition of satisfaction).

Corollary 6 (Completeness) t= X only ifXeΎ.

4 Conclusion In the discrete version of £N presented in [5], the absence of
variables did not result in loss of expressiveness or increased complexity of
proofs. In the generalization of £N presented in this paper, the absence of vari-
ables enhances expressiveness and reduces the complexity of proofs relative to
conventional predicate logic. For a comparison, see the elegant generalization
of predicate logic to nonatomic domains presented by Roeper [8]. In a language
for mass terms, variables are superfluous if not intrusive. Consider the sentence
ΛXYR, which with some syntactic sugar is forall X exists YR, and makes the
assertion that for all JΓ there exist Ythat stand in the relation R. Compare (all
Xp) (some Yq) Rpq, or (Mp)(Xp-+ (some q)(Yq ΛRpq)), which make the
same assertion (see [7],[8]). Far from increasing expressiveness, the variables seem
to impede understanding.

Where a logic is desired for models that are nonatomic but not atomless,
the present logic can be supplemented by adding singular predicates, S = {S/.
/ E ω}, with semantics:

for each S E S, T(S) = {(a)} for some (not necessarily unique) atom aGA

and axiom schema (5 is a metavariable ranging over S):

S AXn ΛXx(SYn+l) s AXn ΛXxSYn+l.

In this way, reasoning about mass terms and reasoning about discrete terms can
be dealt with uniformly under a single logic.

Having established a sound and complete axiomatization, one can proceed
to prove theorems similar to those of [5]. Principal among these is the Monoto-
nicity Theorem, which states that if Y occurs as a subexpression of PFsuch that
Y lies in the scopes of an even (respectively, odd) number of complement oper-
ators and ( Λ j Γ f t r c Z ) (respectively, (AT)"(Z C γ))9 then W^ W\ where
W is obtained from JFby substituting Z for that occurrence of Y. (Some of the
details have been suppressed to simplify the statement.) These theorems provide
an approach to reasoning that is similar to syllogistic and, because of the close-
ness of the expressions involved to surface English, is termed "surface reason-
ing" in [6].
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anonymous referee.
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