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A Remark on Henkin Sentences and Their Contraries

John P. Burgess

Abstract That the result of flipping quantifiers and negating what comes after,

applied to branching-quantifier sentences, is not equivalent to the negation of the

original has been known for as long as such sentences have been studied. It is

here pointed out that this syntactic operation fails in the strongest possible sense

to correspond to any operation on classes of models.

Any first-order sentence is equivalent first to some prenex sentence, consisting of a

prefix or string of quantifiers followed by a matrix or quantifier-free formula, and any

prenex sentence is equivalent to an existential second-order sentence. For example,

(1) below is equivalent to (2) below:

∀u∃x∀v∃y R(u, v, x, y) (1) ∃ f ∃g∀u∀vR(u, f (u), v, g(u, v)) (2)

Logicians have for almost a half century also considered Henkin sentences, consist-

ing of one or more prefixes (customarily written in a vertical column, though they

could be written on one line, say using a slash to represent line breaks, as is done

when quoting verse) followed by a single matrix. The intended sense of such a sen-

tence is explained as that of an associated existential second-order sentence. Thus

(3) below is defined to be equivalent to (4) below:

∀u∃x

∀v∃y
R(u, v, x, y) (3) ∃ f ∃g∀u∀vR(u, f (u), v, g(v)) (4)

The difference between (2) and (4) is that g is a two-place function in the former and

a one-place function in the latter. Where (1) says that for every u there exists an x

and for every v there exists a y such that R(u, v, x, y), (3) says the same with the

addition that y depends only on v.
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According to a theorem of Enderton [2] and Walkoe [4] (to which the reader is

referred for the details of the general definition of branching quantifiers) every exis-

tential second-order sentence is equivalent to a Henkin sentence. Thus all the theo-

rems, long familiar to logicians, about models of existential second-order sentences,

immediately become applicable to Henkin sentences. So, for instance,

1. The compactness theorem holds (a set of Henkin sentences has a model if

every finite subset does);

2. There is a Henkin sentence whose models are precisely the interpretations

with an infinite domain; and

3. It is not the case that the negation of any Henkin sentence is equivalent to a

Henkin sentence.

(It is worth mentioning that since (1) is incompatible with the existence of a sen-

tence whose models are precisely the interpretations with a finite domain, (1) and (2)

together imply (3).)

By contrast to this last, the conjunction (or disjunction) of any two Henkin sen-

tences 8 and 9 is equivalent to a Henkin sentence ∧89 (respectively, ∨89). Re-

lettering if necessary, we may assume that 8 and 9 have no variables in common,

and then we may take as ∧89 (respectively, ∨89) the Henkin sentence whose pre-

fixes are those of 8 together with those of 9 , and whose matrix is the conjunction

(respectively, disjunction) of that of 8 with that of 9 .

To avoid trivialities, in the logic of first-order sentences it is conventional to ex-

clude models with an empty domain, while in the logic of Henkin sentences it will

be convenient to exclude models with a one-element domain as well. We write [8]

for the class of models of 8 (tacitly excluding those with one-element domains).

The syntactic operation ∧ (respectively, ∨) on Henkin sentences corresponds to the

semantic operation of intersection (respectively, union) on classes of models. As a

result, all the usual Boolean laws hold for ∧ and ∨ . For instance, ∧89 is equivalent

to ∧98, since [∧89] = [8] ∩ [9] = [9] ∩ [8] = [∧98].

If 8 has but a single prefix, or in other words, is a first-order sentence in prenex

form, then a prenex sentence ¬8 equivalent to the negation ∼8 of 8 can be obtained

by flipping the prefix of 8, replacing each ∀ by ∃ and vice versa, and negating the

matrix of 8. We may also form for any Henkin sentence 8 a Henkin sentence ¬8

whose prefixes are the results of flipping those of 8, and whose matrix is the negation

of that of 8. This ¬8 is sometimes called the contrary of 8, while the ordinary

negation ∼ 8, which is not in general equivalent to a Henkin sentence, would be

called the contradictory of 8. For example, the contrary of (3) above, equivalent to

(4) above, would be (5) below, equivalent to (6) below.

∃u∀x

∃v∀y
∼ R(u, v, x, y) (5) ∃i∃ j∀x∀y ∼ R(i, x, j, y) (6)

∀x

∃y
(x = y) (7)

∃x

∀y
(x 6= y) (8)

Similarly if we call the sentence in (7) above 20, then the sentence in (8) above

is ¬20. This example (a replacement, called to my attention by Väänänen, for an

unnecessarily complicated one used in an earlier draft of this note) is the simplest

case of the failure of equivalence of contrary and contradictory. For ¬20 is true in
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no interpretations at all, and 20 only in interpretations with single-element domains,

which we are excluding; so [20] = [¬20] = ∅.

Some but not all the usual Boolean laws hold for ¬. Among those that do hold

are the De Morgan laws: ¬ ∧ 89 is equivalent to ∨¬8¬9 (they have the same

prefixes, and matrices that are equivalent by the De Morgan laws of sentential logic),

and ¬ ∨ 89 to ∧¬8¬9 . Another that holds is the law of noncontradiction: 8 and

¬8 are incompatible, in the sense of having no common model. For instance, (3)

and (5), or equivalently (4) and (6), can have no common model, since otherwise we

would have both R(i, f (i), j, g( j)) and ∼ R(i, f (i), j, g( j)). A law that does not

hold is excluded middle. An interpretation may fail to be a model of either 8 or ¬8.

The syntactic operation ¬ on sentences not only does not correspond to the se-

mantic operation of complementation on classes of models, but further it does not

correspond to any semantic operation § at all. Setting §[8] = [¬8] does not give a

well-defined operation § on classes of models, since one may have Henkin sentences

8 and 8′ with [8] = [8′] but [¬8] 6= [¬8′]. Simply knowing only the class of

models of a Henkin sentence, and not the sentence itself, leaves the class of models

of its contrary completely undetermined, apart from the fact that the latter class is

also the class of models of some Henkin sentence, and the fact that the two classes

are disjoint. Such is the content of the following corollary of the Craig interpolation

theorem.

Corollary 1 Let 80 and 81 be incompatible Henkin sentences. Then there is a

Henkin sentence 2 such that 2 is equivalent to 80 and its contrary ¬2 is equivalent

to 81.

Proof Recall that there is a Henkin sentence 20 with [20] = ∅ and [¬20] = ∅.

Given 80 and 81, let 90 and 91 be ∨8020 and ∨8120, respectively. Then we

have

[90] = [∨8020] = [80] ∪ [20] = [80] ∪ ∅ = [80]

[¬90] = [¬ ∨ 8020] = [∧¬80¬20] = [¬80] ∩ [¬20] = [¬80] ∩ ∅ = ∅

and similarly [91] = [81] while [¬91] = ∅. Since each of [90] = [80] and

[91] = [81] is the class of models of a existential second-order sentence, and since

the two classes are disjoint, by Craig’s theorem there is a first-order sentence 9 such

that [90] ⊆ [9] and [91] ⊆ [∼9]. This 9 may be taken to be in prenex form, so

that ¬9 is defined and [¬9] = [∼9]. Then we may take

2 = ∧90(∨¬919) = ∧(∨8020)(∨¬(∨8120)9)

We will have the following, to complete the proof:

[2] = [∧90(∨¬919)] = [90] ∩ ([¬91] ∪ [9]) = [90] ∩ [9] = [90] = [80]

[¬2] = [∨¬90(∧91¬9)] = [¬90]∪([91]∩[¬9]) = [91]−[9] = [91] = [81]

�

In recent years Hintikka [3] and co-workers have revived a variant version of the

logic of Henkin sentences under the label “independence-friendly” logic, have re-

stated many theorems about existential second-order sentences for this “new” logic,

and have made very large claims about the philosophical importance of the theorems

thus restated. In discussion, pro and con, of such philosophical claims it has not

been sufficiently emphasized that contrariety, the only kind of “negation” available,
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fails to correspond to any operation on classes of models. For this reason it seemed

worthwhile to set down, in the form of the corollary above, a clear statement of just

how total the failure is. But even apart from recent controversies it is hoped that

the corollary is of some interest as an exercise in applying the interpolation theorem.

One immediate implication of the corollary just proved is worth mentioning. An el-

ementary class or EC is a class of the form [8] with 8 a first-order sentence, and a

pseudo-elementary class or PC is one of the form [8] with 8 an existential second-

order sentence. The Enderton-Walkoe theorem says that for any PC, call it K , there

is a Henkin sentence 2 such that K = [2]. The corollary just proved allows this

theorem to be strengthened to say that for any two disjoint PCs, call them K0 and

K1, there is a Henkin sentence 2 such that K0 = [2] and K1 = [¬2]. This obser-

vation answers (modulo the exclusion of interpretations with a one-element domain)

a question of Caicedo and Krynicki [1] about “independence-friendly” logic.
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