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On Sequentially Compact Subspaces of R

without the Axiom of Choice

Kyriakos Keremedis and Eleftherios Tachtsis

Abstract We show that the property of sequential compactness for subspaces

of R is countably productive in ZF. Also, in the language of weak choice princi-

ples, we give a list of characterizations of the topological statement ‘sequentially

compact subspaces of R are compact’. Furthermore, we show that forms 152 (=

every non-well-orderable set is the union of a pairwise disjoint well-orderable

family of denumerable sets) and 214 (= for every family A of infinite sets there

is a function f such that for all y ∈ A, f (y) is a nonempty subset of y and

| f (y)| = ℵ0) of Howard and Rubin are equivalent.

1 Introduction

Zermelo’s Axiom of Choice AC has been proven to be an indispensable tool in math-

ematics. One of the most typical examples is Tychonoff’s compactness theorem

which was proven to be equivalent to AC by Kelley [11] in 1950. Adapting Kel-

ley’s proof one can similarly show that Tychonoff’s theorem for countable families

of nonempty compact spaces implies choice for countable families. For an exten-

sive study on versions of the countable Tychonoff theorem the reader is referred to

Howard et al. [7]. Naturally, one may ask what happens when the compact spaces

involved in the countable version of Tychonoff’s theorem are subsets of the real line.

Loeb [16] using the fact that every family of nonempty closed subsets of R has a

constructive choice function (for a generalization of this fact to conditionally com-

plete linearly ordered spaces, see Keremedis and Tachtsis [14]) established that the

countable Tychonoff theorem for compact subsets of R is true in ZF. The interested

reader is also referred to De la Cruz et al. [2] for a generalization of this version of

Tychonoff’s theorem to well-ordered families of compact subsets of R. In the realm
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of sequentially compact subsets of R we show in Theorem 4.1 that this notion of

compactness is also countably productive in the settings of ZF.

Fundamental properties of the topology of the real line such as ‘every subspace

of R is separable’ or ‘x ∈ A if and only if there exists a sequence (xn)n∈ω ⊆ A con-

verging to x’ cannot be proved without using some form of the axiom of choice. In

fact, Herrlich and Strecker [6] have shown that the latter statements are topological

characterizations of CC(R), the axiom of countable choice restricted to nonempty

subsets of R. Complete definitions will be given in Section 2. It is a well-known

theorem of ZF (the Zermelo-Fraenkel set theory) that “A subspace X of R is com-

pact if and only if X is closed and bounded.” But the well-known ZFC (ZF plus

AC) theorem and Form 74 in Howard and Rubin [9], “sequentially compact (= ev-

ery sequence has a convergent subsequence) subspaces of R are compact” is not a

theorem of ZF. Indeed, in the original Cohen model (M1 in [9]), the set A of the

countably many added generic reals is sequentially compact, since it has no count-

ably infinite subsets in the model, which fails to be compact or even Lindelöf. This

example implicitly suggests that there is some connection between Form 74 and the

principle “every infinite subset of R has a countably infinite subset” labeled as Form

13 in [9]. In Keremedis [12] it is shown that the statement “every metric space hav-

ing the property that each of its sequences has a cluster point is countably compact”

implies Form 13. Since R is hereditarily second countable, sequential compactness

for subsets of R coincides with the above-mentioned property and the argument in

[12] readily adapts to show that 74 implies 13.

In Theorem 3.1 we give a list of characterizations of 74. For further study on

nonconstructive properties of the real line the reader is also referred to Howard and

Rubin’s long term project Consequences of the Axiom of Choice [9], to Jech’s book

The Axiom of Choice [10], and to the papers Feferman and Lévy [3], Gutierres [4],

Herrlich [5], [6], Howard et al. [8], Keremedis and Tachtsis [15], and Truss [17].

2 Notation and Some Preliminary Results

Let (X, T ) be a topological space.

1. X is called compact if every open cover of X has a finite subcover.

2. X is called countably compact if every countable open cover of X has a finite

subcover.

3. X is called Lindelöf if every open cover has a countable subcover.

4. X is called separable if X has a countable dense subset.

5. X is called sequentially compact if every sequence in X has a convergent

subsequence.

Let A ⊆ X . A point x ∈ X is called a cluster point of A if every neighborhood of

x meets A in at least one element other than x . Let (xn)n∈ω be a sequence in X . A

point x ∈ X is called a cluster point of (xn)n∈ω if every neighborhood of x contains

infinitely many terms of (xn)n∈ω. A subset A of a partially ordered set (P,≤) is said

to be cofinal in P if for every p ∈ P , there exists a ∈ A such that p ≤ a.

A metric space (X, d) is called complete if every Cauchy sequence in X con-

verges.

CC (Form 8 in [9]) For every countable family A of nonempty sets there ex-

ists a function f such that for all x ∈ A, f (x) ∈ x .
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CC(R) (Form 94 in [9]) CC restricted to countable families of nonempty subsets

of R.

ω-AC(R) For every family A of nonempty subsets of R there exists a

function f such that for all x ∈ A, f (x) is a nonempty count-

able subset of x .

ω-CC(R) ω-AC(R) restricted to countable families.

Pω-CC(R) For every countable family A of nonempty subsets of R there

is an infinite subfamily B of A and a function f such that for

all B ∈ B, f (B) is a nonempty countable subset of B .

WO-AC(R) For every family A of nonempty subsets of R there exists a

function f such that for all x ∈ A, f (x) is a nonempty well-

orderable subset of x .

WO-CC(R) WO-AC(R) restricted to countable families.

CC(c-R) CC(R) for families of nonempty complete subsets of R.

CC(sc-R) CC(R) for families of nonempty sequentially compact subsets

of R.

Form 13 in [9] Every infinite subset of R has a denumerable (= countably in-

finite) subset.

Form 74 in [9] Every sequentially compact subspace of R is compact.

Form 152 in [9] Every non-well-orderable set is the union of a pairwise disjoint

well-orderable family of denumerable sets.

Form 214 in [9] For every family A of infinite sets there is a function f such that

for all y ∈ A, f (y) is a nonempty subset of y and | f (y)| = ℵ0.

The axiom ω-AC(R) was introduced in [15] and its weaker forms were first consid-

ered in [4].

Theorem 2.1 ([4])

1. ω-CC(R) implies WO-CC(R).

2. WO-CC(R) implies every sequentially compact subset of R is compact.

3. If every sequentially compact subset of R is compact, then Form 13 holds.

Theorem 2.2 (ZF) Every sequentially compact, closed subspace of R is compact.

Proof Fix A a sequentially compact and closed subspace of R. A is separable fol-

lows from the observation that the family {A ∩[p, q] : p, q ∈ Q}\{∅} is a countable

family of nonempty closed subsets of R and the fact that G = {G ⊂ R : G 6= ∅

and closed} has a choice function in ZF (see [2], [14], [16]). The assertion that A is

bounded is straightforward. �

Proposition 2.3 Form 13 if and only if every infinite sequentially compact subset

of R has a denumerable subset.

Proof (⇒) Straightforward.

(⇐) Let A be an infinite set. If A has no denumerable subsets, then A is trivially

sequentially compact. By our hypothesis, A has a denumerable subset, a contradic-

tion. �
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3 Characterizations of the Axiom CC(sc-R)

Theorem 3.1 The following are pairwise equivalent:

1. CC(c-R).

2. CC(sc-R).

3. A countable Tychonoff product of nonempty sequentially compact subsets of

R is nonempty.

4. PCC(sc-R) (= for every countable family A of nonempty sequentially com-

pact subspaces of R there is an infinite subfamily B of A which has a choice

function).

5. ω-CC(sc-R) (= ω-CC(R) for families of nonempty sequentially compact sub-

spaces of R).

6. Pω-CC(sc-R) (= Pω-CC(R) for families of nonempty sequentially compact

subspaces of R).

7. Every sequentially compact subspace of R is compact.

8. Every sequentially compact subset of R has a cofinal subset which can be

expressed as a well-ordered union of well-orderable sets.

9. Every unbounded sequentially compact subset of R has a countable un-

bounded subset.

Proof

(1) ⇔ (7) This has been established in [4].

(7) ⇒ (2) ⇔ (3) ⇒ (4) ⇒ (6), (3) ⇒ (5) ⇒ (6), and (7) ⇔ (9) are straightforward.

(6) ⇒ (7) In view of Theorem 2.2, it suffices to show that Pω-CC(sc-R) implies

sequentially compact subspaces of R are closed. The latter implication is, in view

of Theorem 3.2 from [4], straightforward.

(7) ⇒ (8) Fix A ⊆ R a sequentially compact space. By (7) it follows that A is

closed and bounded. Therefore {supA} is the required cofinal subset of A.

(8) ⇒ (6) Fix A = {Ai : i ∈ ω} a family of nonempty sequentially-compact

subsets of R. Without loss of generality assume that for each i ∈ ω, Ai ⊆ (i, i + 1).

(Let f : R → (0, 1) be a homeomorphism and let for each i ∈ ω, fi : R → (i, i +1)

defined by fi (x) = f (x) + i . Then fi (Ai ) is a sequentially compact subset of R

such that fi (Ai ) ⊆ (i, i + 1).) Assume that Pω-CC(sc-R) cannot be applied to A.

Then clearly
⋃

A is unbounded and sequentially compact (every sequence (xn)n∈ω

in
⋃

A is such that (xn)n∈ω ⊆
⋃

i<m Ai for some m ∈ ω. Thus, (xn)n∈ω necessarily

meets some Ai in infinite many terms and since Ai is sequentially compact, (xn)n∈ω

has a convergent subsequence). Let, by our hypothesis, B =
⋃

{Bi : i ∈ α}, α an

ordinal, and each Bi well-orderable, a cofinal subset of
⋃

A. Via an easy inductive

argument construct a strictly increasing sequence of integers (in)n∈ω and a function

f such that for each n ∈ ω, f (Ain ) is a nonempty well-orderable subset of Ain .

Since for all n ∈ ω, Ain is sequentially compact and f (Ain ) is well-orderable, it

follows that f (Ain ) ⊆ Ain for all n ∈ ω. Then any choice function of the family

C = { f (Ain ) : n ∈ ω} satisfies Pω-CC(sc-R) for the family A. This contradiction

completes the proof of the theorem. �
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Remark 3.2

(A) Similarly to the proof of Theorem 3.1, one may show that ω-CC(R) is equiv-

alent to its partial version Pω-CC(R). A similar argument cannot be applied

to complete subspaces of R since completeness is not preserved under home-

omorphisms.

(B) The following statements can be added to the list of Theorem 3.1:

(i) Every sequentially compact subset A of R is countably compact.

(ii) Every sequentially compact subset A of R is weakly Lindelöf. (A is

weakly Lindelöf if every open cover of A has a countable subfamily

with dense union in A.)

(iii) Every sequentially compact subset A of R is pre-Lindelöf. (A is pre-

Lindelöf if for every ε > 0, A can be covered by countably many open

discs of radius ε.)

It is evident that the statement “sequentially compact subsets of R are compact”

implies each one of (i), (ii), and (iii). Now, (i) ⇒ (ii) is straightforward (every second

countable and countably compact space is compact without appealing to any form

of choice) and (ii) ⇒ (iii) has been proved in Keremedis [13] generally for metric

spaces. To see that (iii) implies back that the notions of compactness and sequential

compactness coincide, in view of Theorem 3.1, it suffices to show that (iii) implies

every unbounded sequentially compact subset of R has an unbounded sequence. Fix

such a subset A ⊆ R. Consider the open cover U = {D(x, ε) : x ∈ A} of A where

D(x, ε) = {y ∈ A : |x − y| < ε}. As A is pre-Lindelöf, U has a countable subcover

V = {D(xn, ε) : n ∈ ω}. It is evident that the sequence (xn)n∈ω is unbounded.

Clearly, the statement “if A ⊆ R is sequentially compact, then A is sequentially

compact” is a theorem of ZF+CC. We show next that it is unprovable in ZF by

establishing its equivalence to the weak choice principle CC(sc-R).

Theorem 3.3 The following statements are equivalent:

1. CC(sc-R).

2. If A ⊆ R is sequentially compact, then A is sequentially compact.

3. If A ⊆ R is sequentially compact, then A is bounded.

4. If A ⊆ R is sequentially compact, then A is compact.

5. If A ⊆ R is sequentially compact, then A is Lindelöf.

Proof

(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) are straightforward in view of Theorem 2.2 and the

equivalence between (2) and (7) of Theorem 3.1.

(5) ⇒ (1) Let A = {Ai : i ∈ ω} be a family of nonempty sequentially compact

subspaces of R. Assume that A has no choice function. Then the axiom CC(R) fails.

Herrlich [5] proved that for T1 spaces, Lindelöf ≡ compact if and only if CC(R)

fails. By our hypothesis and Herrlich’s result we conclude that for each i ∈ ω, Ai

is compact, thus bounded. Therefore, each Ai is bounded. For each i ∈ ω, let

ai = sup(Ai ).

Claim 3.4 For all i ∈ ω, ai ∈ Ai .

Proof of the claim Assume on the contrary that for some i ∈ ω, ai 6∈ Ai . Let

H : (−∞, ai ) → R be an increasing homeomorphism. Then H (Ai) is an un-

bounded sequentially compact subset of R. Since H (Ai) is sequentially compact we
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see that H (Ai) is bounded. Thus, H (Ai) is bounded, a contradiction. This completes

the proof of the claim. �

By the claim we immediately have that f = {(Ai , ai ) : i ∈ ω} is a choice function

for A. This contradiction completes the proof of the theorem. �

Remark 3.5 It can be readily verified that each of the following propositions is a

theorem of ZF.

1. If A ⊆ R is separable, then A is separable.

2. If A ⊆ R is complete, then A is complete.

3. If A ⊆ R is bounded, then A is bounded.

4. If A ⊆ R is compact, then A is compact.

4 Sequential Compactness for Subsets of R is

Countably Productive in ZF

Theorem 4.1 (ZF) A countable Tychonoff product of sequentially compact sub-

spaces of R is sequentially compact.

Proof Let A = {X i : i ∈ ω} be a family of sequentially compact subspaces of R

and let X =
∏

i∈ω X i be their Tychonoff product. For each i ∈ ω, let πi be the

canonical projection of X onto X i . Let (xn)n∈ω be a sequence in X and let f be a

choice function on the set of all nonempty closed subsets of R. Via an easy induction

we shall construct a convergent subsequence of (xn)n∈ω.

For n = 0, first define G0 = {x ∈ X0 : x is a cluster point of (π0(xn))n∈ω}. Since

X0 is sequentially compact, it follows that G0 6= ∅. We assert that G0 is closed in

R. To see this, fix g ∈ G0. Then for each n ∈ ω, the set Vn = (g − 1
n
, g + 1

n
) ∩ G0

is nonempty and contains infinitely many terms of the sequence s = (π0(xn))n∈ω.

Via a straightforward induction construct a subsequence s∗ of s converging to the

point g. Since s∗ ⊆ X0 and X0 is sequentially compact, it follows that g ∈ X0.

Consequently, g ∈ G0 and G0 is closed. Let g0 = f (G0). Construct a subsequence

h0 of (xn)n∈ω so that π0(h0) converges to g0.

Assume that subsequences of (xn)n∈ω, h0, h1, . . . , hn have been constructed

so that h j is a subsequence of h j−1 and π j (h j ) converges to g j ∈ X j for all

j = 0, 1, . . . , n. Now Xn+1 is a sequentially compact space, therefore, the set

Gn+1 = {x ∈ Xn+1 : x is a cluster point of πn+1(hn)} 6= ∅. Moreover, as in the

case n = 0, it can be shown that Gn+1 is closed in R. Thus, let gn+1 = f (Gn+1).

Construct a subsequence hn+1 of hn such that πn+1(hn+1) converges to gn+1.

It can be readily verified that the diagonal (yn)n∈ω, where yn is the nth term of

hn , is a subsequence of (xn)n∈ω converging to y ∈ X defined by y(n) = gn for all

n ∈ ω. �

5 Characterizations of ω-AC(R), WO-AC(R), and

the Independence of WO-CC(R) from 13

Theorem 5.1 The following propositions are equivalent:

1. Every non-well-orderable set is the union of a pairwise disjoint well-

orderable family of infinite well-orderable sets.

2. For every family A of infinite sets there is a function f such that for all y ∈ A,

f (y) is an infinite well-orderable subset of y.
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Proof (1) ⇒ (2) Fix a family A = {A j : j ∈ k} of infinite sets and let

B =
⋃

A. If B is well-ordered, then there is nothing to show. Thus, we may assume

that B is not well-orderable, and by (1), we can express it as
⋃

{Bi : i ∈ ℵ}, where

ℵ is a well-ordered cardinal and each Bi is an infinite well-orderable set. For every

j ∈ k, let i j be the first i ∈ ℵ such that Bi ∩ A j is infinite and put f (A j ) = Bi j ∩ A j .

If no such i exists then |Bi ∩ A j | < ℵ0 for all i ∈ ℵ, and we may pick inductively

a sequence {i jv : v ∈ ω} ⊂ ℵ such that 0 < |Bi jv
∩ A j | < ℵ0. In this case put

f (A j ) =
⋃

{Bi jv
∩ A j : v ∈ ω}.

Claim 5.2 |
⋃

{Bi jv
∩ A j : v ∈ ω}| = ℵ0.

Proof of the claim For each v ∈ ω, let nv be the unique integer such that

|Bi jv
∩ A j | = nv . Put Knv = { f ∈ (Bi jv

∩ A j )
nv : f is injective}. Clearly,

Knv is nonempty and (1) implies that
⋃

{
∏

k<v Knk : v ∈ ω} has a denumerable

subset F = { fn : n ∈ ω}. On the basis of F and via a straightforward induction

construct an enumeration for
⋃

{Bi jv
∩ A j : v ∈ ω}. This completes the proof of the

claim and the implication. �

(2) ⇒ (1) Let X be a non-well-orderable set and let f be a function which satis-

fies (2) for the set P ∞(X) = {Y ⊆ X : |Y | = ∞}. Using f and transfinite induction

we construct a well-ordered cover {X i : i ∈ α}, α an ordinal number, of X consisting

of infinite well-orderable subsets of X .

For i = 0, put X0 = f (X). For i = λ + 1 a successor ordinal and

having chosen infinite and well-orderable subsets X j , j < λ + 1, we put

X i = f (X \
⋃

{X j : j < λ + 1}) if the latter set difference is infinite. Other-

wise the induction terminates. For i a limit ordinal we work as in the nonlimit

case.

Since P∞(X) is a set, the induction must terminate at some ordinal stage α.

This means that X \
⋃

{X i : i ∈ α} is finite. Consequently, X is expressible as

a well-ordered union of infinite well-orderable sets and the proof of the theorem is

complete. �

In Note 140 of [9] it is shown that 214 H⇒ 152 and in Table I of [9] the status of

the reverse implication is indicated as unknown (see the section notation and ter-

minology for the definitions of the axioms). We fill this gap in the next corollary

of Theorem 5.1 obtaining also two equivalent forms of the axioms ω-AC(R) and

WO-AC(R), respectively.

Corollary 5.3

1. 152 if and only if 214.

2. The following are equivalent:

(a) ω-AC(R).

(b) R can be written as a well-ordered union of denumerable subsets.

3. The following are equivalent:

(a) WO-AC(R).

(b) R can be written as a well-ordered union of well-orderable subsets.

In Sections 1 and 2 we mentioned that the implications WO-CC(R) H⇒ Form 74

H⇒ Form 13 are valid. In this section we show that in ZF, Form 13 does not imply

WO-CC(R). We also give a straight proof of the implication WO-CC(R) H⇒ Form

13.
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Theorem 5.4

1. WO-CC(R) implies Form 13.

2. In ZF, Form 13 does not imply WO-CC(R).

Proof (1) Fix A an infinite subset of R. Assume that A has no countably in-

finite subsets. For each n ∈ ω, define An = { f ∈ An : f is injective}. Clearly,

each An is nonempty and can be considered as a subspace of R
ω(|An| ≤

|An ×
∏

i≥n{0}| ≤ | Rω|). As Rω with the Tychonoff topology is a separable

metrizable space, it follows that |Rω| = |R| and consequently we may consider each

An as a subset of R. By WO-CC(R), let g be a function such that for all n ∈ ω,

g(An) is a nonempty well-orderable subset of An . Since A has no countably infinite

subsets, it can be readily verified that none of the g(An)s can be infinite (otherwise,⋃
{ f [n] : f ∈ g(An)} would be an infinite well-ordered union of finite (linearly

ordered) subsets of R, thus well-ordered and infinite). Therefore, we may pick

the least element fn from each g(An). Via a straightforward induction construct a

countably infinite subset of A. This contradicts our hypothesis and completes the

proof of (1).

(2) For our purpose we shall use Truss’s forcing model Mℵ in [17], where ℵ is a

singular cardinal. (This model is M12(ℵ) in [9].) First we recall its definition. Let

M be a countable transitive model of ZF + V = L and let ℵ be a singular cardinal in

M. For each ordinal α, the set of conditions Qα is the set of finite sets p of triples

(β, n, γ ), where γ < β < α and n ∈ ω such that if (β, n, γ1), (β, n, γ2) ∈ p, then

γ1 = γ2. Qα is the set of finite sets p of pairs of the form (n, γ ), where γ < α and

n ∈ ω such that if (n, γ1), (n, γ2) ∈ p, then γ1 = γ2. Let G be an M-generic subset

of Qℵ. Then Gα , the projection of G onto Qα , is an M-generic subset of Qα for

each α < ℵ. Let fα =
⋃

Gα . Then Mℵ is the smallest model of ZF containing the

same ordinals as M and each sequence ( fβ)β<α for α < ℵ.

Truss shows that in Mℵ the following statements are true:

1. ℵ1 is singular, that is, it can be written as a countable union of countable sets;

2. a well-ordered union of well-orderable subsets of R is well-orderable; and

3. every uncountable subset of R has a perfect subset (= closed with no isolated

points).

In view of the validity of (1) and (2) in Mℵ, we see that WO-CC(R) must fail in

Mℵ. Otherwise, CC(R) would hold true in the model (obviously, (2) + WO-CC(R)

implies CC(R)). Now, CC(R) implies that ℵ1 is a regular cardinal (see Church [1],

[8]). This contradicts the validity of (1) in Mℵ.

On the other hand, Truss shows that in ZF every perfect subset of R has cardinality

2ℵ0 . By this fact and the validity of (3) in Mℵ, we deduce that Form 13 is true in this

model and the proof is complete. �
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