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Hilbert’s Tenth Problem for Rings
of Rational Functions

Karim Zahidi

Abstract We show that if R is a nonconstant regular (semi-)local subring of
a rational function field over an algebraically closed field of characteristic zero,
Hilbert’s Tenth Problem for this ring R has a negative answer; that is, there is
no algorithm to decide whether an arbitrary Diophantine equation over R has
solutions over R or not. This result can be seen as evidence for the fact that the
corresponding problem for the full rational field is also unsolvable.

1 Introduction

In 1900, in his famous address to the International Conference of Mathematicians in
Paris, Hilbert asked for a general method to determine whether an arbitrary Diophan-
tine equation with integer coefficients has an integer solution or not. This problem,
otherwise known as Hilbert’s Tenth Problem (HTP), was answered negatively by
Matijasevich, building mainly on work of Davis, Putnam, and Robinson [5]; that is,
they proved that no such algorithm could exist. Since then various authors have been
interested in extending this result to other rings and fields. The main open problem
in this area is probably the analogue of HTP for the field of rational numbers and its
finite extensions.

Let us first introduce some definitions before we discuss some of these gener-
alizations. Assume that R is a commutative domain (with unity); we say that a
subset S of Rn is existentially definable in the language L = {0, 1,C,+, .} (where
C is a set of constants, possibly empty) if there exists a finite number of polyno-
mials P1, . . . , Pk , Q whose coefficients can be built up by addition and multiplica-
tion from the constants in the language such that the following equivalence holds
(x = (x1, . . . , xn), y = (y1, . . . , ym)):

x ∈ S ↔ ∃y ∈ Rm : P1(x, y) = · · · Pk(x, y) = 0 ∧ Q(x, y) 6= 0.
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If the right-hand side of this equivalence consists only of equations, we call the
set S a positive existential set; if furthermore the right-hand side consists of only
one equation, we call S a Diophantine set. We say that the existential (respectively
positive-existential, respectively Diophantine) theory of the ring R (in the language
L) is decidable if for every existential (respectively positive-existential, respectively
Diophantine) set S we can decide whether a given point is in S or not. So from a
logician’s point of view, the analogue of HTP for a ring R is precisely the decidability
question of the Diophantine theory (in some suitable language) of this ring. Note
that the union of two Diophantine sets is again Diophantine (P = 0 ∨ Q = 0
is equivalent with P Q = 0) and the same is true for the intersection in case the
fraction field of R is not algebraically closed (we can find an irreducible polynomial
f (x) that after homogenization gives a polynomial in two variables f (x, y) such that
P = 0 ∧ Q = 0 is equivalent with f (P, Q) = 0).

As already mentioned, the outstanding open problem in this area is HTP for the
field of rational numbers. Mainly motivated by the analogy between solving Dio-
phantine equations over the rationals and over rational function fields, several au-
thors have investigated the existential theory of such function fields. All known
cases yield an undecidability result for the existential theory of k(t) in the language
L = {0, 1, t,+, · } and include the following cases: k is a formally real field (Denef
[1]), k is a finite field (Pheidas [7]), later extended to some infinite fields of positive
characteristic in Kim and Roush [3], k is a p-adic field (Kim and Roush [4]), k is a
field of rational functions in one variable s over the complex numbers (in this case
the language contains a symbol for the extra variable s, that is, L = {0, 1, t, s,+, · }
(see Kim and Roush [2]). Up until now no results concerning the Diophantine the-
ory of a rational function field over an algebraically closed field are known, so the
following question remains open.

Question 1.1 Is the existential theory of C(t) in the language L = {0, 1, t,+, · }
decidable?

There are some results that point in the direction of an undecidability result: in
[2], Kim and Roush prove that the existential theory of C(t1, t2) in the language
Lt1t2 = {0, 1, t1, t2,+, · } is undecidable. In Pheidas and Zahidi [8] it is proven that
the existential theory of C(t) in the language LD = {0, 1, t,+, · , D} (where D is a
predicate to denote the set of all rational functions which are the derivative of some
other rational function) is undecidable.

In this paper we will be studying a problem related to the decidability question of
the Diophantine theory of C(t). More precisely we will be dealing with the Diophan-
tine theory of some “large” subrings of rational function fields over an algebraically
closed field. It is a consequence of our main theorem (stated below) that the subring
of the rational function field k(t) (with k algebraically closed of characteristic zero)
consisting of all rational functions whose denominator is not divisible by t (sup-
posing, as usual, that the function is written in lowest fractions) has an undecidable
Diophantine theory. More generally we prove our main theorem.

Theorem 1.2 (Main Theorem) Let k be an algebraically closed field of character-
istic zero. Let R, k ⊂ R ⊂ k(t) be a regular local or a regular semi-local ring. Then
the positive-existential theory of R is undecidable.

It should be noted that the analogous problem for regular local or regular semi-local
rings in Q (a semi-local ring in Q is simply a ring of the form {q ∈ Q : ordpi (q) ≥ 0}
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for a finite set of prime numbers p1, . . . , pn, where ordp denotes the p-adic val-
uation) or number fields is still open. In fact, showing the undecidability of the
Diophantine theory of such a subring of Q (or any number field) would imply the
undecidability of the Diophantine theory of Q. Indeed, the results by Robinson ([10]
and [11]) and Rumely [12] on definability in global fields imply that regular local
and semi-local subrings in Q (or any number field K ) are in fact Diophantinely de-
finable in Q (or K ). We therefore consider the following question to be important
for future research.

Question 1.3 Let K be a number field and let R, R ⊂ K be a regular local or
semi-local ring. Is the Diophantine theory of R decidable?

In connection with this question we mention a recent result by Shlapentokh who
proved that given a nontrivial totally real cyclic number field K one can construct
an infinite set W of non-Archimedean primes of K such that the ring R defined by
R = {x ∈ K , ordpx ≥ 0 , ∀p /∈ W } has an undecidable Diophantine theory
(see [13]; for a similar result for algebraic function fields of positive characteristic
see [14]). This result was considerably improved by Poonen [9] who proved that
one can take the set W to be of natural density 1. However, this does not imply
an undecidability result for K since from the construction of W follows that S \ W
(where S denotes the set of all non-Archimedean primes of K ) is also infinite and
hence the ring under consideration is not a semi-local ring.

We now give a short outline of the contents of this paper. We start with a short sec-
tion, reminding the reader of some general facts of local subrings of rational function
fields. In Section 3 we introduce some results concerning elliptic curves. Following
Denef [1], we use the theory of elliptic curves to construct a Diophantine definition
of the integers in a semi-local subring of a rational function field. This is done in
Section 4.

2 Local and Semi-local Rings in Function Fields

2.1 Regular local rings Let k be an algebraically closed field and let a be an
element of k. The ring Oa of all functions f ∈ k(t) which are defined at a is given
by

Oa = { f ∈ k(t) : ∃ f1, f2 ∈ k[t], f2(a) 6= 0 and f =
f1

f2
} .

The subring

O∞ = { f ∈ k(t) : ∃ f1, f2 ∈ k[t], deg( f1) ≤ deg( f2) and f =
f1

f2
}

of k(t) is said to consist of the functions which are defined at ∞ (to explain this
terminology, substitute t by 1/t , then the elements of this ring become the functions
which are defined at zero). The rings Oa and O∞ are one-dimensional local subrings
of k(t), the maximal ideal M, respectively, given by (t − a) or (t−1). Every ideal I
of Oa (a ∈ k or a = ∞) is of the form I = M

n , for some positive integer n. Since
M is a principal ideal, it follows that Oa is a principal ideal domain and hence also a
unique factorization domain.

Note that Oa also has the structure of a discrete valuation ring: every element in
Oa can be written uniquely as uπn

a with n a positive integer, u a unit, and πa a local
uniformizing parameter, that is, a generator of the maximal ideal in Oa . Hence, Oa
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is a one-dimensional regular local ring (see p. 122 in Matsumura [6]). The valuation
orda is given by

orda = n ↔ x = uπn

and is independent of the choice of the local uniformizing parameter. So Oa is the
ring of all functions f ∈ k(t) such that orda( f ) ≥ 0.

Conversely, every regular local subring R of k(t), k ⊂ R ⊂ k(t), is a discrete
valuation ring (see p. 122 in [6]), and any discrete valuation ring R, k ⊂ R ⊂ k(t) is
of the form Oa , for some a ∈ k ∪ {∞}.

2.2 Regular semi-local rings Let S be a finite set of points in k ∪ {∞}. The ring
OS of all functions f in k(t) which are defined at all the points of the set S is given
by

OS =
⋂

a∈S

Oa .

One easily sees that the ring OS is the ring of all functions f in k(t) such that
orda( f ) ≥ 0, for all a ∈ S. The ring OS has the structure of a regular semi-local
ring since it is the intersection of finitely many regular local rings. Furthermore, OS
is a noetherian unique factorization domain. The ring OS has finitely many maxi-
mal ideals. The maximal ideals are exactly the ideals corresponding to the maximal
ideals Ma of Oa.

3 Elliptic Curves

We assume the reader is familiar with the basics of elliptic curves. We briefly recall
the relevant definitions and results. For more information on the theory of elliptic
curves, the reader can consult Silverman [15].

Let k be an arbitrary field (char k 6= 2, 3). An elliptic curve E over k is a (projec-
tive) nonsingular curve whose affine points satisfy

E : γ s2 = f (t)

where γ is in k and f is a cubic polynomial with coefficients in k and with no
multiple roots. It can be proven that every elliptic curve is isomorphic to an elliptic
curve whose equation is given by

s2 = t3 + αt + β . (1)

This equation is called a Weierstrass equation. As is well known, the k-rational points
of such a curve can be given the structure of an Abelian group, whose addition law
is algebraic over k (i.e., given two points on E , the coordinates of their sum can
be expressed as rational functions of the coordinates of the two points), and whose
neutral element is the unique point at infinity of the curve, denoted by P∞. Note
that the endomorphism group of the group E(k) is in fact a ring, denoted by End(E)
and contains a subring isomorphic to Z. This subring consists of the endomorphisms
{en, n ∈ Z}, with en defined by

en(P) = P + P + · · · + P
︸ ︷︷ ︸

n times

where the addition is, of course, the addition on the elliptic curve. If the endomor-
phism ring is strictly larger than Z, we say that the curve has complex multiplication.
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From now on we assume that k is a field of characteristic 0. If E is an elliptic
curve the invariant

jE = 1728
4α3

4α3 − 27β2

is called the j -invariant of the curve (the coefficients that appear in the definition are
the coefficients of the Weierstrass equation (1) for E). Let E be an elliptic curve over
k, defined by the equation

E : s2 = f (t)
(with f an arbitrary cubic polynomial with no multiple roots). We associate to E an
elliptic curve E0 defined over k(t) by the equation

E0 : f (t)Y 2 = f (X). (2)

If the curve E has no complex multiplication, we have the following.

Lemma 3.1 The curve E0 has rank one over k(t). The generator is the point (t, 1).
Furthermore the only k(t)-rational torsion points are points of order two.

Proof See [1]. �

By (xn, yn) we mean the point n(t, 1) (addition on the curve E0). It can be proven
that for any (affine) point (t, s) on E which is not an n-torsion point on E we can
write en[(t, s)] = (xn(t), syn(t)) (see [8]). Below we list some of the properties of
the rational functions xn and yn. Throughout this paragraph by order of a rational
function x at a point a, we mean the unique integer l such that x = (t −a)l y with y a
rational function with no pole or zero at a. We say that x has a zero or pole of order
|l| at a depending on whether l is positive or negative. In case l = ±1 we say that
x has a simple zero or pole at a. We say that x has order l at infinity (notation ∞)
if the function which is obtained by substituting t by t−1 in x has order −l at zero.
This corresponds with the valuation we defined on the ring Oa in Section 2.

Lemma 3.2 Let k be a field of characteristic zero and E/k an elliptic curve defined
by

E : s2 = f (t)
with f an arbitrary cubic polynomial with no multiple roots. For any integer n, let
en(t, s) = (xn(t), syn(t)) be the nth endomorphism. Let t0 be a zero of f (t).

(a) xn has finite poles and finite zeros of order at most 2. yn has only finite zeros
of order one and finite poles of order at most 3, xn has a pole of order 5 and
yn a pole of order 6 at ∞.

(b) if n is odd neither xn nor yn has a pole at t0; yn has no zero at t0; xn − t0 has
a zero at t0.

(c) if n is odd,
xn − t0
(t − t0)yn

(t0) = n .

Proof (a) We will use the fact that x ′
n = nyn—where, for x ∈ k(t), x ′ denotes

the formal derivate of x with respect to t ; see Lemma 1.2 in [8]. From this, one sees
that if the order of xn is l at a point t = a, then yn has order l − 1 at this point.
We first treat the finite poles. Suppose that xn has a pole at t = a, say of order |l|,
l < 0. Then the order of yn at this point is l − 1. Now we will combine this with
the fact that (xn, yn) satisfies equation (2). This implies that either 2(l − 1)+ 1 = 3l
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or 2(l − 1) = 3l, depending on whether a is a zero of f or not. This implies the
result. For the pole at infinity, note that since en(P∞) = P∞, it is clear that xn has
a pole at ∞. Call the order of xn at ∞ l. The order of yn at ∞ is l − 1. Using the
fact that (xn, yn) satisfies equation (2) and the fact that f has order −3 at ∞ we get
−3 + 2(l − 1) = 3l, which gives l = −5.

(b) A proof of the first claim can be found in [8] (Lemma 1.4). The sec-
ond claim follows from the fact that (t0, 0) is a point of order two, and hence
en((t0, 0)) = (t0, 0) (since n is odd), thus xn(t0) = t0. Let l be the order of xn − t0
at t = t0, then we have d(xn − t0)/dt = nyn, hence we conclude that the order of yn
at t0 is l − 1. Again using the fact that (xn, yn) satisfies equation (2) combined with
the facts that the order of f (t) at t = t0 is 1 and the order of f (xn) at t = t0 is l, we
get l = 1.

(c) First suppose that t0 6= 0. By (b), we know that neither xn or yn has a zero or
pole at t0, so we can write xn as

xn = x0n + x1n(t − t0)+ · · ·

and yn as

yn = y0n + y1n(t − t0)+ · · · ,

with x jn, y jn ∈ k. Since x ′
n = nyn we get that

x1n = ny0n.

Furthermore, since xn(t0) = t0,

x1n =
xn(t)− t0

t − t0
(t0) and y0n = yn(t0).

Hence,
xn(t)− t0
(t − t0)yn(t)

(t0) = n.

If t0 = 0, it follows from our proof of (b) that xn has a simple zero at 0. So we can
write xn, yn as

xn = x1nt + x2nt2 + · · · ,

yn = y0n + y1n(t − t0)+ · · · .

Again using the relation x ′
n = nyn, we obtain

x1n = ny0n.

Furthermore,
xn

t
(0) = x1n and yn(0) = y0n.

Hence,
xn

t yn
(0) = n.

�
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4 Proof of the Main Theorem

Let k(t) be a rational function field over an algebraically closed field of characteristic
zero. We will prove that the Diophantine theory of a regular local or regular semi-
local subring R, k ⊂ R ⊂ k(t), of k(t) (k algebraically closed) is undecidable. Since
any local ring is also a semi-local ring, it is sufficient to prove the result for semi-
local rings. Let R be a regular semi-local ring of k(t), k ⊂ R ⊂ k(t). Then R is
the intersection of finitely many regular local subrings of k(t), which are of the form
Oa , with a ∈ k ∪ {∞} (see §2.1). After performing a change of variables of type

t →
t − α

t − β
,

we may assume that R is in fact an intersection of local rings of the form Oa, with
a ∈ k. So without loss of generality we may always assume that the ring R is of the
form

n
⋂

i=1

Oai , a1, . . . , an ∈ k.

Throughout, h will denote

h =

n
∏

i=2

(t − ai).

Clearly, h is a local uniformizing parameter for the local rings Oai , i = 2, . . . , an.
We now need to construct an elliptic curve whose R-rational points can serve as

a model for the integers. From Lemma 3.1 it follows that we have no trouble in
constructing an elliptic curve whose k(t)-rational points can serve as a model for
the integers. However the points of this curve might not all be R-rational. But
Lemma 3.2 allows us to bound the order of the relevant poles of these points and
this can be used to construct the desired elliptic curve. This is done in the following
lemma.

Lemma 4.1 Let E0 be an elliptic curve defined over k(t) by

f (t)Y 2 = f (X),

with f (X) = X3 +αX2 +βX + γ , α, β, γ ∈ k, such that E0 has rank one over k(t)
and such that f (a1) = 0. Let E ′

0 be the curve defined by

f (t)hY 2 = X3 + αh3 X + βh6X + γ h9.

Then there exists an isomorphism ϕ, defined over k(t), between E0 and E ′
0.

The points (X, Y ) on E ′
0 with coordinates in R are of the following form:

1. (X, Y ) = ϕ((x2r+1, y2r+1) + P) with r an integer and P a point of order
two on E0, P 6= (a1, 0), or

2. (X, Y ) = ϕ((x2r, y2r)+ P), with r an integer and P a point of order two on
E0, P 6= P∞.

Proof Consider the following map from E0 to E ′
0:

ϕ E0 → E ′
0

(x, y) → (X, Y ) = (h3x, h4y).
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One checks that this is a birational map from E0 to E ′
0. It is everywhere defined and

sends P∞ to P∞. Hence it is an isomorphism of elliptic curves. This implies that E ′
0

has rank one over k(t) and the generator is the point (h3t, h4). Denoting n(h3t, h4)

by (Xn, Yn) gives
ϕ((xn, yn)) = (Xn, Yn).

By Lemma 3.1 we know that every point on E0 can be written as

(x, y) = (xn, yn)+ P,

with P a point of order two. Hence, every point (X, Y ) on E ′
0 can be written as

(X, Y ) = (h3xn, h4yn)+ P ′,

with P ′ a point of order two on E ′
0.

We first determine the points (x, y) on E0 having no pole at (a1, 0). Let E be the
curve defined by

E : s2 = f (t).

To a point (x, y) + P on E0, we associate the rational function ψ = (x, sy) + P
of the curve E to itself. First, suppose that (x, y) = (x2l+1, y2l+1) + P. Then,
since (a1, 0) is a point of order two, we have that ψ((a1, 0)) = (a1, 0) + P, so if
P 6= (a1, o), we see that ψ((a1, 0)) 6= P∞, which implies that a1 is not a pole of x .
A simple calculation shows that y has no pole at a1 as well. If P = (a1, 0), we see
that ψ((a1, 0)) = P∞, and this implies that x has a pole at a1. Again it follows that
y has a pole at a1.

If (x, y) = (x2l, y2l) + P, then ψ((a1, 0)) = P, and hence, for P 6= P∞,
ψ((a1, 0)) 6= P∞, which implies that neither x nor y has a pole at a1. If P = P∞,
then it follows from Lemma 3.2 that x and y have a pole at a1. Hence, the points on
E0 which have no pole at a1 are either of the form

(x, y) = (x2l+1, y2l+1)+ P or (x, y) = (x2l, y2l)+ P

with l an integer and P a point of order two, P 6= (a, 0), respectively, P 6= P∞.
Note that h has a zero of order 1 at any of the ais, i = 2, . . . , n. This together

with the fact that xn has finite poles of order at most two and yn has finite poles of
order at most 3 (see Lemma 3.2(a)) implies that neither h3xn nor h4yn has poles at
any of the ais, i = 1, . . . , n. �

The following lemma is an analogue of Lemma 3.2(c) for the rational function Xn
and Yn .

Lemma 4.2 (The notation is as in Lemma 3.2) For n an odd integer andω = h(a1),
(

ωh7 Xn − h3a1

(t − a1)Yn

)

(a1) = ω7n.

Furthermore,

ωh7 Xn − h3a1

(t − a1)Yn
∈ R.

Proof For n an odd integer, Xn and Yn have no poles at any of the ais, i = 1, . . . , n.
By the fact that yn has finite zeros of order at most 3 (by Lemma 3.2(a)), it follows
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that Yn = h4yn has finite zeros of order at most 7. Also Xn has no poles at any of
the ais, i = 1, . . . , n. It follows that the only poles of

Xn − h3a1

(t − a1)Yn

among the ais, i = 2, . . . , n are the zeros of Yn , and since these are of order at most
7, the funtion

αh7 Xn − h3a1

(t − a1)Yn

has no pole at any of the ais, i = 2, . . . , n.
Note that both (t − a1)Yn and Xn − h3a1 have a simple zero at a1; hence, their

quotient has no pole at a1. This proves the second claim.
Evaluating at a1 gives

(
Xn − h3a1

(t − a1)Yn

)

(a1) =

(
1
h

xn − a1

(t − a1)yn

)

(a1)

=
1
ω

n

where we have used Lemma 3.2(c). �

Before we prove the Main Theorem 1.2 we still need some easy Diophantine defi-
nitions which are given in the following lemma. By LR we denote the language of
rings (i.e., LR = {0, 1,+, . . .}. By Ln we denote the language LR ∪{t, a1, . . . , an},
where the ais are constant symbols. A semi-local ring R =

⋂n
i=1 Oai becomes an

Ln structure in the obvious way.

Lemma 4.3

(a) k is an LR-Diophantine subset of R.
(b) The relation

∧n
i=1ordai (x) > 0

has an Ln-Diophantine definition.

Proof (a) We claim that the following equivalence holds:

x ∈ k ↔ ∃y ∈ R : y2 = x3 − x .

Indeed, if x ∈ k, then we can solve the equation y2 = x3 − x for y, since k is
algebraically closed. Conversely suppose that (x, y) satisfies y2 = x3 − x , then both
x and y must be elements in k. Indeed, the equation y2 = x3 − x defines an elliptic
curve and hence, it does not admit a rational parametrization.

(b) Since, for any element x of R, ordai (x) ≥ 0, the relation ∧n
i=1ordai (x) > 0 is

equivalent with
∃y ∈ R : x = (t − a1)hy.

�

Theorem 4.4 Let R be the ring
⋂n

i=1 Oai , ai ∈ k. Then the Diophantine theory of
R in the language Ln is undecidable.
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Proof We will prove that the ring of rational integers is an Ln-Diophantine subset
of R, which implies the result. We show that we can find an elliptic curve E0

f (t)Y 2 = f (X),

f (t) = t3 + αt2 + βt + γ , such that f (a1) = 0 and such that E0 has rank one over
k(t). We show that such a curve exists. Consider the elliptic curve E ′ defined by

s2 = g(t) = t3 −
3
2

t2 − t

over Q. The j -invariant of this curve is given by j = −26397−2. Hence, this curve
has no complex multiplication. Now after a linear change of variables t → t − a1,
f (t) = g(t − a1), f (a1) = 0. The curve E defined by

s2 = f (t)

is isomorphic with E ′ and hence has no complex multiplication. Furthermore,
f (a1) = 0.

Let h = (t − a2), . . . , (t − an) and construct the curve E ′
0 as in Lemma 4.1. Note

that the curve E ′
0 is defined over Q(a1, . . . , an)(t). Hence, the set of points of E ′

0
with coordinates in R, denoted by E ′

0(R), is an Ln-Diophantine set.
Now we claim that the following equivalence holds:

z ∈ Z ↔ ∃ x, y, u, v, w ∈ R
z ∈ k ∧ (u, v) ∈ E ′

0 (1)
∧ (x, y) ∈ E ′

0 (2)
∧ (x, y) = 2(u, v)+ (t, 1) (3)

∧w = ωh7 x − h3a1

(t − a1)y
(4)

n
∧

i=1

ordai (h(w − h7(2z + 1))) > 0 (5)

where ω = h(a1). First note that, in virtue of Lemma 4.3, the right-hand side of
this equivalence is indeed Ln-Diophantine. So once the equivalence is proved, the
theorem will be proven.

We now prove the equivalence. Suppose that z is an integer, then obviously
(1) is satisfied. Choose (u, v) = (X z, Yz) or (u, v) = (Xz, Yz) + (h3a1, 0), de-
pending on whether z is odd or even and set (x, y) = (X2z+1, Y2z+1). It follows
from Lemma 4.1 that (u, v) and (x, y) are indeed elements of E ′

0(R). Furthermore
Lemma 4.2 implies that w is in R. Now note that w(a1) = h(a1)

7(2z + 1), hence
orda1(h(w − h7(2z + 1))) > 0, and since w − h7(2z + 1) has no poles at any of the
ais, i = 2, . . . , n, it follows that (5) is satisfied. So if z is an integer, the right-hand
side of the equivalence can be satisfied.

Conversely, suppose that the right-hand side of this equivalence is satisfied, then
it follows from conditions (2) and (3) and Lemma 4.1 that (x, y) = (X2l+1, Y2l+1)

for some integer l. Now by (5), the fact that z is a constant and the fact that h has no
zero at a1, it follows that α7(2z + 1) = w(a1) = α7(2l + 1). So 2l + 1 = 2z + 1,
and hence, z is an integer. �
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