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The Semantics of Entailment Omega

Mariangiola Dezani-Ciancaglini, Robert K. Meyer,
and Yoko Motohama

Abstract This paper discusses the relation between the minimal positive rel-
evant logic B+ and intersection and union type theories. There is a marvelous
coincidence between these very differently motivated research areas. First, we
show a perfect fit between the Intersection Type Discipline ITD and the tweaking
B ∧ T of B+, which saves implication → and conjunction ∧ but drops disjunc-
tion ∨. The filter models of the λ-calculus (and its intimate partner Combinatory
Logic CL) of the first author and her coauthors then become theory models of
these calculi. (The logician’s “theory” is the algebraist’s “filter”.) The coinci-
dence extends to a dual interpretation of key particles—the subtype ≤ translates
to provable →, type intersection ∩ to conjunction ∧, function space → to im-
plication, and whole domain ω to the (trivially added but trivial) truth T. This
satisfying ointment contains a fly. For it is right, proper, and to be expected that
type union ∪ should correspond to the logical disjunction ∨ of B+. But the simu-
lation of functional application by a fusion (or modus ponens product) operation
◦ on theories leaves the key Bubbling lemma of work on ITD unprovable for the
∨-prime theories now appropriate for the modeling. The focus of the present
paper lies in an appeal to Harrop theories which are (a) prime and (b) closed un-
der fusion. A version of the Bubbling lemma is then proved for Harrop theories,
which accordingly furnish a model of λ and CL.

1 Introduction

This paper receives the ordinal ω for a couple of reasons. Its predecessors in Meyer’s
“semantics of entailment” series (mainly with Routley) were called 1, 2, and so on.
It’s time for a summing up at the limit. A second reason has to do with the role
of the constant ω in the filter models of λ developed by Dezani and her colleagues
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(mainly at Torino). ω is transmuted in various respects here—logically to a “Church
constant” T, and functionally to a space T → T. But the pun remains.

One had ventured to hope that the rise of computer science would bring with it a
bright new day for logic. Or at least it might bring back some good old days, begin-
ning with those in which Aristotle founded logic in order to give an account of how
people reason, when they are reasoning correctly. For if our computing machines are
to do most of our thinking in the present millennium (as is not unlikely), then some
improvement in our start-of-the-millennium logical theories is desirable. In partic-
ular Anderson, Belnap, Dunn et al. in [1] and [2] and Routley et al. in [19] have
proposed systems of relevant logic and entailment as vehicles for this improvement.
In this paper we build on our previous studies of the semantics of entailment on the
one hand and of models for the λ-calculus on the other to delve more deeply into
what relevant logics are about.

With Sylvan (né Routley),1 Meyer proposed in [18] and [17] a minimal positive
relevant logic B+. As they conceived it, B+ had a role to play for relevant logics
analogous to that played by the system K among normal modal logics with a Kripke-
style “possible worlds” semantics in the style of Kripke [15]. That is, B+ satisfied
just those semantical postulates that we took to be common to arbitrary positive
logics in the relevant family. Thus on our semantics other positive logics arose from
B+ on the addition of specific postulates. But the main ideas—for example, that
B ∧ C is true at a “world” w if and only if B is true at w and C is true at w—remain
through whatever additions are appropriate to get famous logics like relevant R+ or
intuitionist J.

Moreover, the main candidate additions have a combinatory character, in the sense
that they are suggested by the (so-called Curry-Howard) isomorphism between can-
didate implicational theorems and combinators set out in Curry and Feys [7]. In-
deed, the semantical postulates which match these theorems may be almost read off
the Curry-Howard correspondence. But, as it turned out, there are other candidate
theorems—for example, some involving both ∧ and → in their formulation—which
also seemed to match combinators. Back in the early 1970s, Routley and Meyer
did not know what to make of these new “types” for combinators. But they were
sufficiently impressed by them to pronounce CL the “key to the universe” in [17].

Many years thereupon passed, in some of which Meyer sought to interest mem-
bers of the CL-λ community in (what he took to be) this satisfying interplay between
ideas from relevant and combinatory logics. But it was only when Bunder brought
Hindley to Australia (and to ANU in particular) in the late 1980s that progress was
made. For Meyer and Martin learned from Hindley of the extension of Curry’s type
theory that had been developed in the work of Coppo and Dezani in Torino and set
out most fully by them with Barendregt in [5]. For [5] had added ∧ to the pure →

Curry vocabulary; and this enabled them, near enough, to fix ((p → q) ∧ p) → q
as the principal type of λx .xx .

When Meyer saw this example in [5], he was very pleased. For λx .xx is one of
the terms that has no type on Curry’s scheme. Still, on the “correspondence theory”
implicit in [18], with the ternary relation R to explicate → on our relational “worlds
semantics”, the validity of the formula ((p → q)∧ p) → q enforces and is enforced
by the total ternary reflexivity postulate Rwww. Rightly viewed, that semantical
postulate is just a way of saying that λx .xx (aka WI or SII, for CL fans) is a good
guy. The logical content of the postulate is that the formula ((p → q) ∧ p) → q
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(which expresses conjunctive modus ponens) is a good guy. But it is nonetheless
optional whether or not this formula should be taken as a logical truth. At the most
fundamental relevant level (i.e., that of B+), the formula is a nontheorem (despite
any logical propaganda that you may have imbibed.).2

Now [5] saw the intersection type discipline (henceforth, ITD) of that paper as a
way of providing filter models for λ. Along with → and ∧ the ITD introduced a new
(universal) type T, which is a type possessed by every term. But from the logical
perspective T may be viewed simply as a greatest truth, which is entailed by every
proposition. And once union types with ∨ are introduced as well, as they were for
example in [3], we can feed our intuitions with the following table:

Symbol Logical sense Type-theoretic sense
→ Implies Function space
∧ And Intersection
∨ Or Union
≤ Entails Subset
T True Whole domain

2 ITD = B∧T

We set out first the postulates on the intersection type theory ITD [5], and we relate
them to the → ∧ fragment of B+ extended with a greatest truth T. We call this
fragment B∧T.3 Without loss of generality ITD may be assumed to be formulated
with a binary predicate ≤, a constant T (aka ω), and binary function symbols → and
∧. We assume a countable infinity of (type) variables, for which we use ‘p’, ‘q’, ‘r ’,
and so on. As syntactical variables for (type) terms we use uppercase ‘A’, ‘B’, and
so on, decorating our syntactical variables as takes our fancy. We take leave of the
right and good and eminently sensible syntactical conventions set out by Curry in [6]
and [7] by laying it down that equal connectives shall be associated (shock, horror!)
to the right, and that ∧ shall bind more tightly than →. As axiom schemes and rules
of ITD we choose the following:4

Reflex A ≤ A
Top A ≤ T
Top→ T ≤ T → T
Idem∧ A ≤ A ∧ A
∧E A ∧ B ≤ A, A ∧ B ≤ B
→∧I (A → B) ∧ (A → C) ≤ A → B ∧ C
Trans∧ A ≤ B ≤ C ⇒ A ≤ C
Mon∧ A ≤ A′, B ≤ B ′ ⇒ A ∧ B ≤ A′ ∧ B ′

Mon→ A′ ≤ A, B ≤ B ′ ⇒ A → B ≤ A′ → B ′

In a nutshell, ITD has ∧-semilattice properties, with monotonic replacement prop-
erties for ∧ and (appropriately) for →, with T as a top element (mathematically
identifiable as T → T).

Now how did Hindley know, when he heard from Meyer about B+, that it was
just (a somewhat tweaked version of) ITD?5 Here are some axiom schemes and
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rules sufficient for B+, formulated in ∧, ∨, →.6

Reflex A → A
∧E A ∧ B → A, A ∧ B → B
→∧I (A → B) ∧ (A → C) → A → B ∧ C
→∨E (A → C) ∧ (B → C) → A ∨ B → C
∨I A → A ∨ B, B → A ∨ B
Dist∧∨ A ∧ (B ∨ C) → A ∧ B ∨ A ∧ C

As rules we choose

→E A → B ⇒ A ⇒ B
∧I A and B ⇒ A ∧ B
RulB B → C ⇒ (A → B) → A → C
RulB′ A → B ⇒ (B → C) → A → C

Note the subtle difference between the “prefixing” RulB and the “suffixing” RulB′.
Together with →E either yields a derived “transitivity” rule, which we might set
down as

RulBB′ B → C ⇒ A → B ⇒ A → C

Three moves, all trivial, suffice to transform B+ into ITD. The first is to replace →

when it is the principal connective of a formula with ≤. (This has the side effect of
making the formula easier to read, while it coincides with the idea that entailment is
what logic is principally about anyway.) The second move is to drop ∨ and all its
works. (They will be back.) And the final move is to add (the “Church constant”) T,
together with the axioms

Top A → T
Top→ T → T → T

When B+ has been so massaged, we call it B∧T. That is, we presuppose a transla-
tion ∗ from the vocabulary of ITD to that of B∧T, such that p∗ = p and T∗ = T
for all atoms, and otherwise (A ∧ B)∗ = A∗ ∧ B∗, (A → B)∗ = A∗ → B∗, and
(A ≤ B)∗ = A∗ → B∗. And we now give a simple metavaluations argument that
for all elementary statements A ≤ B of ITD, we have A ≤ B a theorem of ITD if
and only if A∗ → B∗ is a theorem of B∧T.7 Note that it is elementary that ITD
⊆ B∧T on the ∗ translation, since the axioms and rules of the former are readily
derived in B∧T. For the converse we define a class MTR of metatruths thus:

vT T ∈ MTR

vp p 6∈ MTR, where p is a variable

v → A∗ → B∗ ∈ MTR iff
(i) A ≤ B in ITD and

(ii) A∗ 6∈ MTR or B∗ ∈ MTR

v∧ A∗ ∧ B∗ ∈ MTR iff both A∗ ∈ MTR and B∗ ∈ MTR

Lemma 2.1 (Coherence Lemma) A ∈ B∧T ⇒ A∗ ∈ MTR.

Proof Show by deductive induction that all theorems of B∧T are metatruths. �

Whence we have the following Coincidence theorem.

Theorem 2.2 (Coincidence Theorem) ITD = B∧T on the ∗ translation.
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Proof Inclusion from left to right is trivial as noted. And the converse holds given
the coherence lemma, in virtue of (i) under v →. �

We shall now give a “worlds semantics” for ITD, adapting [18] and Fine’s contri-
bution to [1] and [2].8 We take a positive model structure (henceforth, +ms) to be
a structure K= 〈K , ◦〉, where K is a set (of worlds) and ◦ is a binary operation on
K .9 Let Var be the set of variables, and let 2 = {0, 1} be the set of truth-values. A
valuation v on the +ms K is a function from Var × K to 2. Let Form be the set of all
formulas. A valuation v on K is extended to an interpretation I from Form × K to 2
as follows10 for w ∈ K :

T p I(p, w) = v(p, w), for all p ∈ Var
T∧ I(A ∧ B, w) = min[I(A, w), I(B, w)]

T → I(A → B, w) = 1 iff ∀x ∈ K (I(A, x) = 0 or I(B, wx) = 1)

TT I(T, w) = 1.

And we now say that A entails B on a valuation v in K (equivalently, on the asso-
ciated interpretation I) if and only if ∀w ∈ K (I(A, w) = 0 or I(B, w) = 1). A
entails B in K if and only if A entails B on all valuations v in K. Finally, A entails
B (positively) if and only if A entails B in all +ms K.

Semantic completeness for ITD will amount to the claim that A ≤ B is a theorem
if and only if A entails B. Before proving it we enter some important definitions.
First, where U, V ⊆ Form, define the fusion operation ◦ by

D◦ U◦V =def {B : ∃A ∈ Form(A → B ∈ U and A ∈ V )}.

A theory U is any nonempty subset of Form which is closed under ≤ and ∧.11 That
is, U must satisfy

≤E A ≤ B in ITD ⇒ (A ∈ U ⇒ B ∈ U)

∧I A ∈ U and B ∈ U ⇒ A ∧ B ∈ U.

The empty theory, to which we have sometimes appealed in the past, is ruled out
here. So every theory must therefore contain the constant T, in view of ≤E and Top
above.

The calculus of theories CT = 〈CT, ◦〉 is the structure such that
1. CT is the collection of all theories and
2. ◦ is the fusion operation defined by D◦.

It is easy to verify that if U and V are theories so also is U◦V . To each A ∈ Form
there corresponds its principal theory A↑= {B : A ≤ B in ITD}. The canonical val-
uation c in CT is the valuation such that, for all p ∈ Var and U ∈ CT , c(p, U) = 1
if and only if p ∈ U . It is elementary to observe that the extension of c to a canonical
interpretation C on the rubric above extends the property to C(A, U) = 1 if and only
if A ∈ U , for all formulas A and theories U , invoking T →, and so forth.

Lemma 2.3 (Canonical Lemma) For all A, B ∈ Form, A ≤ B in ITD if and only
if A entails B on c in CT.

Proof (⇒) Assume A ≤ B and C(A, U) = 1. Then A ∈ U ; so B ∈ U by ≤E,
whence C(B, U) = 1.

(⇐) Assume A entails B on the canonical valuation c. Then in particular
C(A, A ↑) = 1 ⇒ C(B, A ↑) = 1. But C(A, A ↑) = 1. Whence A ≤ B in
ITD by definition of A↑. �
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We get immediately an appropriate Completeness theorem for ITD.

Theorem 2.4 (Completeness Theorem) ITD |H A ≤ B if and only if A (positively)
entails B.

Proof (⇒) This is by deductive induction.

(⇐) Suppose A entails B. Then in particular A entails B on the canonical valuation
c, whence by the canonical lemma A ≤ B in ITD. �

3 The Calculus of Theories CT is a Model for λ and CL

In Algebraese these are already principal results of [5] and [9], respectively. But here
we are speaking Logicese, whence we say “theory” where the cited papers say “fil-
ter”. By λ we mean the type-free λK β-calculus invented by Church in the birth year
of one of us, and exhaustively studied by Barendregt in [4]. By CL we mean Curry’s
(weak) combinatory logic, as summarized in [14]. As CL is already definable in λ in
well-known ways,12 it will suffice here to recount the [5] proof that CT = 〈CT, ◦〉

is a model of λ. First, we define an equivalence ≡ in ITD on Form by

D ≡ A ≡ B =def A ≤ B and B ≤ A.

[5] (which uses ‘∼’ where we here use ‘≡’) rightly suggests that ITD may be con-
sidered modulo ≡, in which case ≤ becomes a partial order. They also prove an
important lemma, which goes into our notation as follows.

Lemma 3.1 (Bubbling Lemma)

1. A → B ≡ T iff B ≡ T.
2. Assume it is not the case that D ≡ T. Assume, moreover, that we have

∧

i∈I (Ai → Bi) ≤ C → D for the finite nonempty index set I . Then there is
a finite nonempty subset J of I such that

C ≤
∧

i∈J

Ai and
∧

i∈J

Bi ≤ D.

The Bubbling lemma (2) is exceedingly important in [5]. Indeed, that it fails in the
richer environment of all of B+ greatly complicates the story that we are telling here.

But let us dwell first on (more or less) easy success, which is preferable where
available. A λ-valuation v in CT shall be a function which assigns theories to λ-
variables x, y, and so on. If U is a theory, by v[U/x] we mean the λ-valuation13

defined by

v[U/x](y) =

{

U if x = y
v(y) otherwise.

Each λ-valuation v is extended to the corresponding λ-interpretation V on the fol-
lowing rubric:

Vx V(x) = v(x)

V◦ V(M N) = V(M)◦V(N)

Vλ V(λx .M) = {
∧

i∈I (Ai → Bi) : Bi ∈ V[Ai↑ /x](M)}

where I is a finite nonempty set of indices.14

For the correctness of our definition, we need all the λ-interpretations to be the-
ories. Proof is by induction on the construction of the λ-interpretation V defined
above.
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The crucial case which requires the Bubbling lemma (2) is clause Vλ. A prelim-
inary observation is that our λ-interpretations are monotone, that is, if v(x) ⊆ v ′(x)

for all variables x which occur free in M , then V(M) ⊆ V
′(M). This can be checked

easily by induction on the construction of λ-interpretations.
For {

∧

i∈I (Ai → Bi) : Bi ∈ V[Ai ↑ /x](M)} to be a theory, we need that
D ∈ V[C↑ /x](M) whenever

∧

i∈I (Ai → Bi) ≤ C → D and Bi ∈ V[Ai↑ /x](M)

for all i ∈ I . By the Bubbling lemma (2) we get C ≤ Ai for all i ∈ J and
∧

i∈J Bi ≤ D for some J ⊆ I . This implies C ↑⊇ Ai ↑ for all i ∈ J , which to-
gether with Bi ∈ V[Ai↑ /x](M) for all i ∈ J , gives us Bi ∈ V[C↑ /x](M) for all
i ∈ J by the monotonicity of λ-interpretations. So we get D ∈ V[C↑ /x](M), since
Bi ∈ V[C↑ /x](M) for all i ∈ J and V[C↑ /x](M) is a theory by induction.

It is easy to verify (and already done in [5]), that for all v the λ-interpretation V

is a syntactic λ-model according to [13], that is, that

I x V(x) = v(x)

I◦ V(M N) = V(M)◦V(N)

Iλ◦ V(λx .M)◦U = V[U/x](M)

Iv if v(x) = v′(x) for all variables x which occur free in M ,
then V(M) = V

′(M)

Iα V(λx .M) = V(λy.M[y/x]) if y does not occur free in M
Iξ V[U/x](M) = V[U/x](N) for all U ⇒ V(λx .M) = V(λx .N).

A crucial observation to prove clause Iλ◦ is that λ-interpretations are compositional,
that is, V[U/x](M) =

⋃

A∈U V[A↑ /x](M). Also this property can be easily shown
by induction on the construction of λ-interpretations. By definition of ◦ and clause
Vλ we get V(λx .M)◦U = {B : ∃A ∈ Form(A → B ∈ V(λx .M) and A ∈ U)}

= {B : ∃A ∈ Form(B ∈ V[U/x](M) and A ∈ U)} =
⋃

A∈U V[A↑ /x](M), so we
can conclude using the compositionality of λ-interpretations.

4 The Calculus of Theories on CT∨ is not a Model for λ and CL

We can enrich ITD by adding the following axiom schemes and rules:

Idem∨ A ∨ A ≤ A
∨I A ≤ A ∨ B, B ≤ A ∨ B
→∨E (A → C) ∧ (B → C) ≤ A ∨ B → C
Dist∧∨ A ∧ (B ∨ C) ≤ A ∧ B ∨ A ∧ C
Mon∨ A ≤ A′, B ≤ B ′ ⇒ A ∨ B ≤ A′ ∨ B ′.

We call this extension ITD∨. Now we can transform B+ into ITD∨ with only two
moves. It suffices to replace → when it is the principal connective of a formula with
≤, and to add T with the axioms Top and Top→. The difference with the translation ∗

described in Section 2 is that we don’t drop ∨. We call ∗∗ this new translation. So
the old translation ∗ maps B∧T into ITD; the new translation ∗∗ generalizes the old
one, since it maps B+ into ITD∨. As expected, the coincidence theorem also holds
for the translation ∗∗, that is, we have the following.

Theorem 4.1 (Extended Coincidence Theorem) ITD∨ = B+ on the ∗∗ translation.

Proof The proof can be given using the same metavaluation argument that we in-
troduced for proving the coincidence theorem. It suffices to add to the definition of



136 Dezani-Ciancaglini, Meyer, and Motohama

the class MTR the clause,

v∨ A∗∗ ∨ B∗∗ ∈ MTR iff either A∗∗ ∈ MTR or B∗∗ ∈ MTR.

In fact it is easy to verify that the coherence lemma still holds, that is, that
A ∈ B+ ⇒ A∗∗ ∈ MTR. �

We can continue as in Section 2. Let K be a +ms and Form∨ be the set of all
formulas in ITD∨. We can define an interpretation I from Form∨ × K to 2 by
adding the following clause:

T∨ I(A ∨ B, w) = max[I(A, w), I(B, w)]

to the clauses Tp, T∧, T →, TT.
We can borrow from Section 2 the definitions of entailment, fusion, and theory,

obviously considering formulas in Form∨ instead of formulas in Form. In this way
we get a calculus of theories CT∨.

We do have the following theorem.

Theorem 4.2 (Soundness Theorem for ITD∨) If ITD∨ |H A ≤ B then A (posi-
tively) entails B.

This is halfway to where we arrived happily at the end of Section 2. We would
like to supply the other (completeness) half and then to continue as in Section 3.
Note however that the canonical lemma above does not extend smoothly to CT∨.
Extending the canonical valuation we obtain an interpretation which does not satisfy
clause T∨. The obvious example is (A∨B)↑: A∨B ∈ (A∨B)↑ but A, B /∈ (A∨B)↑.

We can generalize ≡ to ITD∨ in the obvious way. But we do not know how to go
on. The first problem is that the Bubbling lemma (2) no longer holds. The counterex-
ample is under the eyes of everybody: it is just the axiom →∨E. The unpleasant con-
sequence of this is that {

∧

i∈I (Ai → Bi) : Bi ∈ V[Ai↑ /x](M)} is no longer a the-
ory for all λ-terms M and all λ-valuations v. The counterexample is again related to
axiom →∨E. Take M0 ≡ λx .yxx and v0(y) = ((A → A → C)∧(B → B → C))↑.
We get (A → C) ∧ (B → C) ∈ V0(M0), but A ∨ B → C 6∈ V0(M0). To see
why, observe that A ∨ B → C is an element of V0(M0) only if C is an element
of V0[A ∨ B ↑ /x](yxx). And C is an element of V0[(A ∨ B) ↑ /x](yxx)

only if we can find D such that D → C ∈ V0[(A ∨ B) ↑ /x](yx) and
D ∈ V0[(A ∨ B) ↑ /x](x). But such a D does not exist, since it is easy to
verify that V0[(A ∨ B)↑ /x](yx) = ((A → C) ∨ (B → C))↑, and therefore also
V0[(A ∨ B)↑ /x](yxx) = T↑.

An obvious recipe to remedy this drawback is to force the interpretation of an
abstraction to be a theory, by defining

Vλ∨ V(λx .M) = {A → B : B ∈ V[A↑ /x](M)}↑ 15

where by U ↑ we mean the minimal theory containing the set of formulas U , that
is, the closure of U under ∧ and ≤. But the problem we pushed out of the door
will come back through the window. For this new definition of λ-interpretation loses
the key property characterizing models of λ and CL—that is, the property Iλ◦. The
previously introduced λ-term M0 and the λ-valuation v0 are again good choices to
point out our failure. In fact now we oblige A∨ B → C to be an element of V0(M0);
therefore we have

C ∈ V0(M0)◦(A ∨ B)↑ .
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But the other clauses of λ-interpretation are unchanged, so we have as before
V0[(A ∨ B)↑ /x](yxx) = T↑. We must conclude that Iλ◦ fails! The underlying
point of this counterexample is that the set of ∨-prime theories is not closed under
fusion. As usual, a theory is ∨-prime if and only if it contains either A or B when-
ever it contains A ∨ B. So, ∨-prime theories are exactly the theories which satisfy
clause T∨. We can easily show that ∨-prime theories are not closed under fusion, as
follows. Let p, q, r be (type) variables,

X = (p → (q ∨ r))↑ is ∨-prime, at the level of B+,

Y = p↑ is also ∨-prime.

Set Z = X◦Y . Then q ∨ r ∈ Z . But q /∈ Z and r /∈ Z .

5 The Calculus of Harrop Theories HCT is a Model for λ and CL

The crucial idea to which we appeal in this paper to overcome the failure of Section 4
is in Harrop’s paper [12]. To take advantage of it, we define the set HForm ⊆ Form∨

of Harrop formulas as follows:

p ∈ HForm for all p ∈ Var
T ∈ HForm
if A, B ∈ HForm then A ∧ B ∈ HForm
if A ∈ Form∨ and B ∈ HForm then A → B ∈ HForm.

Using this definition we can easily verify the following.

Claim 5.1 If C ∈ HForm then there are two finite sets I and K of indices, variables
pk ∈ Var for all k ∈ K and formulas Ai ∈ Form∨, Bi ∈ HForm for all i ∈ I such
that I ∪ K is nonempty and C ≡

(
∧

i∈I (Ai → Bi)
)

∧
(
∧

k∈K pk
)

.

In fact, if C is T, then C ≡ T → T. If C is A ∧ B with A, B ∈ HForm the claim
follows by induction, and lastly if C is a variable or of the form A → B the claim is
immediate.

The main feature of Harrop formulas is that they allow us to recover a (restricted)
version of the Bubbling lemma.

Lemma 5.2 (Bubbling Lemma for Form∨)

1. A → B ≡ T if and only if B ≡ T.
2. Assume C ∈ HForm and it is not the case that D ≡ T. Assume, moreover,

that we have
(
∧

i∈I (Ai → Bi)
)

∧
(
∧

k∈K pk
)

≤ C → D for the finite index
sets I , K . Then I is nonempty and there is a finite nonempty subset J of I
such that

C ≤
∧

i∈J

Ai and
∧

i∈J

Bi ≤ D.

Proof The proof of point (1) by induction on the construction of ≡ is standard. The
proof of point (2) involves a stratification of formulas and we give it in Appendix A.

We want to consider only theories which are essentially based on Harrop formu-
las. For this reason we say that a theory U ⊆ Form∨ is a Harrop theory if and only
if for all A ∈ U there is A′ ∈ U such that A′ ∈ HForm and A′ ≤ A. In the remainder
of this section we will deal only with the set HCT of Harrop theories.

We show the soundness of the calculus of theories HCT = 〈HCT, ◦〉, that
is, that Harrop theories are closed under the fusion operation ◦. By definition
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U◦V = {B : ∃A ∈ Form∨(A → B ∈ U and A ∈ V )}. We will prove that
for all B ∈ U◦V there is B ′ ∈ U◦V such that B ′ ∈ HForm and B ′ ≤ B.
The case B ≡ T is trivial, so in the following we assume B 6≡ T. Now
A ∈ V , where V is a Harrop theory, implies that there is A′ ∈ V such that
A′ ∈ HForm and A′ ≤ A. From A → B ∈ U we get A′ → B ∈ U , since
A′ ≤ A implies A → B ≤ A′ → B and U being a theory is closed under
≤. Since also U is a Harrop theory, there is C ∈ U such that C ∈ HForm and
C ≤ A′ → B. By Claim 5.1 we have C ≡

(
∧

i∈I (Ai → Bi)
)

∧
(
∧

k∈K pk
)

for some sets I , K of indices, variables pk ∈ Var, and formulas Ai ∈ Form∨,
Bi ∈ HForm for all i ∈ I . Now

(
∧

i∈I (Ai → Bi)
)

∧
(
∧

k∈K pk
)

≤ A′ → B,
B 6≡ T, and A′ ∈ HForm imply that there is a finite nonempty subset J of
I such that A′ ≤

∧

i∈J Ai and
∧

i∈J Bi ≤ B by the Bubbling lemma (2) for
Form∨. We will show now that

∧

i∈J Bi is a correct choice for B ′. First no-
tice that each Bi ∈ HForm, whence

∧

i∈J Bi ∈ HForm by definition. Since
A′ ≤

∧

i∈J Ai we get
∧

i∈J Ai ∈ V . Moreover
∧

i∈J Ai →
∧

i∈J Bi ∈ U ,
since C ≤

∧

i∈I (Ai → Bi) ≤
∧

i∈I
(
∧

i∈J Ai → Bi
)

≤
∧

i∈J Ai →
∧

i∈J Bi .
Therefore we get

∧

i∈J Bi ∈ U◦V , and this concludes our proof. �

Point (2) of the Bubbling lemma for Form∨ suggests that the Harrop formulas are
good guys. To make the most of this property in the construction of our model
we build the interpretation of λ-abstraction starting only from formulas of this
shape. More precisely we extend a λ-H -valuation v (assigning Harrop theories to
λ-variables) to the corresponding λ-H -interpretation V

H as follows:

V
H x V

H (x) = v(x)

V
H ◦ V

H (M N) = V
H (M)◦V

H (N)

V
H λ V

H (λx .M) = {A → B : A ∈ HForm and B ∈ V
H [A↑ /x](M)}↑ .

The soundness of this definition requires that all λ-H -interpretations are Harrop
theories. This can be proved by induction on the construction of λ-H -interpretations
itself. The only nontrivial case is clause V

Hλ. Now V
H (λx .M) is a theory by

construction. To show that it is a Harrop theory, we need to build C ′ ∈ V
H (λx .M)

such that C ′ ∈ HForm and C ′ ≤ C given an arbitrary C ∈ V
H (λx .M). Now

C ∈ V
H (λx .M) implies

∧

i∈I (Ai → Bi) ≤ C , for some set of indices I and
formulas Ai ∈ HForm, Bi ∈ Form∨ such that Bi ∈ V

H [Ai ↑ /x](M) for all
i ∈ I . By induction each V

H [Ai ↑ /x](M) is a Harrop theory, and therefore
we can find B ′

i ∈ V
H [Ai ↑ /x](M) such that B ′

i ∈ HForm and B ′
i ≤ Bi . We

want to show that
∧

i∈I (Ai → B ′
i) is a correct choice for C ′. First notice that

by definition
∧

i∈I (Ai → B ′
i) ∈ V

H (λx .M) since B ′
i ∈ V

H [Ai ↑ /x](M).
Moreover B ′

i ∈ HForm implies Ai → B ′
i ∈ HForm for all i ∈ I , whence

∧

i∈I (Ai → B ′
i) ∈ HForm. Lastly

∧

i∈I (Ai → B ′
i) ≤ C , since B ′

i ≤ Bi for all
i ∈ I (whence Ai → B ′

i ≤ Ai → Bi and
∧

i∈I (Ai → B ′
i) ≤

∧

i∈I (Ai → Bi)) and
∧

i∈I (Ai → Bi) ≤ C .
As in Section 3, to prove that we have really obtained a λ-model it is crucial to

show compositionality of interpretations. In the present case this is stronger, since
we can limit our consideration to Harrop formulas.
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Lemma 5.3 (Compositionality Lemma) For all Harrop theories U, λ-H -valuations
v and λ-terms M,

V
H [U/x](M) =

⋃

A∈U∩HForm

V
H [A↑ /x](M).

Proof The proof is by induction on the construction of λ-H -interpretations. For
clause V

H x notice that if U is a Harrop theory, then U = {A : ∃A′ ∈ HForm(A′ ∈ U
and A′ ≤ A)}. The other clauses follow by induction. �

A further useful property of λ-H -interpretations concerns abstraction.

Lemma 5.4 (Abstraction Lemma) If A → B ∈ V
H (λx .M) and A ∈ HForm, then

B ∈ V
H [A↑ /x](M).

Proof If A → B ∈ V
H (λx .M) then

∧

i∈I (Ai → Bi) ≤ A → B, for some set of
indices I and formulas Ai ∈ HForm, Bi ∈ Form∨ such that Bi ∈ V

H [Ai↑ /x](M)

for all i ∈ I . The Bubbling lemma (2) for Form∨ implies that there is J ⊆ I such
that A ≤

∧

i∈J Ai and
∧

i∈J Bi ≤ B, where A ∈ HForm by hypothesis. Now
A ≤

∧

i∈J Ai implies A ↑⊇
(
∧

i∈J Ai
)

↑⊇ Ai ↑ for all i ∈ J . Since the λ-H -
interpretations are monotone we get Bi ∈ V

H [A↑ /x](M) for all i ∈ J . Whence we
conclude B ∈ V

H [A↑ /x](M) using
∧

i∈J Bi ≤ B.
The condition A ∈ HForm in Lemma 5.3 is necessary, since, for example,

A ∨ B → C ∈ V
H
0 (M0) but C 6∈ V

H
0 [(A ∨ B)↑ /x](yxx), where M0 ≡ λx .yxx

and v0(y) = ((A → A → C) ∧ (B → B → C))↑. �

To conclude our job we want to prove our main result, that is, that HCT is a λ-model,
showing that V

H is a syntactic interpretation according to the definition given for
λ-interpretation V .

Theorem 5.5 (Main Theorem) HCT is a λ-model.

Proof We already know that the only interesting case is clause Iλ◦ in the definition
of syntactic interpretations. We have

V
H (λx .M)◦U = {B : ∃A ∈ Form∨(A → B ∈ V

H (λx .M) and A ∈ U)}.

Since U is a Harrop theory, there is A′ ∈ U such that A′ ∈ HForm and A′ ≤ A. Now
A′ ≤ A implies A → B ≤ A′ → B, whence A′ → B ∈ V

H (λx .M). We get

V
H (λx .M)◦U = {B : ∃A′ ∈ HForm(A′ → B ∈ V

H (λx .M) and A′ ∈ U)}.

By the abstraction lemma from A′ ∈ HForm and A′ → B ∈ V
H (λx .M) we have

B ∈ V
H [A′↑ /x](M). Therefore we obtain

V
H (λx .M)◦U = {B : ∃A′ ∈ HForm(B ∈ V

H [A′↑ /x](M) and A′ ∈ U)},

so by Lemma 5.3 we conclude

V
H (λx .M)◦U = V

H [U↑ /x](M). �

Our last remark is that in the case of Harrop theories completeness fails. In fact we
have that ITD∨ 6|H p → q ∨ r ≤ (p → q) ∨ (p → r). So we would like to find
a Harrop theory U such that p → q ∨ r ∈ U but (p → q) ∨ (p → r) 6∈ U . By
definition of Harrop theory p → q ∨ r ∈ U implies there is A ∈ HForm ∩ U such
that A ≤ p → q ∨ r . Now clearly we can only choose either p → q or p → r as A.
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6 Conclusion

The main result of the present paper is that the calculus of Harrop theories over the
minimal relevant logic B+ is a model of λ and CL. We seek nonetheless a better
model in a wider class of ∨-prime B+-theories as a direction for future research and
for the further illumination of logics and of types. Recently further progress has
been made in this direction: [8] compares B+ with the semantics-based approach
to subtyping introduced by Frisch, Castagna, and Benzaken [11] in the definition of
a type system with intersection and union. [8] shows that—for the functional core
of the system—such notion of subtyping, which is defined in purely set-theoretical
terms, coincides with the relevant entailment of the logic B+.

Appendix A

We will use a stratification of Form∨. A similar stratification was considered in van
Bakel et al. [20].

Definition A.1 (Stratification of Form∨) T→, T∨, T∧, T∧∨, T∨∧ ⊆ Form∨ are re-
cursively defined by
(T→) T ∈ T→

p ∈ T→ for all type variables p
A ∈ T∧, B ∈ T∨ ⇒ A → B ∈ T→

(T∨) A ∈ T→ ⇒ A ∈ T∨

A, B ∈ T∨ ⇒ A ∨ B ∈ T∨

(T∧) A ∈ T→ ⇒ A ∈ T∧

A, B ∈ T∧ ⇒ A ∧ B ∈ T∧

(T∧∨) A ∈ T∨ ⇒ A ∈ T∧∨

A, B ∈ T∧∨ ⇒ A ∧ B ∈ T∧∨

(T∨∧) A ∈ T∧ ⇒ A ∈ T∨∧

A, B ∈ T∨∧ ⇒ A ∨ B ∈ T∨∧.

Specialization of ≤ to the sets Ti are now introduced, whose definition exploits the
syntactical form of the types in Ti .

Definition A.2 ≤i ⊆ Ti × Ti (i =→, ∨, ∧, ∧∨, ∨∧) are the least preorders such
that
( ≤→ ) A ≤→ B ⇔ either B = T or A = B

or A = A1 → A2, B = B1 → B2 and B1 ≤∧ A1, A2 ≤∨ B2
( ≤∨ )

∨

i∈I Ai ≤∨

∨

j∈J B j (where Ai , B j ∈ T→) ⇔ ∀i ∈ I∃ j ∈ J, Ai ≤→ B j
( ≤∧ )

∧

i∈I Ai ≤∧

∧

j∈J B j (where Ai , B j ∈ T→) ⇔ ∀ j ∈ J∃i ∈ I, Ai ≤→ B j
( ≤∧∨ )

∧

i∈I Ai ≤∧∨

∧

j∈J B j (where Ai , B j ∈ T∨) ⇔ ∀ j ∈ J∃i ∈ I, Ai ≤∨ B j

( ≤∨∧ )
∨

i∈I Ai ≤∨∧

∨

j∈J B j (where Ai , B j ∈ T∧) ⇔ ∀i ∈ I∃ j ∈ J, Ai ≤∧ B j .

Lemma A.3 ≤i (i =→, ∨, ∧, ∧∨, ∨∧) are reflexive and transitive.

Proof The proof is by induction the construction of ≤i . �

We will now introduce maps from arbitrary formulas belonging to Form∨ into their
conjunctive/disjunctive normal forms in T∧∨ and T∨∧, respectively.

Definition A.4 The maps m∧∨ : Form∨ → T∧∨ and m∨∧ : Form∨ → T∨∧ are
defined by simultaneous induction the structure of formulas.
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(i) m∧∨(A) = m∨∧(A) = A if A = T or A is a variable.
(ii) If m∨∧(A) =

∨

i∈I Ai and m∧∨(B) =
∧

j∈J B j then
m∧∨(A → B) = m∨∧(A → B) =

∧

i∈I
∧

j∈J (Ai → B j ).

(iii) m∧∨(A ∧ B) = m∧∨(A) ∧ m∧∨(B), and, if m∨∧(A) =
∨

i∈I Ai and
m∨∧(B) =

∨

j∈J B j then
m∨∧(A ∧ B) =

∨

i∈I
∨

j∈J (Ai ∧ B j).

(iv) m∨∧(A ∨ B) = m∨∧(A) ∨ m∨∧(B), and, if m∧∨(A) =
∧

i∈I Ai and
m∧∨(B) =

∧

j∈J B j then
m∧∨(A ∨ B) =

∧

i∈I
∧

j∈J (Ai ∨ B j).

The following proposition states that conjunctive/disjunctive normal forms are log-
ically equivalent to their counterimages under m∧∨() and m∨∧(), and that the spe-
cialized relations ≤i are actually restrictions of ≤ to the sets Ti , respectively.

Proposition A.5 For all A, B ∈ Form∨,
(i) A ≡ m∧∨(A) ≡ m∨∧(A),

(ii) A, B ∈ Ti , A≤i B ⇒ A ≤ B for i =→, ∨, ∧, ∨∧, ∧∨,
(iii) A ≤ B ⇔ m∧∨(A) ≤∧∨ m∧∨(B) ⇔ m∨∧(A) ≤∨∧ m∨∧(B).

Proof

(i) The proof is by induction on the structure of A. For example, if A = B → C
then, by induction hypothesis, we have B ≡ m∨∧(B) =

∨

i∈I Bi and
C ≡ m∧∨(C) =

∧

j∈J C j , so that by repeated uses of (→∧I), (→∨E), and
(Mon→) we conclude that
B → C ≡

∨

i∈I Bi →
∧

j∈J C j ≡
∧

i∈I
∧

j∈J (Bi → C j ) ≡ m∧∨(B → C) = m∨∧(B → C).

(ii) The proof is by straightforward induction on the construction of ≤i .
(iii) Implications (⇐) are immediate consequences of (i) and (ii). To prove (⇒)

we use induction on the construction of ≤. All cases are simple calculations.
For example, case (Mon∨) A ≤ B, C ≤ D ⇒ A ∨ C ≤ B ∨ D: by induction
hypothesis,

m∧∨(A) ≤∧∨ m∧∨(B) ⇒ ∀ j ∈ J ∃i ∈ I ∀n ∈ Ii ∃q ∈ J j , Ai,n ≤→ B j,q,

where m∧∨(A)=
∧

i∈I Ai , m∨∧(Ai)=
∨

n∈Ii
Ai,n , and m∧∨(B)=

∧

j∈J B j ,
m∨∧(B j) =

∨

q∈J j
B j,q . Similarly,

m∧∨(C) ≤∧∨ m∧∨(D) ⇒ ∀l ∈ L ∃k ∈ K ∀r ∈ Kk ∃s ∈ Ll, Ck,r ≤→ Dl,s ,

where m∧∨(C) =
∧

k∈K Ck , m∨∧(Ck) =
∨

r∈Kk
Ck,r and m∧∨(D) =

∧

l∈L Dl , m∨∧(Dl) =
∨

s∈Ll
Dl,s . Then we have

∀ j ∈ J, l ∈ L
[

∃i ∈ I ∀n ∈ Ii ∃q ∈ J j , Ai,n ≤→ B j,q

and ∃k ∈ K ∀r ∈ Kk ∃s ∈ Ll, Ck,r ≤→ Dl,s
]

⇒ ∀ j ∈ J, l ∈ L ∃i ∈ I, k ∈ K ,
∨

n∈Ii
Ai,n ∨

∨

r∈Kk
Ck,r ≤∨

∨

q∈J j
B j,q ∨

∨

s∈Ll
Dl,s

⇒ ∀ j ∈ J, l ∈ L ∃i ∈ I, k ∈ K , Ai ∨ Ck ≤∨ B j ∨ Dl

⇒
∧

i∈I
∧

k∈K (Ai ∨ Ck) ≤∧∨

∧

j∈J
∧

l∈L(B j ∨ Dl)

⇒ m∧∨(A ∨ C) ≤∧∨ m∧∨(B ∨ D).
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�

The converse of Proposition A.5(ii) is false: an example is just axiom (→∨E).
We eventually come to the proof of the Bubbling lemma for Form∨ using the

notion of ∨-prime formulas.

Definition A.6 A formula A is ∨-prime if and only if A ≤ B∨C ⇒ A ≤ B or A ≤ C.

Theorem A.7 (Bubbling for B+)

(i) Each Harrop formula is ∨-prime.
(ii)

(
∧

i∈I (Ai → Bi)
)

∧
(
∧

k∈K pk
)

≤ C → D, D 6≡ T, and C is ∨-prime imply
C ≤

∧

i∈J Ai and
∧

i∈J Bi ≤ D for some J ⊆ I .

Proof By Claim 5.1 each Harrop formula is equivalent to
(
∧

i∈I (Ai → Bi)
)

∧
(
∧

k∈K pk
)

for suitable formulas Ai , Bi and variables pk .

(i) By Proposition A.5(iii) we have
(
∧

i∈I (Ai → Bi)
)

∧
(
∧

k∈K pk
)

≤ C ∨ D
⇔ m∨∧

((
∧

i∈I (Ai → Bi)
)

∧
(
∧

k∈K pk
))

≤∨∧ m∨∧(C ∨ D).

Now m∨∧

(
∧

i∈I (Ai → Bi) ∧
(
∧

k∈K pk
))

is a conjunction of arrows
and variables, namely, a formula with no disjunction at the top level; on
the other hand, m∨∧(C ∨ D) has the form

∨

j∈J C j ∨
∨

l∈L Dl where
m∨∧(C) =

∨

j∈J C j and m∨∧(D) =
∨

l∈L Dl . By definition of ≤∨∧ we
immediately have that

m∨∧

(
∧

i∈I (Ai → Bi) ∧
(
∧

k∈K pk
))

≤∧ C j
or

m∨∧

(
∧

i∈I (Ai → Bi) ∧
(
∧

k∈K pk
))

≤∧ Dl,

for some j, l; therefore the thesis follows by Proposition A.5(i) and (ii).
(ii) Let first compute

m∨∧

(
∧

i∈I (Ai → Bi)
)

=
∧

i∈I

[

∧

h∈Hi

∧

l∈L i
(Ai,h → Bi,l)

]

,

where m∨∧(Ai) =
∨

h∈Hi
Ai,h , and m∧∨(Bi) =

∧

l∈L i
Bi,l . On the other

hand, suppose that m∨∧(C → D) =
∧

k∈K
∧

q∈Q(Ck → Dq), where
m∨∧(C) =

∨

k∈K Ck , and m∧∨(D) =
∧

q∈Q Dq . By Proposition A.5(iii)
and the definition of ≤∧∨ we have

∀k ∈ K , q ∈ Q ∃i ∈ I, h ∈ Hi, l ∈ L i . Ck ≤∧ Ai,h & Bi,l ≤∨ Dq .

By Proposition A.5(i), C ≡
∨

k∈K Ck : hence, since C is ∨-prime, there exists
k0 ∈ K such that C ≤ Ck0 . Choose one such k0 and, for any q ∈ Q, define

Jq = {i ∈ I | ∃h ∈ Hi, l ∈ L i . Ck0 ≤∧ Ai,h & Bi,l ≤∨ Dq},

which is nonempty by the above statement. Finally, we take J =
⋃

q∈Q Jq .
Now, for all i ∈ J , there exists h ∈ Hi such that Ck0 ≤ Ai,h ≤ Ai : therefore
C ≤ Ck0 ≤

∧

i∈J Ai . To conclude, for all q ∈ Q there is i ∈ Jq and l ∈ L i
such that Bi ≤ Bi,l ≤ Dq : then

∧

i∈J Bi ≤ Dq for all q, and, therefore,
∧

i∈J Bi ≤
∧

q∈Q Dq ≡ D.

�
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The condition C is ∨-prime in point (ii) of Theorem A.7 is necessary. A counterex-
ample is axiom (→∨E).

Notes

1. Sylvan died in June 1996, while visiting Bali, Indonesia. After so much joint work with
him on the semantics of relevant logics, we dedicate this further essay to his memory.

2. Strengthen B+ (e.g., to intuitionist J or even R+) and conjunctive modus ponens is valid!

3. To be pronounced, “BAT”.

4. Save for notational changes these are exactly the postulates of [5], using ⇒ to express
rules.

5. Historically the tweaking should be vice versa, as B+ anticipated ITD by a decade. But
nobody knew that.

6. Binary connectives are also ranked ∧, ∨, → in order of increasing scope. We continue
as above to use ⇒ as a metalogical connective in framing rules; ⇒ also associates here
to the right.

7. Venneri uses another argument in [21]. But she notes the (previously unpublished) argu-
ment set out here.

8. Fine develops (mainly independently) an Urquhart-Routley style operational relevant
semantics.

9. We usually indicate composition under ◦ by juxtaposition, writing, for example, ‘wx’
instead of ‘w◦x’.

10. I agrees with v on variables by T p, and it is extended to all formulas by truth-conditions
TT, T∧, T →.

11. This is Logicese. In Algebraese it is called a “filter,” as in Dunn [10] and in [5].

12. Translating the combinators K by λxy.x and S by λxyz.xz(yz), and so on.

13. Note that v[U/x] is what Leblanc [16] calls an x-variant. That is, it agrees with v

everywhere, except possibly at x .

14. We extend our convention by making V[U/x](y) the interpretation V determined by the
x-variant v[U/x](y).

15. The closure (↑) allows us to avoid intersections of arrow formulas (cf. clause Vλ).
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