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Anshakov-Rychkov Algebras

Olga Ambas

Abstract The aim of this paper is to show that the calculi described by An-
shakov and Rychkov are algebraizable in the sense of Blok and Pigozzi. As a
consequence, a proof of the strong completeness of these calculi is obtained.

1 Introduction

The aim of this paper is to give an algebraic treatment of the finite-valued calculi
given by Anshakov and Rychkov [2]. These calculi are very close to the ones con-
sidered by Rosser and Turquette [8]. Particular cases are classical logic and Moisil
n-valued logics.

Let n ≥ 2 and F = {J0, J1, . . . , Jn−1}∪{¬, ∨, ∧, ⊃}∪G be a finite set of finitary
operations such that ¬, Ji , i = 0, . . . , n − 1 are unary operations and ∨, ∧, ⊃ are
binary operations. Anshakov-Rychkov algebras are algebras of type F such that they
satisfy natural axioms that correspond to the axioms of the propositional calculus.
We are going to prove that these algebras are subdirect products of subalgebras of
special algebras Mn = 〈Mn, F〉, where Mn = {0, 1

n−1 , . . . , n−2
n−1 , 1}. This fact is

used to proof the strong completeness of these calculi with respect to the semantics
given by the matrices Mn. More precisely, we are going to prove that the Anshakov-
Rychkov calculi are algebraizable in the sense of Blok and Pigozzi [3] with equiva-
lent algebraic semantic M, where M is a quasi variety which depends naturally on
Mn.

2 Anshakov-Rychkov Algebras

In what follows, n will always denote an integer ≥ 2. Let F = {J0, J1, . . . , Jn−1} ∪

{¬, ∨, ∧, ⊃}∪G be a finite set of finitary operations such that ¬, Ji , i = 0, . . . , n−1
are unary operations and ∨, ∧, ⊃ are binary operations. The set G may be empty.
We denote by LF the language of algebras given by F.
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Definition 2.1 An n-matrix of type F is an algebra of language LF such that its
universe Mn is the set of rational fractions {0, 1

n−1 , . . . , n−2
n−1 , 1} and the operations

in F satisfy the following conditions, for every x, y, z in Mn :

CJi Ji

(

j
n−1

)

=

{

1 if j = i,
0 if j 6= i ;

C{0,1} The set {0, 1} is closed under the operations ¬, ∨, ∧, ⊃, and
〈{0, 1}, ¬, ∨, ∧, ⊃, 0, 1〉

is a Boolean algebra with the usual meaning of the operation ¬, ∨, ∧, ⊃;
C∧ x ∧ y = 1 iff x = y = 1;
C∨ x ∨ y = 1 iff x = 1 or y = 1;
C⊃1 x ⊃ (y ⊃ x) = 1;
C⊃2 (x ⊃ (y ⊃ z)) ⊃ ((x ⊃ y) ⊃ (x ⊃ z)) = 1;
C⊃3 1 ⊃ x = 1 iff x = 1.

Observe that we are considering no order relation on the set {0, 1
n−1 , . . . , n−2

n−1 , 1}

besides 0 < 1.
Given an algebra A = 〈A, F〉 of language LF, the elements of the set

E(A) = {Ji (a) : a ∈ A, i = 0, . . . , n − 1}

are called the exterior elements of A.

Definition 2.2 Let M be an n-matrix of type F (n an integer ≥ 2). A is an Ln-
algebra for M or an Anshakov-Rychkov algebra of F provided that the following
conditions hold.

Axiom 2.3 (n-valuedness)

n-Vali Ji(a) =
∧

j 6=i ¬J j (a), i = 0, . . . , n − 1.

Axiom 2.4 (connective J)

Cn-J0 J0(Ji(a)) = ¬Ji (a),
Cn-Jn−1 Jn−1(Ji (a)) = Ji(a),
Cn-Ji Ji(J j (a)) = Jn−1(a) ∧ ¬Jn−1(a), i /∈ {0, n − 1}.

Axiom 2.5 (closure)

Cl-J∗ Ji(a)∗J j (b) = Jn−1(Ji (a)∗J j(b)), where ∗ ∈ {∨, ∧, ⊃},
Cl-J¬ ¬Jn−1(Ji (a)) = Jn−1(¬Ji(a)).
Observe that this axiom and Cn-J0 imply that the set E(A) is closed under the oper-
ations ¬, ∨, ∧, and ⊃.

Axiom 2.6 (exterior elements)

For any x ∈ A, y ∈ A : J0(x)∨¬J0(x) = J0(y)∨¬J0(y).

Remark 2.7 We define 1 := J0(x) ∨ ¬J0(x) and 0 := ¬1. Observe that from the
previous axioms 〈E(A), ∨, ∧, ⊃, ¬, 0, 1〉 is a Boolean algebra.

Axiom 2.8 (connective)

Cn-G Ji(G(a1, . . . , am)) =
∨

G(
i1

n−1 ,...,
im

n−1 )= i
n−1

∧m
j=1 Ji j (a j ), for each

G ∈ F−{Ji , i = 0, . . . , n −1}. We define
∨

∅ = 0.
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Axiom 2.9 (quasi identity)

If Ji (a) = Ji(b) for all i = 0, . . . , n − 1, then a = b.

Remark 2.10 Observe that there is an axiom Cn for each connective in the set
{¬, ∨, ∧, ⊃} ∪ G. Hence, these axioms explicitly depend on the definitions of the
operations in G on {0, 1

n−1 , . . . , n−2
n−1 , 1} according to the matrix M. For each set G,

let M = M(M) be the class of algebras of language LF axiomatized by Axiom 2.3 –
Axiom 2.9; that is, A ∈ M if and only if A is an Ln-algebra for M. Since these
axioms are identities or quasi identities, it follows that M is a quasi variety.

Lemma 2.11 M is an Ln-algebra for the n-matrix M with E(M) = {0, 1}, and it
is the only possible structure of Ln-algebra for M.

Proof The axioms are obviously satisfied. For instance, we check Axiom 2.8 (Cn-∗),
where ∗ ∈ F = {¬, ∨, ∧, ⊃} ∪ G.

Ji (∗(a1, a2, . . . , ak)) =
∨

∗
(

i1
n−1 ,

i2
n−1 ,...,

ik
n−1

)

= i
n−1

(

Ji1(a1) ∧ Ji2(a2) ∧ · · · ∧ Jik (ak)
)

.

Since a j ∈ Mn, a j =
r j

n−1 , j = 1, . . . , k. Ji(∗(a1, a2, . . . , ak)) = 1 if and only if
∗(a1, a2, . . . , ak) = i

n−1 . On the other hand, from (C∨),
∨

∗
(

i1
n−1 ,

i2
n−1 ,...,

ik
n−1

)

= i
n−1

(

Ji1

(

r1
n−1

)

∧ Ji2

(

r2
n−1

)

∧ · · · ∧ Jik

(

rk
n−1

))

= 1

if and only if there are i1, i2, . . . , ik such that i j = r j , j = 1, . . . , k and

∗
(

i1
n−1 ,

i2
n−1 , . . . ,

ik
n−1

)

= i
n−1 . Since ∗

(

i1
n−1 ,

i2
n−1 , . . . ,

ik
n−1

)

= i
n−1 , this ax-

iom is satisfied.
The connective axioms and Axiom 2.9 ensure that an n-matrix M admits only one

structure of Ln-algebra. �

Remark 2.12 Lemma 2.11 can be generalized as follows. If

A1 = 〈A, J0, . . . , Jn−1, ¬, ∨, ∧, ⊃, G1, . . . , Gl〉

and
A2 =

〈

A, J0, . . . , Jn−1, ¬, ∨, ∧, ⊃, G1, . . . , Gl
〉

are Ln-algebras for M, then A1 = A2.

Lemma 2.13 Let A be an Ln-algebra for M. The following properties hold for
each a ∈ A.

1.
∨n−1

i=0 Ji (a) = 1.

2. If i 6= j , then Ji(a) ∧ J j (a) = 0.

3. Ji (a) = 1, then J j (a) = 0 for each i 6= j .

4. If Jn−1(a) = 1, then a = 1.

5. If J0(a) = 1, then a = 0.

Proof

1.
∨n−1

i=0 Ji (a) = J0(a)∨
(

∨n−1
i=1 Ji (a)

)

=
(

∧

j 6=0 ¬J j (a)

)

∨
(

∨n−1
i=1 Ji (a)

)

=

¬
(

∨

j 6=0 J j (a)

)

∨
(

∨n−1
i=1 Ji(a)

)

= 1.
2. From Axiom 2.3, it follows that Ji(a) ∧ J j (a) =

∧

k 6=i ¬Jk(a) ∧ J j (a) = 0.
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3. Suppose Ji(a) = 1 and let j 6= i . J j (a) =
∧

k 6= j ¬Jk(a) ≤ ¬Ji (a) =

¬1 = 0.
4. It follows from item 3 and Axiom 2.9.
5. J0(0) = J0(¬1) = J0(¬Jn−1(1))

=
∨

¬ i
n−1 =0 Ji(Jn−1(1)) ≥ Jn−1(Jn−1(1)) = 1.

From this and Axiom 2.9 we obtain 5. �

Lemma 2.14 Let A be an Ln-algebra for the matrix M. The following properties
hold for any a, b in A:

1. Jn−1(a ∨ b) = Jn−1(a) ∨ Jn−1(b),
2. Jn−1(a ∧ b) = Jn−1(a) ∧ Jn−1(b).

Proof

1. From Axioms 2.8 (Cn∨) and (C∨) of Definition 2.1 and
∨n−1

i=0 Ji(c) = 1 we
obtain that

Jn−1(a ∨ b) =
∨

i
n−1 ∨

j
n−1 =1(Ji (a) ∧ J j (b))

=
(

∨n−1
j=0(Jn−1(a) ∧ J j (b))

)

∨
(

∨n−1
i=0 (Ji(a) ∧ Jn−1(b))

)

= Jn−1(a) ∨ Jn−1(b).

2. From Axiom (C∧) it follows that

Jn−1(a ∧ b) =
∨

i
n−1 ∧

j
n−1 =1(Ji (a) ∧ J j (b)) = Jn−1(a) ∧ Jn−1(b).

�

Lemma 2.15 Let A be an Ln-algebra for M. For any a, b, c in A one has
C∧ a ∧ b = 1 iff a = 1 and b = 1,
C⊃1 a ⊃ (b ⊃ a) = 1,
C⊃2 (a ⊃ (b ⊃ c)) ⊃ ((a ⊃ b) ⊃ (a ⊃ c)) = 1,
C⊃3 1 ⊃ a = 1 iff a = 1.

Proof

(C∧) Let a, b be such that a∧ b = 1. It is enough to see that Jn−1(a) = Jn−1(b) = 1.

1 = Jn−1(a ∧ b) =
∨

i1
n−1 ∧

i2
n−1 =1 Ji1(a) ∧ Ji2(b) = Jn−1(a) ∧ Jn−1(b).

Since E(M) is a Boolean algebra, it follows that Jn−1(a) = Jn−1(b) = 1. The other
implication is easier.

(C⊃1) From Axiom 2.8,

Jn−1 (a ⊃ (b ⊃ a)) =
∨

i1
n−1 ⊃

i2
n−1 =1

Ji1 (a) ∧ Ji2 (b ⊃ a)

=
∨

i1
n−1 ⊃

i2
n−1 =1 Ji1 (a) ∧

(

∨

i3
n−1 ⊃

i4
n−1 =

i2
n−1

Ji3 (b) ∧ Ji4(a)

)

=
∨

i1
n−1 ⊃

i2
n−1 =1

(

∨

i3
n−1 ⊃

i4
n−1 =

i2
n−1

Ji1 (a) ∧ Ji3 (b) ∧ Ji4(a)

)

= α1.
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From Lemma 2.13, Ji1 (a) ∧ Ji4 (a) = 0 for i1 6= i4, and then

α1 =
∨

i1
n−1 ⊃

i2
n−1 =1

(

∨

i3
n−1 ⊃

i4
n−1 =

i2
n−1

Ji1 (a) ∧ Ji3(b)

)

=
∨

i3
n−1 ⊃

i4
n−1 =

i2
n−1

(

∨

i1
n−1 ⊃

i2
n−1 =1 Ji1 (a) ∧ Ji3(b)

)

= α2.

Recall (C⊃1): i1
n−1 ⊃

(

i3
n−1 ⊃

i1
n−1

)

= 1, then

α2 =
∨

i1
n−1 ⊃

(

i3
n−1 ⊃

i1
n−1

)

=1
Ji1 (a) ∧ Ji3 (b)

=
∨

i1 j Ji (a) ∧ J j (b) =
∨

i Ji (a) ∧
∨

j J j (b)

= 1.

(C⊃2) The proof is similar to the previous one.

(C⊃3) In order to prove that 1 ⊃ a = 1 implies a = 1 observe that it is enough to
see Jn−1 (1 ⊃ a) = 1 implies Jn−1 (a) = 1. From Axiom 2.8 it follows that

Jn−1(1 ⊃ a) =
∨

i1
n−1 ⊃

i2
n−1 =1 Ji1(1) ∧ Ji2(a)

=
∨

1⊃
i2

n−1 =1
J1(1) ∧ Ji2(a)

=
∨

1⊃
i2

n−1 =1 Ji2 (a).

From the analogous property for M, Jn−1(1 ⊃ a) = Jn−1(a). Since from hypothesis
Jn−1(1 ⊃ a) = 1, then Jn−1(a) = 1. �

Notice that the condition (C∨) does not hold in general. Indeed, it is not true that in
a Boolean algebra x ∨ y = 1 implies x = 1 or y = 1.

2.1 Examples

Example 2.16 Let M3 = {0, 1
2 , 1} and let the operations on M3 be given by

x ∧ y =

{

1 if x = 1 and y = 1
0 otherwise, x ∨ y =

{

1 if x = 1 or y = 1
0 otherwise,

¬x =

{

1 if x = 0 or x = 1
2

0 if x = 1,
x ⊃ y = ¬x ∨ y.

It is easy to check that M = 〈M3, F〉 is an Ln-algebra for M for this 3-matrix M.

In the following examples, we consider the natural order on Mn , that is,
0 < 1

n−1 < · · · < n−2
n−1 < 1 and its natural additive structure.

Example 2.17 Consider now M3 with the operations

x ∧ y = min{x, y}, x ∨ y = max{x, y},

¬x = 1 − x, x ⊃ y = min{1, 1 − x + y}.

Then M = 〈M3, F〉 is an Ln-algebra for M for this 3-matrix M.
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Example 2.18 Recall (see Cignoli and de Gallego [6], Boicescu et al. [4]) that
an n-valued Moisil algebra is a system 〈A, ∨, ∧, ¬, σ1, . . . , σn, 0, 1〉 such that
〈A, ∨, ∧, 0, 1〉 is a distributive lattice with unit 1 and zero 0, and ¬, σ1, . . . , σn are
unary operators defined on A, fulfilling certain conditions. In any n-valued Moisil
algebra, there are operators J0, . . . , Jn−1 such that they can be written in terms of
the operators σ1, . . . , σn :

Ji(x) = σn−1(x) ∧ ¬σn−i−1(x).

Moreover, the operators σ1, . . . , σn can be expressed in terms of J0, . . . , Jn−1:

σi (x) =
∨i

j=1 Jn− j (x).

Now it is convenient to take an n-valued Moisil algebra to be a system

〈A, J0, . . . , Jn−1, ¬, ∨, ∧, ⊃, σ1, . . . , σn−1〉 ;

the operation ⊃ is now the weak implication:

x ⊃ y = σn−1(¬x) ∨ y.

Let Mn = {
j

n−1 : j = 0, . . . , n − 1}, the n-valued Moisil algebra with the natural
lattice operations ∨, ∧, 0, 1, ¬, and σi given by

¬
j

n − 1
= 1 −

j
n − 1

, σi

(

j
n − 1

)

=

{

0 if i + j < n
1 if i + j ≥ n.

Let Mn = 〈Mn, F〉 be an algebra of type F. Since conditions (CJi ), (C∧), . . . , (C⊃3)

are satisfied, from Lemma 2.11 it follows that Mn is an Ln-algebra for the matrix
Mn .

Remark 2.19 Let Mn be as above. Observe that if n = 4 and ⊃ is the Łukasiewicz
implication,

x ⊃ y = min{1, 1 − x + y},

and

¬x = 1 − x, x ∨ y = max{x, y}, x ∧ y = min{x, y}.

In this case, M4 is not an Ln-algebra for the matrix M4. It is enough to observe that
the Łukasiewicz implication does not verify (C⊃2):

(

1
3

⊃

(

2
3

⊃ 0
))

⊃

((

1
3

⊃
2
3

)

⊃

(

1
3

⊃ 0
))

6= 1.

Example 2.20 Let M6 = 〈M6, F〉 be the matrix given in Example 2.18 for n = 6.
Let A = {0, 1

3 , 2
3 , 1} and let F = {J 0, . . . , J 5, ¬, ∨, ∧, ⊃} such that ¬, ∨, ∧ are the

same as in the same example, ⊃ is the weak implication, and J0, . . . , J5 are given by
















J0 J1 J2 J3 J4 J5

0 1 0 0 0 0 0
1
3 0 1 0 0 0 0
2
3 0 0 0 0 1 0
1 0 0 0 0 0 1
















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Let A = 〈A, F〉. Then A is an L6-algebra for the matrix M6. (See [6]). We are going
to check J0(¬a) =

∨

¬ i
n−1 =0 Ji(a). Observe that

J0(¬a) =

{

0 if a ∈
{

0, 1
3 , 2

3

}

1 if a = 1

and also
∨

¬ i
5 =0 Ji(a) = J5(a) = J0(¬a).

Analogously for J1(¬a), . . . , J5(¬a).
In order to check this axiom for the operation ⊃, recall that the weak implication

on
{

0, 1
3 , 2

3 , 1
}

is given by

x ⊃ y = σ3(¬x) ∨ y =

{

1 if x 6= 1
y if x = 1,

and the weak implication on
{

0, 1
5 , 2

5 , 3
5 , 4

5 , 1
}

is given by

x ⊃ y = σ5(¬x) ∨ y.

For example, we are going to check that J0(a1 ⊃ a2) =
∨

i1
5 ⊃

i2
5 =0

Ji1(a1)∧ Ji2(a2):

J0(a1 ⊃ a2) = 1 if and only if a1 ⊃ a2 = 0 if and only if a1 = 1 and a2 = 0. On
the other hand,

∨

i1
5 ⊃

i2
5 =0

Ji1 (a1) ∧ Ji2(a2) = J5(a1) ∧ J0(a2) = 1

if and only if a1 = 1 and a2 = 0. In the same way we can prove the other cases.

Remark 2.21 Recall that the intuitionist implication is defined by

x ⊃ y = min{z : x ∧ z ≤ y}.

On {0, 1
n−1 , . . . , 1}, ⊃ is given by

x ⊃ y =

{

1 if x ≤ y
y otherwise.

It is known—see [6]—that this implication can be expressed in terms of the oper-
ations σi . This implication can be used in place of the weak one in the previous
example, obtaining another example of n-matrix.

Example 2.22 Let F = {J0, J1, ¬, ∨, ∧, ⊃, }, M2 = 〈{0, 1}, F〉 such that
〈{0, 1}, ¬, ∨, ∧, ⊃〉 is a Boolean algebra. Let A be an Ln-algebra for the ma-
trix M2. Then A is also a Boolean algebra. For example, to check the ax-
iom a ∨ ¬a it is enough to prove that J1(a ∨ ¬a) = 1. First observe that
J1(¬a) = ∨¬i=1 Ji(a) = J0(a) and from Lemma 2.14,

J1(a ∨ ¬a) = J1(a) ∨ J1(¬a) = J1(a) ∨ J0(a) = 1.

In the same way it is easy to prove all the axioms.

Example 2.23 Let A ∈ Ln M be the variety of the monadic n-valued Łukasiewicz
algebras—see Abad [1]. First recall that the only operator ∃ on {0, 1

n−1 , . . . , n−2
n−1 , 1}

is the identity. Then, if A is an Ln-algebra for a matrix M as in Example 2.18 and
G = {∃}, from Remark 2.12 it must be that ∃ = IdA. It follows that in general if A
∈ Ln M , then A is not an Ln-algebra.
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3 Boolean Congruences

As usual, a congruence θ on an algebra A = 〈A, F〉 is an equivalence relation
that is compatible with the operations belonging in F. In particular, a θ b implies
Ji (a) θ Ji (b), i = 0, . . . , n − 1. Let θe be the restriction of θ to the Boolean alge-
bra E(A). Notice that if η is a congruence on the Boolean algebra E(A), then from
Axioms (Cn-J0), (Cn-Jn−1), and (Cn-Ji ), we have that η also preserves the connec-
tives Ji : J j (a) η Jk(b) implies that Ji(J j (a)) η Ji (Jk(b)).

Lemma 3.1 For each congruence η on E(A), let η be the relation on A such that
a η b if and only if Ji(a) η Ji(b), i = 0, . . . , n − 1. Then η is a congruence on A.

Proof It is obvious that η is an equivalence relation on A and it follows from
Axiom 2.8 that it also preserves the operations in F . �

Notice that for each congruence θ on A we have that θ ⊆ θe and η ⊆ (η)e.

Definition 3.2 Let θ be a congruence on A. We say that θ is a Boolean congruence
if and only if θ = θe.

Let A ∈ M. We denote by Con(A) the complete lattice of congruences of A. Fol-
lowing Pigozzi [7], we say that θ ∈ Con(A) is an M-congruence provided that
A/θ ∈ M. The set of M-congruences of A is a complete lattice of Con(A) that
we denote ConM(A).

Lemma 3.3 The Boolean congruences are exactly the M-congruences.

Proof Suppose that A/θ ∈ M. We need to show that θe ⊆ θ : let a, b ∈ A such that
a θe b. Then Ji (a) θ Ji (b) for each i = 0, . . . , n − 1. Since Axiom 2.9 holds in A/θ

we have that a θ b. For the converse, suppose that Ji (a) θ Ji (b) for i = 0, . . . , n − 1.
Then we have that Ji(a) θe Ji(b) for i = 0, . . . , n − 1 and then a θe b. Since θ = θe
it follows that a θ b. �

Lemma 3.4 If θ is a maximal congruence on A, then θe is a maximal congruence
on E(A), or it is the universal congruence on E(A).

Proof If θe ⊆ η, then θ ⊆ θe ⊆ η. Since θ is maximal, then η = θ or η = A × A.
In the first case, η ⊆ (η)e = θe ⊆ η, therefore θe = η. In the case η = A × A, then
it is immediate that η = E(A) × E(A). �

Lemma 3.5 Let U be an ultrafilter in E(A). Then, for each a ∈ A, there is a
unique i ∈ {0, . . . , n − 1} such that Ji (a) ∈ U.

Proof It follows immediately from Lemma 2.13. �

It is well known that, in a Boolean algebra, filters can be identified with congruences.
We denoted Uη, the filter associated with the congruence η, and ηU , the congruence
associated with the filter U . Also we put [x] = {y : y η x}.

Lemma 3.6 Let U be as above. If Ji(a) ∈ U then Jn−1(Ji(a)) ∈ U, else
J0(Ji(a)) ∈ U.

Proof In the first case, observe that Ji (a) = Jn−1(Ji(a)) ∈ U . If Ji (a) /∈ U then
¬Ji (a) = J0(Ji (a)) ∈ U . �
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Theorem 3.7 Let A be an Ln-algebra for the matrix M. Let η be a maximal con-
gruence on E(A). There is a homomorphism fη : A/η ↪→ Mn , that is, the quotient
A/η is isomorphic to a subalgebra of Mn .

Proof Note first that since η is a Boolean congruence, A/η ∈ M. Let Uη be the
prime filter on E(A) as above, and let

fη : A/η → Mn

given by

fη([a]) =
i

n − 1
where i is the unique integer such that Ji (a) ∈ Uη. The function fηis well defined
since if [a] = [b], then Ji(a) η Ji (b) for each i = 0, . . . , n−1, and hence Ji(a) ∈ Uη

if and only if Ji (b) ∈ Uη.
Let us check that fη is a homomorphism: let

∗ ∈ F − {Ji , i = 0, . . . , n − 1}, a1, a2, . . . , ak

belong in A, and suppose that

fη([a j ]) =
i j

n − 1
, j = 0, . . . , k,

that
r

n − 1
= ∗

(

i1

n − 1
,

i2

n − 1
, . . . ,

ik

n − 1

)

,

and that
Ji (∗ (a1, a2, . . . , ak)) ∈ Uη.

Then fη(∗([a1] , [a2] , . . . , [ak])) = fη ([∗ (a1, a2, . . . , ak)]) = i
n−1 , and in order to

prove fη(∗([a1] , [a2] , . . . , [ak])) = ∗( fη ([a1]) , fη ([a2]) , . . . , fη ([ak])) we must
show that Jr (∗ (a1, a2, . . . , ak)) ∈ Uη. We have

Jr (∗ (a1, a2, . . . , ak)) =
∨

∗(
j1

n−1 ,
j2

n−1 ,...,
jk

n−1 )= r
n−1

∧k
l=1 J jl (al)

≥
(

Ji1(a1) ∧ · · · ∧ Jik (ak)
)

∈ Uη,

because each Jil (al) ∈ Uη. Also fη(J j ([a])) = J j ( fη([a])) for each j =0, . . . , n−1.
Indeed, let i be such that Ji(a) ∈ Uη. Hence J j ( fη([a])) = J j (

i
n−1 ) = 1 if and

only if i = j , and the result follows from Lemma 3.6. Finally, fη is injective: if
(a, b) /∈ η then (J j (a), J j (b)) /∈ η for some j . Either J j (a) ∈ Uη and J j (b) /∈ Uη,
or J j (a) /∈ Uη and J j (b) ∈ Uη. In both cases fη([a]) 6= fη([b]). �

Lemma 3.8 Let I be the set of maximal elements of ConM(A). Then ∩I = 1 is
the minimum element of ConM(A).

Proof Suppose a 6= b, then there is an i such that Ji(a) 6= Ji(b). Let U be an
ultrafilter such that Ji(a) ∈ U and Ji (b) /∈ U . Then (Ji(a), Ji(b)) /∈ ηU , and
(a, b) /∈ ηU . It follows that (a, b) /∈

⋂

{η ∈ I }. �

From the above lemma, Theorem 3.7, and a well-known theorem of Birkhoff (see, for
instance, Burris and Sankappanavar [5, Chapter 2, Theorem 8.6]) we obtain another
proof of Theorem 5.20 given in [2].

Theorem 3.9 Let A be an Ln-algebra for the matrix M. Then A is a subdirect
product of a family of subalgebras of the matrix M.
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3.1 Examples

Example 3.10 Let Mn be an n-matrix; since E(Mn)={0,1}, the set ConM(Mn)(Mn)

has exactly two elements. (Observe that, if A ∈ M and 1A = min Con(A), from
Axiom 2.9 it follows that 1E(Mn) = 1Mn .) Then Mn/η = Mn or Mn/η has only
one element. However, Mn may be not simple. Indeed, let Mn be as in Exam-
ple 2.16. Then θ = 1Mn ∪ {(0, 1), (1, 0)} verifies 1Mn  θ  Mn × Mn , and
θ /∈ ConM(Mn)(Mn).

Example 3.11 Let F = {J0, J1, . . . , Jn−1} ∪ {¬, ∨, ∧, ⊃}, G = {σ1, . . . , σn},
F = F ∪ G, F

′ = {¬, ∨, ∧} ∪ G. Let Mn = 〈Mn, F〉 be the matrix such that
M′

n =
〈

Mn, F
′
〉

is an n-Moisil algebra (see Example 2.18). Since in this case the
quasi identity given by Axiom 2.9 can be replaced by identities (see [4]) then M is a
variety.

4 An Axiomatization of Anshakov-Rychkov n-valued Propositional Calculi

Let M be an n-matrix of type F as in Section 2. Now we are going to define the n-
valued propositional calculus of Anshakov-Rychkov for the matrix M. Let F denote
the algebra of well-formed formulas constructed in the usual way from a denumer-
able set {pm}m∈N of propositional variables by means of the connectives in F.

Let E(F ) ⊆ F be the set of external formulas which are defined inductively as
follows:

1. for each i = 1, . . . , n − 1, if X is a formula then Ji X is an external formula;
2. if X and Y are external formulas, ¬X, X ∨ Y, X ∧ Y, X ⊃ Y are external

formulas.

Notation 4.1 X ⊂
⊃Y = (X ⊃ Y ) ∧ (Y ⊃ X), T = Jn−1(pn) ∨ ¬Jn−1(pn).

The Axiom schemes are the following:
(Boolean Axioms) If 8 is a classical tautology, let B8 be the formula in which

we substitute each appearance of each propositional vari-
able by any formula of the form Ji(X). Then B8 is an
axiom of this calculi. For example, Ji(X) ∨ ¬Ji (X) is an
axiom, and for any X, Y, Ji (X) ⊃ (Ji(Y ) ⊃ Ji(X)) and
(Ji (X) ⊃ (Ji(Y ) ⊃ Ji (Z))) ⊃ ((Ji (X) ⊃ Ji (Y )) ⊃

(Ji (X) ⊃ Ji(Z))) are axioms.

n-Vali Ji (X)
⊂
⊃

∧

j 6=i ¬J j (X), i = 0, . . . , n − 1

CJi











CJ0 J0(Ji (X))
⊂
⊃¬Ji(X)

CJn−1 Jn−1(Ji(X))
⊂
⊃ Ji (X)

CJ j J j (Ji(X))
⊂
⊃¬T, j /∈ {0, n − 1}

Cl











Cl-J∗ Ji(X) ∗ J j (Y )
⊂
⊃ Jn−1(Ji(X) ∗ J j (Y )),

∗ ∈ {∨, ∧, ⊃}

Cl-J¬ ¬Jn−1(Ji(X))
⊂
⊃ Jn−1(¬Ji(X))

Cn-G
Ji(G(X1, . . . , Xm))

⊂
⊃

∨

G(
i1

n−1 ,...,
im

n−1 )= i
n−1

∧m
j=1 Ji j (X j ),

G ∈ F\{Ji , i = 0, . . . , n − 1}
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(Rules of inference)































modus ponens:
Ji(X), Ji (X) ⊃ J j (Y )

J j (Y )

J-introduction: X
Jn−1(X)

J-elimination:
Jn−1(X)

X

We denote by S(M), or simply by S, the logic given by this language and these
axioms and inference rules. S is the Anshakov-Rychkov propositional logic for M.

If D is a unary predicate, SD is the extension of S to which we add the symbol
D. Let 0 ⊆ F , X ∈ F . Derivability, theorem, and theory are defined in the usual
way, and the notation ‘0 ` X’ means that ‘X is derivable from 0’. Let M(M) be the
quasi variety of algebras defined in Remark 2.10. Let A ∈ M.

A valuation on A is a function v : F → A that preserves the connectives belong-
ing to F. v(X) is an interpretation of the formula X .

Notation 4.2 As usual, 0 �A,v X if and only if v(0) ⊆ {1} implies v(X) = 1,
and 0 �A X if and only if for each valuation v on A, 0 �A,v X . If 0 = ∅, X is a
tautology for A and we write �A X . Also, we write 0 �M X (or simply 0 � X) if
and only if 0 �A X for each A ∈ M.

X is a tautology for M if and only if X is a tautology for A, for each A ∈ M.
In this case, we write � X . Finally, if X is a formula with a single variable p, then
X[Y/p] is the formula obtained from X by replacing each appearance of p by Y .

Let S be the Anshakov-Rychkov propositional logic for M, and M = M(M).

Theorem 4.3 S is algebraizable with equivalent algebraic semantic M. This
means (see [3], Definition 2.8) that

1. there exists a finite system of equations—called defining equations for
S and M, δi (p) ≈ εi (p) for i < m—with a single variable p such
that for all 0 ∪ {X} ⊆ F and each j < s, 0 ` X if and only if
{δi(Y/p) ≈ εi (Y/p) : j < s, Y ∈ 0} � δ j (X/p) ≈ ε j (X/p);

2. there exists a finite system 1k(p, q), for k < t of formulas with two variables
such that, for every equation X ≈ Y , X ≈ Y � δ(X1Y ) ≈ ε(X1Y ) and
δ(X1Y ) ≈ ε(X1Y ) � X ≈ Y .

In order to prove Theorem 4.3, we will use the following result by Blok and Pigozzi.

Theorem 4.4 ([3], Theorem 5.1) The following statements are equivalent.
1. S is algebraizable with equivalent semantics M.
2. For every algebra A the Leibnitz operator �A is an isomorphism between the

lattices of S-filters and M-congruences of A.

We know that the M-congruences of A are exactly the Boolean congruences. In
order to prove Theorem 4.4 we first study the class of S-filters. Recall that a subset
F of A is an S-filter when F contains all the interpretations of the logical axioms of
S and is closed under each inference rule: this means that if the premises are in F ,
then the conclusion also belongs to F .

Let U be a filter on the Boolean algebra E(A). F is a Boolean filter if and only if
F = {a ∈ A : Jn−1(a) ∈ U}.

Lemma 4.5 The following statements are equivalent.
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1. F is a Boolean filter.
2. F is an S-filter.

Proof Let F = {a ∈ A : Jn−1(a) ∈ U}. Since 1 ∈ F, F contains the interpreta-
tions of the logical axioms. Now let Ji (a) ∈ F and Ji(a) ⊃ J j (b) ∈ F . Recalling
Axiom 2.4 (Cn-Jn−1), note that for any Ji(a) ∈ E(A), Ji (a) ∈ F if and only if
Ji (a) ∈ U . Since Ji(a) ∈ U and Ji(a) ⊃ J j (b) ∈ U in the Boolean algebra E(A)

implies that J j (b) ∈ U , F is closed under modus ponens. It is easier to see that F is
closed by the other rules.

To prove that condition 1 implies condition 2, let F be an S-filter, and let
U = F ∩ E(A). From the Boolean axiom and the definition of S-filter, U is a filter
on E(A) and F = {a ∈ A : Jn−1(a) ∈ U}. �

Lemma 4.6 Let F = {a ∈ A : Jn−1(a) ∈ U} be a Boolean filter. Then θ(F) =

{(a, b) ∈ A2 : Ji(a) ⊃ Ji(b) ∈ U, Ji(b) ⊃ Ji(a) ∈ U for each i = 0, . . . , n − 1} is
a Boolean congruence and verifies θ = �A(F).

Proof Clearly, if η is the congruence on E(A) defined by U , that is,

η = {(x, y) ∈ E(A)2 : x ⊃ y ∈ U, y ⊃ x ∈ U}

and η is the Boolean congruence given in Section 3, then θ(F) = η.

By Theorem 1.6 of [3], to prove that θ = �A(F), it is enough to see that θ is ele-
mentarily definable in SD. This means that there exists a first-order formula X with
parameters and without equality in SD such that a θ b if and only if �A,v(p/a,q/b) X .
Recalling that the interpretation of D is F , let X be the formula

D
(

∧n−1
i=0 (Ji(p) ⊃ Ji(q)) ∧ (Ji(q) ⊃ Ji(p))

)

.

Then �A,v(p/a,q/b) D
(

∧n−1
i=0 (Ji(p) ⊃ Ji(q)) ∧ (Ji (q) ⊃ Ji(p))

)

if and only if
∧n−1

i=0 (Ji (a) ⊃ Ji(b)) ∧ (Ji (b) ⊃ Ji(a)) belong to F . Note that if

c =
∧n−1

i=0 (Ji(a) ⊃ Ji (b)) ∧ (Ji(b) ⊃ Ji(a)) ∈ E(A),

then c ∈ F if and only if c ∈ U , and therefore a θ b if and only if �A,v(p/a,q/b) X . �

Lemma 4.7 Let A be an algebra, A ∈ M, and let D be the family of S-filters on
A. Let 2 be given by

2 : D −→ ConM(A)

F 7−→ θ(F)

with θ(F) as in Lemma 4.6. Then the map 2 is an order isomorphism.

Proof Let D be the map: D : ConM(A) −→ D, η 7−→ F , where F is the Boolean
filter given by the filter U ⊆ E(A) associated with η. Clearly, D = 2−1. Also, it is
easy to see that 2 preserves the order: if F ⊆ F ′ then θ(F) ⊆ θ(F ′). �

From Lemmas 4.6 and 4.7 we can conclude the following.

Theorem 4.8 For any algebra A ∈ M, the Leibnitz operator �A is an isomorphism
between the lattices of S-filters and M-congruences of A.

Theorem 4.3 follows from Lemmas 4.6 and 4.7 and from Theorem 4.4.
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Lemma 4.9 Let 1 be the system of formulas in two variables and let E be the single
equation given by 1i(p, q) = Ji(p)

⊂
⊃ Ji(q), i = 0, . . . , n − 1, and Jn−1(p) ≈ T ,

respectively. Then the following conditions hold for all X1, X2, X3 ∈ F :
1. ` X11X1,

2. X11X2 ` X21X1,

3. X11X2, X21X3 ` X11X3. For every primitive connective ∗ and all
X1, . . . , Xk , Y1, . . . , Yk ∈ F , where k is the rank of ∗, it holds that

4. X11Y1, . . . , Xk1Yk ` ∗ (X1, . . . , Xk) 1 ∗ (Y1, . . . , Yk), and for all X ∈ F

it holds that

5. X ` Jn−1(X)1T and Jn−1(X)1T ` X.

Proof The conditions (1) – (3) are immediate.

(4) The fact that 1 is a congruence relation on F is a direct consequence of the
Boolean axioms, Axiom (Cn-G), and Axiom (CJi ).

(5) First we observe that Jn−1(X)1T are the formulas

J0(Jn−1(X))
⊂
⊃ J0(T ), . . . , Ji (Jn−1(X))

⊂
⊃ Ji(T ), . . . , Jn−1(Jn−1(X))

⊂
⊃ Jn−1(T ).

From the Boolean and (CJi ) axioms, it follows that to prove (5) it is sufficient to see
that X ` Jn−1(X)

⊂
⊃ T and Jn−1(X)

⊂
⊃ T ` X , which in turn is a consequence of the

deduction rules and the Boolean axioms. �

From Lemma 4.9 and from [3] (see Theorem 4.7) the following corollary is imme-
diate.

Corollary 4.10 1 and E are systems of equivalence formulas and defining equa-
tions for S and M.

The following result was already proved in [2].

Corollary 4.11 (Completeness Theorem) For each 0 ⊂ F and each X ∈ F , if
0 � X, then 0 ` X.

Proof First we observe that if v is a valuation on A ∈ M, v(X) = 1 if and only if
v(Jn−1(X)) = 1. Also, we observe that from the corollary, it is enough to see that if
0 � X , then {Jn−1(Y ) ≈ T : Y ∈ 0} � Jn−1(X) ≈ T . Let v be a valuation on A
∈ M. If v(Jn−1(Y )) = 1 for each Y ∈ 0, then v(Y ) = 1 for each Y ∈ 0, and from
hypothesis v(X) = 1. Therefore, v(Jn−1(X)) = 1. �

5 Axiomiomatization with Truth Values Designated

We note some facts in order to generalize the results in the case of more designated
values. Now, let D ⊂ Mn be such that 0 /∈ D, 1 ∈ D and D verifies the conditions,
(CD⊃): there exists d ∈ D, d ⊃ x ∈ D, then x ∈ D, and (CD∨): x ∨ y ∈ D if and
only if x ∈ D or y ∈ D. D is the set of designated truth values.

Consider the set of formulas and axioms as above. The rules of inference are
modus ponens, JD-introduction ( X

∨

α∈D Jα(X)
), and JD-elimination (

∨

α∈D Jα(X)

X ). Let
SD be this propositional logic.

A formula X is a tautology for M if v(
∨

α∈D Jα(X)) = 1 for each valuation
v on A, for any A ∈ M. Observe that from condition (CD∨), X is a tautology if
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and only if there exists α ∈ D such that Jα(X) = 1. It follows from (CD∨) that
every derivable formula is a tautology. Now F is a Boolean filter if and only if
F = {a ∈ A :

∨

α∈D Jα(a) ∈ U}, where U is a filter on E(A). SD is algebraizable
with equivalent algebraic semantic M. Now the defining equation δ(p) ≈ ε(p) is
the single equation

∨

α∈D Jα(p) ≈ T .
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