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Uniform Short Proofs for Classical Theorems

Kees Doets

Abstract This note exploits back-and-forth characteristics to construct, using
a single method, short proofs for ten classics of first-order and modal logic: in-
terpolation theorems, preservation theorems, and Lindström’s theorem.

1 Introduction

The classics alluded to in the title—among which are interpolation theorems, preser-
vation theorems, and Lindström’s theorem—all state the existence of a first-order
formula satisfying a certain condition. By essentially the same simple argument for
each separate case, it is shown that these conditions are satisfied by disjunctions
of suitable characteristics. For Lindström’s theorem, this was noticed already in
Doets [3] (cf. exercise 165, p. 90). The wider applicability of this approach was sug-
gested by Barwise and van Benthem [2] which has similar results for infinitary logic
(and extensively discusses method).

2 Preliminaries

This section collects the few facts needed in what follows. These are applied ver-
batim in Sections 3 and 6 and, appropriately modified, in Sections 4 and 5. I as-
sume some familiarity with this material and hence refrain from indicating the re-
lationships with, for example, the Ehrenfeucht-Fraïssé game and infinitary logic
(cf. [2], [3]). Vocabularies are finite (unless the contrary is evident) and consist of
relation and constant symbols only.

Note 2.1 Some of the classical theorems considered here are valid without these
restrictions. However, without them, the back-and-forth characteristics of the next
definition do not exist.
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Definition 2.2 (Back-and-forth characteristics) For a model A = (A, . . .), a finite
sequence Ea = (a1, . . . , ai) from A, and a nonnegative integer n, the n-characteristic
of Ea in A is the first-order formula εn

A,Ea with x1, . . . , xi free (and xi+1, . . . , xi+n
bound) defined as follows:

1. ε0
A,Ea is the conjunction of all literals in x1, . . . , xi satisfied by Ea in A;

2. εn+1
A,Ea is

∧
a∈A ∃xi+1ε

n
A,(a1,...,ai ,a)

∧ ∀xi+1
∨

a∈A εn
A,(a1,...,ai ,a)

.

Finally, εn
A

= εn
A,∅, where ∅ is the empty sequence. Note that for all i and n, there

are only finitely many formulas of the form εn
A,Ea where A is any model and Ea any

length-i sequence from it.
A local isomorphism between models A = (A, . . .) and B = (B, . . .) is a finite

relation ∼ ⊆ A × B such that, for atomic ϕ, we have that

A |H ϕ[a1, . . . , ai ] ⇔ B |H ϕ[b1, . . . , bi ]

when a j ∼ b j ( j = 1, . . . , i ).

Lemma 2.3

1. A |H εn
A

.
2. If B |H εn

A
, then, defining Ri ⊆ Ai × B i (0 6 i 6 n) by Ri (Ea, Eb) ≡

B |H εn−i
A,Ea[Eb], we have that

(a) R0 is ‘true’,
(b) for 0 6 i 6 n: if Ri (a1, . . . , ai , b1, . . . , bi), then {(a j , b j ) | 1 6 j 6 i}

is a local isomorphism between A and B, and
(c) for 0 6 i < n: if Ri (a1, . . . , ai , b1, . . . , bi ), then

(‘forth’) ∀a ∈ A ∃b ∈ B Ri+1(a1, . . . , ai , a, b1, . . . , bi , b), and
(‘back’) ∀b ∈ B ∃a ∈ A Ri+1(a1, . . . , ai , a, b1, . . . , bi , b).

A potential isomorphism between models A and B is a nonempty set I of local
isomorphisms such that for all h ∈ I , we have that ∀a ∈ A∃b ∈ B (h ∪ {(a, b)} ∈ I )
and ∀b ∈ B ∃a ∈ A (h ∪ {(a, b)} ∈ I ).

Lemma 2.4 If R0, R1, R2, . . . is an infinite sequence of relations such that
Ri ⊆ Ai × B i and conditions 2.3.2(a – c) hold for all i , then

⋃

i

{{(a1, b1), . . . , (ai , bi)} | Ri (a1, . . . , ai , b1, . . . , bi)}

is a potential isomorphism between A and B.

Theorem 2.5 If I is a potential isomorphism between two countable models, then
some h ⊆

⋃
I is an isomorphism.

Definition 2.6 (Model Pairs) Suppose that Ai = (Ai , . . .) is a model for the vo-
cabulary L i (i = 1, 2) and L is the disjoint union of L1 and L2 together with two
new unary relation symbols U1, U2. The model pair A = (A1, A2) is the L-model
with universe A1 ∪ A2, with UA

i = Ai (i = 1, 2), and where the L i -symbols retain
their old meanings.

3 Interpolation

Theorem 3.1 (Consistency Theorem) Suppose that Ti is a set of L i -sentences
(i = 1, 2) such that T1 ∪ T2 has no model. Then there is an L1 ∩ L2-sentence ϕ such
that T1 |H ϕ and T2 |H ¬ϕ.
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Proof Suppose that no such ϕ exists. The following constructs a model for T1 ∪ T2.
Put L = L1 ∩ L2. �

Claim 3.2 For all n > 0, there exist A |H T1 and B |H T2 such that B |H εn
A|L .

Proof Note that A|L denotes the L-reduct of the L1-model A. Suppose the claim
fails for the integer n. Consider the finite set of L-sentences 6 = {εn

A|L | A |H T1}.
It suffices to show that (i) T1 |H

∨
6 and (ii) T2 |H ¬

∨
6.

(i) Assume that A |H T1. Then εn
A|L ∈ 6 and by Lemma 2.3.1, A |H

∨
6

follows.
(ii) Assume that B |H

∨
6. Then for some A |H T1 we have that B |H εn

A|L ; by
assumption on n, it follows that B 6|H T2. �

Consider the theory of complexes (A, B, R0,R1, R2, . . .) (i.e., model pairs (A, B)

expanded with infinitely many relations R0, R1, R2, . . .) for which A |H T1,
B |H T2, and such that R0, R1, R2, . . . satisfy conditions 2.3.2(a – c) with re-
spect to A|L and B|L for all i . From Claim 3.2 and Lemma 2.3.2, it is clear that this
theory is finitely satisfiable. Thus, compactness and downward Löwenheim-Skolem
provide a countable realization (A, B, R0, R1, R2, . . .) for it. By Lemma 2.4, A|L
and B|L are potentially isomorphic. By Theorem 2.5, it follows that A|L ∼= B|L.
Identification of A|L and B|L results in the required model for T1 ∪ T2.

Theorem 3.3 (Interpolation Theorem) Suppose the L i -sentences ϕi (i = 1, 2) are
such that ϕ1 |H ϕ2. Then an L1 ∩ L2-sentence ϕ exists such that both ϕ1 |H ϕ and
ϕ |H ϕ2.

Proof Suppose there is no such ϕ. Let L = L1 ∩ L2. As in the previous proof, for
every n > 0 there exist A |H ϕ1 and B |H ¬ϕ2 such that B |H εn

A|L . As before,
compactness, downward Löwenheim-Skolem, Lemma 2.4, and Theorem 2.5 yield a
countermodel to ϕ1 |H ϕ2. �

Theorem 3.4 (Lyndon’s Refinement) This is the same as Theorem 3.3 but ϕ satisfies
additional polarity requirements: relation symbols (different from equality) occur-
ring positively (respectively, negatively) in the interpolant should occur positively
(respectively, negatively) in both ϕ1 and ϕ2.

Proof Modify the argument for Theorem 3.3 as follows. Let Pi be the set of relation
symbols from L = L1 ∩ L2 that occur positively in ϕi and let Ni contain those that
occur negatively in ϕi (i = 1, 2). Modify the εn

A,Ea by letting ε0
A,Ea be the conjunction

of
1. all positive literals satisfied by Ea in A that carry a relation symbol in P1 ∩ P2,
2. all negative literals satisfied by Ea in A that carry a relation symbol in N1 ∩N2,
3. all equality literals satisfied by Ea in A.

These are the obvious modifications to make if one wants to conclude, as before,
from the nonexistence of an interpolant, that for all n there are A |H ϕ1 and
B |H ¬ϕ2 such that B |H εn

A|L .
After applying compactness and Löwenheim-Skolem, the relation h ⊆ A × B,

obtained from Theorem 2.5 by proviso (3), will be a bijection between A and B.
However, for R ∈ L, we only get RA(a) ⇒ RB(h(a)) for R ∈ P1 ∩ P2, and
RB(h(a)) ⇒ RA(a) for R ∈ N1 ∩ N2. For symbols in P1 ∩ P2 ∩ N1 ∩ N2, h
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preserves in both directions (item 4 in the list below). For the remaining symbols,
there is no preservation by h in any direction (item 3).

Nevertheless, the rest of the argument not only needs A |H ϕ1 and B |H ¬ϕ2 but
also that A|L ∼= B|L. To get that, the interpretation RA or RB of some symbols
R ∈ L is modified appropriately, forcing h to be an isomorphism but preserving ϕ1
and ¬ϕ2.

1. For R in (P1 − N1) ∩ P2, replace RA by R(a) :≡ RB(h(a)). Note that since
RA(a) ⇒ RB(h(a)) holds, we have that RA ⊆ R; and since R ∈ P1 − N1,
ϕ1 will still hold in the so-modified A. The same change is made for R in
(N1 − P1) ∩ N2.

2. For R in P1 ∩ N1 ∩ (N2 − P2) or in P1 ∩ N1 ∩ (P2 − N2), replace RB by
R(b) :≡ RA(h−1(b)).

3. For R in (N1 − P1) ∩ (P2 − N2), replace both RA and RB by ‘false’; for R in
(P1 − N1) ∩ (N2 − P2), replace both RA and RB by ‘true’.

4. In the remaining case, where R occurs in both P1 ∩ N1 and P2 ∩ N2, no
relation needs to be changed as preservation by h is already guaranteed. �

Theorem 3.5 (Definability Theorem) Suppose that L+ = L ∪ {R} and T is an L+-
theory such that for every two models A and B of T , if A|L = B|L, then RA = RB .
Then an L-formula ϕ = ϕ(x) exists for which T |H ∀x(R(x) ↔ ϕ).

Proof Suppose no such “definition” ϕ for R exists. Then for all n there exist
A |H T and a ∈ A with RA(a), and B |H T and b ∈ B with ¬RB(b) such that
B |H εn

A|L ,a[b]. (If this fails for n,
∨

{εn
A|L ,a | A |H T ∧ RA(a)} is a definition for

R.)
The rest of the proof is as usual using (slight refinements of) Lemmas 2.3 and 2.4

and Theorem 2.5: we can take care that, for the resulting (countable) models A and
B and the isomorphism h between A|L and B|L, there is a ∈ A such that RA(a)

but ¬RB(h(a)), contrary to hypothesis. �

4 Preservation

A sentence is preserved under extensions if it is true of every extension of one of its
models.

Theorem 4.1 (Łoś-Tarski Theorem) Every sentence preserved under extensions has
an existential equivalent.

Proof Modify the εn
A

appropriately: let εn+1
A,(a1,...,ak)

be
∧

a∈A ∃xk+1ε
n
A,(a1,...,ak ,a)

.
Note that this modification yields existential formulas. Now, if a sentence 8 doesn’t
have an existential equivalent, then, for every n > 0, there are A |H 8 and B |H ¬8

such that B |H εn
A

(if this would be false for n, consider
∨

{εn
A

| A |H 8}). The rest
of the proof follows the by now familiar pattern. The condition that B |H εn

A
entails

the existence of a finite sequence of relations R0 = ‘true’, . . . , Rn that now code
sets of local embeddings satisfying the ‘forth’-property. By downward Löwenheim-
Skolem and compactness, we obtain a countable complex (A, B, R0, R1, R2, . . .)

with A |H 8, B |H ¬8, and such that
⋃

i

{{(a1, b1), . . . , (ai , bi )} | Ri (a1, . . . , ai , b1, . . . , bi)}



Uniform Short Proofs 125

now (compare Lemma 2.4) is a potential embedding; and it follows (as in the proof
for Theorem 2.5) that A embeds into B. �

A sentence is preserved under homomorphisms if it is true of every homomorphic
image of one of its models.

Theorem 4.2 (Lyndon’s Theorem) Every sentence that is preserved under homo-
morphisms has a positive logical equivalent.

Proof Again, modify the characteristics: ε0
A,Ea now is the conjunction of all positive

literals satisfied by Ea. Note that these modifications are positive.
Again, if a sentence 8 has no positive equivalent, then, for every n > 0, there

exist A |H 8 and B |H ¬8 such that B |H εn
A

. (If this is false for n, consider∨
{εn

A
| A |H 8}.)

The condition that B |H εn
A

entails the existence of a finite sequence of relations
R0 = ‘true’, . . . , Rn that code sets of local homomorphisms satisfying the back-and-
forth properties. By downward Löwenheim-Skolem and compactness, we obtain a
countable complex (A, B, R0, R1, R2, . . .) with A |H 8, B |H ¬8, and such that

⋃

i

{{(a1, b1), . . . , (ai , bi)} | Ri (a1, . . . , ai , b1, . . . , bi)}

now is a potential homomorphism; and it follows that B is a homomorphic image of
A. �

An L ∪ {R}-sentence 8 is preserved under R-extensions if for every two models A

and B, if A |H 8, A|L = B|L and RA ⊆ RB , then B |H 8. We have, similarly,
the following theorem.

Theorem 4.3 Every sentence preserved under R-extensions has an R-positive
equivalent.

5 Modal Logic

Theorem 5.1 (van Benthem’s Theorem) If a first-order formula in one free variable
is preserved under bisimulation, then it has a modal equivalent.

Proof The modal vocabulary has a binary “accessibility” relation symbol R plus a
set U of unary relation symbols. For a model A = (A, RA, UA)U∈U and an element
a ∈ A, define the modal characteristics σ n

A,a(x) in one free variable x as follows:

1. σ 0
A,a(x) is the conjunction of all literals in x using some U ∈ U that are

satisfied by a in A.
2. σ n+1

A,a (x) = σ 0
A,a ∧

∧
RA(a,b) ∃y[R(x, y) ∧ σ n

A,b(y)]

∧∀y[R(x, y) →
∨

RA(a,b) σ n
A,b(y)].

As in Lemma 2.3.1, we have that A |H σ n
A,a[a].

Suppose that the first-order formula 8(x) is preserved under bisimulation
but has no modal equivalent. Then for all n there are A, a and B, b such that
A |H 8[a], B |H ¬8[b] and such that B |H σ n

A,a[b]. (If this is false for n, then∨
{σ n

A,a(x) | A |H 8[a]} is a modal equivalent for 8.)
As in Lemma 2.3.2, if B |H σ n

A,a[b] holds, then, defining u ∼i v as B |H σ n−i
A,u [v],

we have that
(a) a ∼0 b,
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(b) if u ∼i v, then UA(u) ⇔ UB(v) (U ∈ U),
(c) (‘forth’) i < n, u ∼i v and RA(u, u′) imply ∃v′ ∈ B[RB(v, v′)∧u′ ∼i+1 v′],

(‘back’) similar.
By compactness we find A, a, B, b, and ∼0, ∼1, ∼2, . . . ⊆ A × B such that
A |H 8[a], B |H ¬8[b], and such that conditions (a – c) are satisfied for all i . As in
Lemma 2.4, it follows that

⋃
i ∼i is a bisimulation, contradicting the assumption on

8. �

Theorem 5.2 (Modal Interpolation Theorem) Suppose that the modal formulas ϕi
(i = 1, 2) are such that ϕ1 |H ϕ2. Then a modal ϕ exists such that ϕ1 |H ϕ, ϕ |H ϕ2,
and every unary relation symbol in ϕ occurs in both ϕ1 and ϕ2.

Proof Let L i consist of R and the unary relation symbols that occur in ϕi (i = 1, 2);
L = L1 ∩ L2. Suppose no such ϕ exists. Then for all n, there are an L1-model A, a
and an L2-model B, b such that A |H ϕ1[a], B |H ¬ϕ2[b], and B |H σ n

A|L ,a[b]. (If
this is false for n, then

∨
{σ n

A|L ,a | A |H ϕ1[a]} would be an interpolant.) By com-
pactness, we find A, a and B, b and a bisimulation ∼⊆ A× B such that A |H ϕ1[a],
B |H ¬ϕ2[b], and a ∼ b.

Define the (L1 ∪ L2)-model C as follows (cf. Andréka, Németi, and van Ben-
them [1]). C = {(u, v) ∈ A × B | u ∼ v}; (u, v)RC (u′, v′) :≡ uRAu′ ∧ vRBv′;
and, for U ∈ U, (u, v) ∈ UC if and only if

U ∈ L1 and u ∈ UA,

or
U ∈ L2 and v ∈ UB .

(Note that if U ∈ L, then, since u ∼ v, u ∈ UA ⇔ v ∈ UB .)
It is straightforward to check that the projection relations ∼1 and ∼2 defined by

(u, v) ∼1 u and (u, v) ∼2 v are bisimulations between C and A, and respectively,
C and B. Thus, ϕ1 is true at (a, b) in C, but ϕ2 is false. �

6 Lindström’s Theorem

A logic is a schema Z that associates to any vocabulary L a set Z(L) of sentences
together with a truth-relation |H between L-models and sentences from Z(L) such
that the following hold.
(L1) Isomorphism preserves truth.
(L2) If L+ extends the vocabulary that is appropriate for model pairs built

from two L-models, then for every 8 ∈ Z(L) there exist 8i ∈ Z(L+)

(i = 1, 2) such that, for every L+-model (A1, A2, . . .), we have
(A1, A2, . . .) |H 8i ⇔ Ai |H 8.

For a logic to extend first-order logic means closure under negation and inclusion of
all first-order sentences in the given vocabulary (with their usual meaning).

Theorem 6.1 (Lindström’s Theorem) If the logic Z extends first-order logic and
satisfies the downward Löwenheim-Skolem and compactness theorems, then every
Z-sentence has a first-order equivalent.

Proof Let 8 be a Z-sentence. If it doesn’t have a first-order equivalent, we have,
once more, for every n > 0, models A |H 8 and B |H ¬8 such that B |H εn

A
.
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The proof is again finished using Lemma 2.3, compactness, and downward
Löwenheim-Skolem (employing condition L2), Lemma 2.4, and Theorem 2.5, by
constructing (countable) A |H 8 and B |H ¬8 such that A ∼= B, contradicting
condition L1. �

References

[1] Andréka, H., I. Németi, and J. van Benthem, “Modal languages and bounded frag-
ments of predicate logic,” Journal of Philosophical Logic, vol. 27 (1998), pp. 217–74.
Zbl 0919.03013. MR 2000d:03025. 126

[2] Barwise, J., and J. van Benthem, “Interpolation, preservation, and pebble games,”
The Journal of Symbolic Logic, vol. 64 (1999), pp. 881–903. Zbl 0930.03040.
MR 2001k:03081. 121

[3] Doets, K., Basic Model Theory, Studies in Logic, Language and Information, CSLI Pub-
lications, Palo Alto, 1996. Zbl 0863.03013. MR 98c:03076. 121

University of Amsterdam
ILLC Faculty of Science
Plantage Muidergracht 24
1018 TV Amsterdam
THE NETHERLANDS
doets@science.uva.nl

http://www.emis.de/cgi-bin/MATH-item?0919.03013
http://www.ams.org/mathscinet-getitem?mr=2000d:03025
http://www.emis.de/cgi-bin/MATH-item?0930.03040
http://www.ams.org/mathscinet-getitem?mr=2001k:03081
http://www.emis.de/cgi-bin/MATH-item?0863.03013
http://www.ams.org/mathscinet-getitem?mr=98c:03076
mailto:doets@science.uva.nl

	1. Introduction
	2. Preliminaries
	3. Interpolation
	4. Preservation
	5. Modal Logic
	6. Lindström's Theorem
	References

