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A Note on Recursive Models
of Set Theories

Antonella Mancini and Domenico Zambella

Abstract We construct two recursive models of fragments of set theory. We
also show that the fragments of Kripke-Platek set theory that prove ε-induction
for 61-formulas have no recursive models but the standard model of the heredi-
tarily finite sets.

1 Introduction

We ask which fragments of Kripke-Platek set theory have recursive models. Ideally,
we would like to separate fragments that have (nontrivial) recursive models from
those whose unique recursive model is the standard model of the hereditarily finite
sets. In the context of models of arithmetic these questions have received consid-
erable attention. Two classical results are well known: Tennenbaum’s theorem [5]
that says that every recursive model of I61 is isomorphic to the standard model and
Shepherdson’s theorem [4] that proves the existence of a recursive model of Open-
Induction. Tennenbaum’s theorem has been sharpened in Wilmers [6] where it is
shown that IE1 has no nonstandard recursive models. On the other side, Berarducci
and Otero in [1] have shown that Open-Induction+‘there are infinitely many primes’
has a recursive model.

For fragments of set theory much less is known. Here we expose a few basic
facts that can be obtained from classical techniques. We also present some open
problems. We shall see that weak fragments of set theory have two ways of being
nonstandard: they may be simply non-wellfounded (there is an infinite descending
chain of sets) or strongly non-wellfounded (there is an infinite descending chain of
ordinals). We construct recursive models for both the weak and the strong notion
of non-wellfoundedness and show that some theories may have a recursive model of
one sort but not of the other. We show that Tennenbaum’s theorem in its strongest
form (the unique recursive model is the standard model of the hereditarily finite sets)
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holds for the theory KP61. This is the theory axiomatized by KP− (extensionality,
pair, union, foundation, 10-comprehension, and 10-collection) and the axiom of
(ε)-induction

∀a [(∀x ∈ a)ϕ(x)→ ϕ(a)] → ∀a ϕ(a)

restricted to 61-formulas. The theory KP10 is defined by restricting induction to
10-formulas.

2 Tennenbaum’s Theorem for Set Theory

A recursive model of a fragment of KP is a domain M, a binary a relation ε on M,
and a bijection of M onto the natural number that maps ε into a recursive set of
pairs. We show that there is no recursive model of KP61 but the standard model of
the hereditarily finite sets Vω (up to isomorphism, of course). As expected, the core
of the argument lies in the idea of Tennenbaum’s classical theorem [5], but before we
can apply it, we must overcome a couple of difficulties. The first thing we need to
show is that if the ordinals of a model of KP61 are isomorphic to ω then the model
itself is isomorphic to Vω. (Throughout the paper ω is the set of the standard finite
ordinals and Vω is the standard model of the hereditarily finite sets.)

Lemma 2.1 Let M be a model of KP61. Then exactly one of the following occurs:

1. M contains a nonstandard finite ordinal;
2. M contains as an element a copy of the true ω;
3. M is isomorphic to Vω.

Proof From the Mostowski collapsing lemma we infer that if M is well-founded ei-
ther (2) or (3) of Lemma 2.1 holds. When M is non-wellfounded the lemma follows
from Lemmas 2.3 and 2.4 below. �

The next two facts show that in every non-wellfounded model of KP61 there is an
ordinal not in ω so that either (1) or (2) of Lemma 2.1 obtains. In the next section
we shall see that this need not be true for other fragments of set theory. A model is
said to be non-wellfounded if it has elements {ci}i∈ω forming an infinite descending
ε-chain: ci+1 ε ci for all i ∈ ω.

Remark 2.2 We shall only consider fragments containing the axiom of foundation
so every infinite decending chain {ci}i∈ω is necessarily external.

Let f be an element of M. We say that f is (or codes) a descending ε-chain if f is
a function, dom f is an ordinal, and f (α + 1) ε f (α) for every α + 1 ε dom f . The
property of being a descending ε-chain is naturally expressed by a10-formula. Note
that in a model of the axiom of foundation the domain of an ε-descending chain is
(for the model) a finite ordinal. We write fdα for the restriction of f to α and f (α)↓
for α ∈ dom f .

Lemma 2.3 The following is a theorem of KP61. For every x there is a set a 6= ∅

such that for every f ∈ a
1. f codes a descending chain,
2. f (0) = x,
3. for every y and α such that y ∈ f (α)↓ there is a g ∈ a such that

y = g(α + 1)↓ and gd(α+1) = fd(α+1).
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Proof The reader can check that the conjunction of (1), (2), and (3) of Lemma 2.3
is naturally formalizable by a10-formula—we denote this formula with ϕ(x, a). We
show that if (∀y ∈ x)(∃b) ϕ(y, b), then there is an a satisfying ϕ(x, a). The lemma
will follow applying ε-induction. We sketch the construction of a leaving details to
the reader. Using collection, find a set B such that (∀y ∈ x)(∃b ∈ B) ϕ(y, b). By
10-comprehension, we can further require that (∀b ∈ B)(∃y ∈ x) ϕ(y, b). Now
observe that for every f ∈

⋃
B there exists some descending ∈-chain f ′ such that

dom f ′ = dom f +1, f ′(0) = x , and f ′(α+1) = f (α) for every α ∈ dom f . Let a
be a set containing all (and only) these functions. Check that a satisfies (1), (2), and
(3) of Lemma 2.3. �

Lemma 2.4 Let M be a model of KP61. If in M there is an infinite descending
chain, then M contains an ordinal not in ω.

Proof Let {ci}i∈ω be an infinite descending chain. For every n ∈ ω there is an
f in M that codes the descending chain cn−1 ∈ · · · ∈ c0. That is, f (i) = ci for
i = 0, . . . , n − 1. Let a be the set given by Lemma 2.4 when we substitute c0 for x .
Using (3) of Lemma 2.3 it is easy to show, by external induction on n, that a contains
some extension of f . Let D be the set of the domains of the functions in a. The set⋃

D is an ordinal and every n ∈ ω belongs to it. The lemma follows. �

Theorem 2.5 Every recursive model of KP61 is isomorphic to Vω.

Proof Let M be a recursive model of KP61 nonisomorphic to Vω. Let α ∈ M

be either ω or any nonstandard finite ordinal. The existence of α is guaranteed by
Lemma 2.1. To apply Tennenbaum’s trick in our setting we need show that the
successor function S : β 7→ β+1 becomes a recursive function when M is identified
with the natural numbers. (Clearly, this problem does not occur for models in the
language of arithmetic.) As a matter of fact, it suffices to restrict the domain of S to
α. We use as parameters the following set s:

M |H x ε s ↔ (∃β ε α) x = {β, {β, β + 1}}.

(Shavrukov drew our attention to this algorithm). On input β the algorithm to com-
pute β + 1 is as follows. List all elements of M until one x is found such that x ε s
and β ε x . List again the elements of M to find one y 6= β such that y ε x . Look for
z 6= β such that z ε y. The definition of s guarantees that such a z exists. Output z.
It is immediate that when β ε α then S(β)↓ = β + 1. (Clearly S(β)↑ when β 6ε α.)

At this point the theorem proceeds as in the arithmetical case. The reader should
convince him/herself that formalization of recursive computations is possible in
KP61. �

3 A Recursive Model with Only Standard Ordinals

In this section we consider a weak form of non-wellfoundedness. We construct a
recursive non-wellfounded model of KP− where all the ordinals are standard finite.
The model constructed contains only sets with a (standard) finite number of elements,
so it is a model of the whole of ZF up to the axiom of infinity. We do not know
precisely how much ε-induction holds in it. All we know is that, by Theorem 2.5,
61-induction fails whereas from [7] we know that open-induction holds.

Theorem 3.1 There is a recursive model of ZF minus the axiom of infinity.
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Proof The proof is taken from [3]. It uses the so-called Fraenkel-Mostowski “per-
mutation model” (see, e.g., [2]). The domain of the model is Vω, the set of hereditar-
ily finite sets. A new membership relation ε f is defined on it. Let f : Vω → Vω be
a bijection. We define ε f as follows:

x ε f y ⇔ x ∈ f (y).

Clearly, if f is recursive, then the model 〈Vω, ε f 〉 is recursive. In 〈Vω, ε f 〉 the
cardinality of any a ∈ Vω cannot exceed the cardinality that f (a) has in the standard
model. Therefore, every set in 〈Vω, ε f 〉 is standard finite. It is well known that
〈Vω, ε f 〉 models all the axioms of ZF but the axiom of infinity and the axiom of
foundation. (In general, it is sufficient that the relation x ∈ f (y) is definable in
Vω.) We check that a careful choice of f makes 〈Vω, ε f 〉 a model of the axiom of
foundation.

Definition 3.2 Let ω∗ = {{n + 1} : n ∈ ω}. Define the bijection f on Vω as
follows: f (n) = {n + 1}, f ({n + 1}) = n, and f (a) = a if a 6∈ ω ∪ ω∗.

From f (n) = {n + 1} follows that n + 1 ε f n, so there is an infinite descending
ε f-chain · · · ε f n + 1 ε f n ε f · · · ε f 1 ε f 0. It remains to prove that 〈Vω, ε f 〉 is a
model of the axiom of foundation. Since x ∈ f (y) is definable in 〈Vω,∈〉, to show
that 〈Vω, ε f 〉 is a model of ZF−, it suffices to prove that 〈Vω, ε f 〉 models the axiom
of foundation. Let a be an arbitrary element of Vω. We consider three cases. First
suppose that n ε f a for some n ∈ ω. Let n be the largest (as standard ordinal) n such
that n ε f a (recall a is finite in the standard sense). By the definition of f we have
that x ε f n if and only if x ∈ {n +1} if and only if x = n +1. So, n being the largest
ε f-element of a, 〈Vω, ε f 〉 models n ∩ a = ∅. Now suppose the first case does not
obtain and that a contains some element of the form {n + 1} for n ∈ ω. Observe that
x ε f {n + 1} if and only if x ∈ n, so since the first case as been excluded, x 6 ε f a.
Again we conclude that 〈Vω, ε f 〉 models {n + 1} ∩ a = ∅. Finally, we are left to
consider the case when a contains no elements in ω∪ω∗. Observe that a itself is not
in ω∪ω∗. Let b be such that b ∈ a ∧b ∩a = ∅ holds in the standard model 〈Vω,∈〉.
We claim that 〈Vω, ε f 〉 also models b ∩ a = ∅. Since f is the identity on a, b ε f is
clear. Since f is the identity also on b, if x ε f a and x ε f b, then x ∈ b∧ x ∈ a. �

An immediate corollary of the construction above is that ZF minus the axiom of
infinity does not prove that every set is contained in a transitive set. In fact, the
transitive closure of 0 does not exists in 〈Vω, ε f 〉—it should be infinite. We do not
know if there are nontrivial recursive models of KP10. (Note that, as far as we know,
KP10 could coincide with KP−.)

4 A Recursive Model with Nonstandard Ordinals

We conjecture the existence of recursive models of KP10 having nonstandard finite
ordinals. However, at the moment we cannot exhibit any of such models even for
KP−. Here we present a much weaker result. For convenience, we denote by C the
theory axiomatized as KP10 without the schema of collection.

Theorem 4.1 Let L be a discrete linear order with a first but no last element. Then
there is a model of C whose finite ordinals are isomorphic to L.

Proof Let L be as above; let 0 be the first element of L. An interval of L is a set
of the form [a, b) = {x ∈ L : a ≤ x < b} for some a, b ∈ L. Let I be the set



Recursive Models 113

of all intervals and let O ⊆ I be the set of intervals of the form [0, a) (these will
turn out to be the ordinals of the model). The domain of the model M is a subset of⋃

i∈ω

P
i+1(L).

(a) Define 〈x〉 to be the singleton {x} when x is a set not in O—that is, when
x = [0, a) ∈ O for some a ∈ L—else, we let 〈x〉 = {a} (i.e., the interval
[a, a + 1)).

(b) The domain of M is the closure of I under the operations ∪ (binary union)
and 〈·〉.

(c) We define t ε s if and only if 〈t〉 ⊆ s. That is, t ε s when either t ∈ s or
when t = [0, a) for some a ∈ L and a ∈ s.

We claim that 〈M, ε〉 is a model of C . Below we show in turn that the axioms of
exensionality, pairing, and union hold in 〈M, ε〉; thereafter we consider the axioms
of comprehension and induction (these require more details). First we list without
proof some easy facts that are needed below.

1. t ∩ O = ∅ for every t ∈ M (intersection is in the sense of the true member-
ship);

2. if x ∈ t ∈ M then either x ∈ M (hence x ε t) or x ∈ L and [0, x) ε t ;
3. y ε 〈x〉 if and only if y = x holds for every x, y ∈ M (i.e., 〈x〉 is the singleton

of x in the model 〈M ε〉);
4. x ε t ∪ s if and only if x ε t ∨ x ε s for every x ∈ M, (i.e., binary union in

〈M, ε〉 and in the real world coincide).

To show that extensionality holds in M we have to prove that if ∀x [x ε t ↔ x ε s]
then t = s. It suffices to show that ∀x [x ∈ t ↔ x ∈ s] and apply extensionality in
the real world. Let x ∈ t . First, assume that x ∈ M. By (2) above, x ε t from which
it follows that x ε s, and since by (1) above x 6∈ O, that x ∈ s. Second, suppose that
x 6∈ M. Then from x ∈ t it follows that x ∈ L, which implies [0, x) ε t and hence
[0, x) ε s. So x ∈ s. The converse is symmetric.

The pairing axiom holds in M by (3) and (4) above. Indeed, the pair of t and s is
given by 〈s〉 ∪ 〈t〉.

The axiom of union is proved by induction on the construction of M. Given
t ∈ M we must show that for some t∗ ∈ M we have (∀x ε t)(∀y ε x) y ε t∗.
When t = ∅ then t∗ := ∅ suffices. If t is a nonempty interval—say t = [a, b) with
a < b—then we let t∗ := [0, b). If t1 ∪ t2 then let t∗ = t∗1 ∪ t∗2 . Property 4 above
guarantees that this is a correct choice. Finally when t = 〈s〉, let t∗ = s.

Now we prove that the schemata of 10-comprehension and induction hold in M.
We need to prove a quantifier elimination lemma for 10-formulas. For this it is
convenient to consider formulas in the language expanded with functions symbols
for 〈·〉 and ∪. We write 1∗

0 for the class of bounded formulas in this expanded
language. Terms may appear in the bound of the quantifiers.

Claim 4.2 Every 1∗
0-formula with parameters in M is equivalent to a 10-formula

without symbols of equality and with parameters occurring only on the right-hand
side of ε. The required formula is obtained by applying in turn the following three
procedures.

1. Eliminate atomic formulas of the form t ε s, when t is not a variable, by
replacing t ε s with (∃y ε s) t = y.
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2. Eliminate equalities by replacing s = t with (∀x ε t)x ε s ∧ (∀x ε s)x ε t
(this does not spoil (1)).

3. Eliminate all complex terms (and leave only variables and parameters). This
is possible because every atomic formula x ε t where t has complexity n+1 is
equivalent to a formula where all terms have complexity n; this formula does
not contain equalities and only variables occur on the left-hand side of ε (so
we do not spoil (1) and (2) above). More precisely, x ε t1 ∪ t2 is equivalent
to x ε t1 ∧ x ε t2 and x ∈ 〈t〉 is equivalent to (∀y ε t)y ε x ∧ (∀y ε x)y ε t .
So the procedure is clear.

Claim 4.3 For every 1∗
0-formula ϕ(x1, . . . , xn) with parameters in M there is

a 10-formula ψ(x1, . . . , xn) with parameters in O that is equivalent to ϕ for all
x1, . . . , xn in O.

First write an equivalent formula with parameters in I (recall that I generates
M). Now eliminate in ϕ(x1, . . . , xn) equalities and functions as in Claim 4.2
and assume that no parameters occur on the right-hand side of ε. If the formula
x ε t with t = [a, b) and a > 0 occurs in ϕ(x1, . . . , xn), substitute it with
x ε [0, b)∧ x 6∈ [0, a − 1). This proves Claim 4.3.

Claim 4.4 For every 1∗
0-formula ϕ(x1, . . . , xn) with parameters in M there is

a quantifier-free formula θ(x1, . . . , xn) with parameters in O that is equivalent to
ϕ(x1, . . . , xn) for all x1, . . . , xn in O.

Apply Claim 4.3 above to obtain a formula ψ(x1, . . . , xn). Observe that when
x1, . . . , xn range over O, we can restrict the evaluation of ψ(x1, . . . , xn) to O. The
order ε in O is a discrete linear order, so quantifiers can be eliminated. This proves
Claim 4.4.

We can now prove comprehension for 10-formulas. Let ϕ(x) be a 10-formula
with parameters in M and let t be an element of M. We need to show that
{x ∈ t : ϕ(x)} exists. Clearly, we can assume that t is a closed term depending on
parameters in I and that ϕ(x) is a 1∗

0-formula with all parameters in I. Proceed by
induction on the complexity of t . If t is atomic, then we can restrict x to range over
the O. Apply Claim 4.4 to find an open formula θ(x) equivalent to ϕ(x). Clearly,
x ∈ t ∧ θ(x) defines an interval of L and hence is in I. The induction steps are
straightforward.

It remains to prove induction for 10-formulas. Let ϕ(x) be a 10-formula and
suppose ∃xϕ(x) holds in M. So ϕ(t) holds for some closed term t depending on
parameters in I. We prove that there exists an ε-least witness of ϕ(x). Let n be the
complexity of t and suppose t0 ε · · · ε tn ε t are terms such that ϕ(ti). We claim that
t0 is in O. The claim is immediately proved by induction on n. So ϕ(a) holds for
some a ∈ O. Now the existence of an ε-least element satisfying ϕ(x) follows from
Claim 4.4. This completes the theorem. �

Theorem 4.5 There is a recursive model of C.

Proof Fix L := N ∪ Z where Z is the set of integers and N is a copy of the positive
integers disjoint of Z. The order relations of N and Z are extended to L by stipulating
that the elements of N precede any element of Z. The reader can verify that the
model defined in the proof of the theorem above is recursive. �
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