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Pseudo Treealgebras

M. Bekkali

Abstract A pseudotree 〈T, ≤〉 is a partially ordered set for which {u ∈ T :

u ≤ t} is a linear ordering for each t ∈ T . Define B(T ), the pseudo treealgebra
over T , as the subalgebra of the power set of T generated by {bt : t ∈ T } where
bt = {u ∈ T : t ≤ u}. It is shown that every pseudo treealgebra is embed-
dable into an interval algebra; thus it is a retractive Boolean algebra. Moreover,
superatomicity of B(T ) is described using conditions on 〈T, ≤〉.

1 Elementary Material

A pseudotree T is a poset in which the set of predecessors of any element is a linearly
ordered set. For t ∈ T , put bt = {u ∈ T : t ≤ u}. The subalgebra of the power set of
T generated by 〈bt : t ∈ T 〉 is called the pseudo treealgebra generated by T . Almost
all properties of treealgebras remain valid in the case of pseudo treealgebras (see
Brenner and Monk [1], Koppelberg [2], and Koppelberg and Monk [3]). Thus we can
write a nonzero element of B(T ) in its normal form (see [1]) and for a pseudotree
with a least element, the Stone space Ult(B(T )) of a pseudo treealgebra B(T ) is
homeomorphic to Ic(T ) = the set of all initial chains endowed with Tychonoff’s
topology inherited from the catersian product T 2.

Throughout this note each pseudotree is assumed to have a single root as is shown
by the following proposition.

Proposition 1.1 Any pseudo treealgebra is isomorphic to a pseudo treealgebra
over a pseudotree with a single root.

Proof Let B(T ) be a pseudo treealgebra.

Case 1 T has finitely many roots t1, . . . , tn and no rootless elements. Define s ≤∗ t
if and only if (s ≤T t or (s = t1 and t 6= t1)). Let T ∗ be T under ≤∗. Note that
〈bT ∗

t : t 6= t1〉 = B(T ∗). Define f (bT ∗

t ) = bT
t for all t 6= t1. Then f extends to an
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isomorphism of B(T ∗) into B(T ) by Sikorski’s Criterion (see Theorem 5.5, p. 67 in
[2]).

Case 2 T has infinitely many roots or has a rootless element. Let x /∈ T and put
T ∗ = T ∪ {x}. Define ≤∗ on T ∗ as follows:

s ≤∗ t iff (s, t ∈ T and s ≤T t) or (s = x and t ∈ T ).

Now put f (bT ∗

t ) = bT
t for all t 6= x . Then f extends, again, to an isomorphism of

B(T ∗) onto B(T ) by Sikorski’s Criterion. �

Notice that chains are pseudotrees. Hence if C is a chain, B(C) is called the interval
algebra over C . The Stone space Ult(B(C)) is homeomorphic to the set of initial
chains of C , denoted by I (C), whenever C has a least element. Superatomic interval
algebras are characterized by the following theorem.

Theorem 1.2 The following are equivalent for any chain C with a least element.

1. η, the chain of rational numbers with its natural ordering, does not embed
into C;

2. η does not embed into I (C);
3. (I (C), ⊂) is a scattered topological space;
4. B(C) is a superatomic interval algebra.

First, we give a definition.

Definition 1.3 Let X be a topological space. We say that a ∈ A ⊂ X is an
isolated point in A whenever there exists an open set U , in X , containing a so that
U ∩ A = {a}. Isol(A) shall denote the set of isolated points of A in X . Also, Ā
denotes the topological closure of A in X . A topological space X is a scattered space
whenever Isol(F) is not empty for every nonempty closed subspace F of X . Finally,
a poset (P, <) is scattered whenever the chain of rational numbers, under its natural
ordering, does not embed in (P, <).

Lemma 1.4 Let C be a complete chain. If C is a scattered topological space, then
η does not embed into (C, <).

Proof First we note the following:

1. If S ⊆ C is infinite, then S̄ \ isol(S̄) 6= ∅. This follows since C is a
compact. Now suppose that S is a chain in C of type η; we shall get a
contradiction. Choose x ∈ S′ =def S̄ \ isol(S̄), x isolated in C . Say,
u < x < v; (u, v) ∩ C = {x}.

2. There are s, t ∈ S so that u < s < t < v, and x /∈ [s, t]. In fact,
since x /∈ isol(S̄), the set (u, s) ∩ S̄ is infinite. Hence there clearly ex-
ist u < w1 < w2 < w3 < v such that (w1, w2) 6= ∅ 6= (w2, w3) and
x /∈ (w1, w2). Choose s ∈ (w1, w2) ∩ S, t ∈ (w2, w3) ∩ S; this proves (2).

Taking s and t as in (2), put S′ = (x, t) ∩ S. So S′ has type η. Clearly
S̄′ \ isol(S̄′) ⊆ C . Picking w in S̄′ \ isol(S̄′) by (1), we obtain w ∈ (u, v) ∩ C \ {x},
contradiction. �

Remark 1.5 The hypothesis that C is complete in Lemma 1.4 is really needed.
This is seen by the example ω · η which is a scattered space.
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Proof of Theorem 1.2 (3) and (4) are equivalent by the duality theory. (2) implies
(1) since C embeds in I (C). (1) implies (4) since a quotient of B(C) is isomorphic
to B(C ′) for some subchain C ′ of C (see Theorem 15.22, p. 253 in [2]). Finally, (3)
implies (2) by Lemma 1.4. �

2 Retractiveness of Pseudo Treealgebras

Our approach to proving that every pseudo treealgebra is in fact a subalgebra of an
interval algebra, and hence is a retractive algebra by Rubin’s Theorem (see Theorem
15.22, p. 253 in [2]), is done in a very canonical and constructive way compared
to Theorem 16.12, p. 262 in [2]. In this fashion one will have a link between su-
peratomicity of a pseudo treealgebra B(T ) and the superatomicity of the canonical
interval algebra in which B(T ) embeds.

Let T be a pseudotree. For each initial chain p of T set

Tp =def {t ∈ T : s <T t for all s ∈ p}.

Next we define ≡p on Tp by the following rule:

t ≡p t ′ iff there is s ∈ T \ p such that s ≤T t, t ′.

Note then that s ∈ Tp; for if u ∈ p, then u ≤ t, t ′. So u and s are comparable, and
s ≤ u is ruled out. So u < s. Thus s ∈ Tp.

Lemma 2.1 ≡p is an equivalence relation on Tp.

Proof Suppose t ≡p t ′ ≡p t ′′. Say s, s ′ ∈ T \ p and s ≤ t, t ′ and s ′ ≤ t ′, t ′′. So
s, s′ are comparable. Say s ≤ s ′. Thus s ≤ t, t ′′ and so t ≡p t ′′.

Next, put s ∧ t =def {u ∈ T : u < s, t} and fix a well-ordering �p on Tp/ ≡p.
Define ≤lin on T as follows:

s ≤lin t iff
{

s ≤ t in T, or
s, t are incomparable in T and [s]≡s∧t �s∧t [t]≡s∧t

where [s]≡s∧t , [t]≡s∧t denote the equivalence classes of s, t with respect to ≡s∧t . �

Lemma 2.2 ≤lin is a linear ordering on T .

Proof Clearly ≤lin is irreflexive and for all s, t in T , s ≤lin t or t ≤lin s. Now
suppose x ≤lin y ≤lin z.

Case 1 x < y < z. So x < z. Thus x <lin z.

Case 2 x < y; y, z are incomparable in T , [y]≡y∧z <y∧z [z]≡y∧z . If x < z, we are
done. Thus, assume x 6≤ z. Clearly z 6≤ x . We claim now that x ∧ z = y ∧ z. Clearly
x ∧ z ⊆ y ∧ z. Suppose w ∈ y ∧ z. Thus w < y, so w, x are comparable. If x ≤ w,
then x < z, contradiction. So w < x . Thus x ∧z = y ∧z. Clearly [x]≡y∧z = [y]≡y∧z .
So x <lin z.

Case 3 x, y incomparable in T . [x]≡x∧y <x∧y [y]≡x∧y ; y < z. This case is similar
to Case 2.

Case 4 x, y incomparable in T . [x]≡x∧y <x∧y [y]≡x∧y ; y, z are incomparable in T ,
[y]≡y∧z <y∧z [z]≡y∧z .

Subcase 4.1 x ∧ y = y ∧ z.
1. x < z. Thus x <lin z.
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2. x ≡x∧y z. For z ≤ z, z < x , and z /∈ x ∧ y (= y ∧ z). So [x]≡x∧y = [z]≡x∧y .
Therefore, by the assumption in this case [x]≡x∧y = [z]≡x∧y �x∧y [y]≡x∧y

�x∧y [z]≡x∧y since x ∧ y = y ∧ z. Hence, [z]≡x∧y �x∧y [z]≡x∧y , contradic-
tion.

3. x, z incomparable in T . Since x ∧ y = y ∧ z, we have [x]≡x∧y �x∧y [y]≡x∧y

�x∧y [z]≡x∧y . Now x ∧ y = x ∧ z. For x ∧ y ⊆ x ∧ z is clear,
and if w ∈ x ∧ z\x ∧ y, then [x]≡x∧y = [z]≡x∧y , contradiction. So
[x]≡x∧z �x∧z [z]≡x∧z follows.

Subcase 4.2 x ∧ y 6= y ∧ z.

1. There is w ∈ x ∧ y \ y ∧ z. Thus w < x, x < y, and w 6≤ z.
2. x, z are incomparable. In fact x 6≤ z. Otherwise w < z, and if z < x , then

w, z are comparable. Hence z ≤ w < y, contradiction.
3. x ∧ z = y ∧ z. Let t ∈ x ∧ z. Then t < x , so t, w are comparable. If w ≤ t ,

then w < z, contradiction. So t < w. Hence w < z, contradiction. So t ≤ w,
hence t < x as desired. �

Theorem 2.3 Any pseudo treealgebra embeds into an interval algebra and thus it
is a retractive Boolean algebra.

Proof Let B(T ) be a pseudo treealgebra. First of all we may assume that T has no
maximal element. To this end, define T̆ to be T , and add a well-ordered chain Ct of
type ω above each maximal element t in T . Hence T̆ has no maximal element and
by copying the proof of Theorem 16.7, p. 260 in [2], B(T ) embeds in B(T̆ ).

So suppose T has no maximal element and denote by L the completion of
〈T, ≤lin〉. For each t ∈ T , let yt = supL(bt). Note that yt ∈ L \ T . Let 0T be the
root of T and define f from B(T ) into the interval algebra over L \ {y0T } by

f (bt) = [t, yt).

Notice that f (bt) = 0 if and only if t = yt if and only if t is maximal in T ; but this
never happens.

Next f extends to an isomorphism of B(T ) into Int(L \ {y0T }). Indeed, look at

(∗) bt(1), . . . , bt(m) − bs(1) − · · · − bs(n).

If (∗) is zero, we get then three cases.

Case 1 There are i, j so that t (i), t ( j) are incomparable. Then either every element
of bt(i) is ≤lin-less than every element of bt( j) or conversely. In any case we get

f (bt(i)) ∩ f (bt( j)) = ∅.

Case 2 There are i, j such that si ≤ t j . Thus bt( j) ⊆ bs(i). So yt( j) ≤ ys(i),

f (bs(i)) ⊇ f (bt( j)) as desired.

Case 3 There is an i0 ∈ [1, n] : s(i0) = 0T . So f (bs(i0)) = f (1B(T )) =

[0T , y0T ) = L \ {y0T } = 1. Thus f extends by Sikorski’s Criterion to a homo-
morphism from B(T ) into Int(L \ {y0T }). Suppose that (∗) is not zero. Without loss
of generality m 6= 0. If t (i) is maximal among t (1), . . . , t (m), clearly t (i) is in the
image of (∗). This finishes up the proof of Theorem 2.3. �
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3 Characterization of Superatamic Pseudo Treealgebras

Theorem 3.1 Let T be a pseudotree. The following statements are equivalent.

1. B(T ) is a superatomic Boolean algebra.
2. η and the binary tree <ω2 do not embed in 〈T, ≤〉.

The main step in proving this theorem is Lemma 3.4 below. So denote by E the
set T ∪ {yt : t ∈ T } \ {y0T }, where T is a pseudotree without maximal elements,
and recall that yt denotes sup(bt) in the completion of (T, ≤lin). Notice that this
assumption on T does not restrict the generality as shown by the following two facts.
Recall that T̆ is constructed as in the beginning of the proof of Theorem 2.3.

Fact 3.2 For any pseudotree, the following statements are equivalent.

1. η or <ω2 embeds into T.
2. η or <ω2 embeds into T̆ .

Fact 3.3 B(T ) is superatomic if and only if B(T̆ ) is.

Lemma 3.4 The following statements are equivalent.

1. E contains η.
2. Either η or <ω2 embeds in T .

Assuming Lemma 3.4 we give the proof of Theorem 3.1.

Proof of Theorem 3.1

¬(2) implies ¬(1) If η or <ω2 embeds in T , then Int(η) or B(Tω) embeds in
B(T ), where Tω is the tree of height ω so that any node in Tω has ω immediate
successors. Hence (1) implies (2) follows.

¬(1) implies ¬(2) If B(T ) is not superatomic, then by Fact 3.3 neither is B(T̆ ).
Forming E as we stated previously, it follows that Int(E \ {y0T }) is not superatomic.
So η ≤ E . So by Lemma 3.4, η or <ω2 embeds in T̆ . Hence by Fact 3.2 η or <ω2
embeds into T. This finishes up the proof of Theorem 3.1. �

Proof of Lemma 3.4

(2) implies (1) If η embeds in 〈T, ≤T 〉 then it embeds into E by the above.
Suppose that <ω2 embeds into 〈T, ≤T 〉. Then so does Tω, where Tω is of height ω,
has one root, and each element has ω immediate successors. Hence B(Tω) (which is
atomless) embeds into Int(E). Hence (1) follows.

(1) implies (2) Suppose that η does not embed in 〈T, ≤T 〉. Let F be a subset of
E of type η. Because of the following fact, we may assume that F ⊆ T .

Fact 3.5 If a linear ordering L is scattered, so is its completion.

Proof Since L is scattered, so is I (L) (by Theorem 1.2). Next, since the completion
of L is order embeddable in I (L), it follows that the completion of L is scattered as
well. �

Now back to the proof of Lemma 3.4. F cannot be a chain in T since η 6≤ T . Choose
u0, v0 ∈ F such that u0, v0 are incomparable; say u0 <lin v0. Pick w0 ∈ u0 ∧ v0. It
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suffices now to prove the following.

(θ)































There exist u1, u2, v1, v2, w1, w2 so that
1. ui , vi ∈ F for i = 1, 2,

2. ui and vi are incomparable for i = 1, 2,

3. ui <lin vi for i = 1, 2,

4. w1, w2 are upper bounds of u0, v0 in (T, <),

wi is in ui ∧ vi for i = 1, 2 and w1, w2 are incomparable.

First set
(u0, v0)T =def {u ∈ T : u0 <lin u <lin v0},

� = {s ∧ t : s, t ∈ (u0, v0)T ∩ F; s, t are incomparable elements of T}.

Second, � 6= ∅ since (u0, v0)T ∩ F cannot be a chain.

Lemma 3.6 (�, ⊇) is not a chain.

Proof The proof of this lemma uses the following claims. Indeed, suppose the
contrary, and let D be the union of all members of �.

Claim 3.7 If t, t ′ ∈ T are incomparable, s ∈ T , and t <lin s <lin t ′; then t∧t ′ < s,
that is, for all w ∈ t ∧ t ′(w < s).

Proof For if t < s, obviously t ∧ t ′ < s. So assume t, s are incomparable. If s < t ′,
take any w ∈ t ∧ t ′. So w, s are comparable. If s ≤ w, then s < t , contradiction.
So w < s. So t ∧ t ′ < s. Hence we may assume s, t ′ are incomparable. Now all
elements of (t∧t ′)∪(t∧s) are comparable since all are less than t . Hence t∧s ⊆ t∧t ′

or t ∧ t ′ ⊆ t ∧ s. Suppose t ∧ s ⊂ t ∧ t ′. Pick w ∈ (t ∧ t ′)\(t ∧ s). So w > s.
Thus t ≡t∧s t ′. We claim that t ∧ s = t ′ ∧ s. One needs only show t ′ ∧ s ⊆ t ∧ s
since the other inclusion is clear by supposition. Suppose u ∈ t ′ ∧ s. Thus w, u
are comparable since both are less than t ′. If w ≤ u, then w ≤ s, contradiction.
So u < w. Hence u < t . This proves our assertion. Now [t]≡t∧s � [s]≡t∧s . So
[t ′]≡t ′∧s

� [s]≡t ′∧s
. Hence t ′ <lin s, contradiction. This shows that t ∧ t ′ ⊆ t ∧ s,

and Claim 3.7 holds. �

For each t ∈ T, put T ↓ t = {u ∈ T : u ≤T t} and for each G ⊆ D set

T (G) = {t ∈ (u0, v0)T ∩ (F \ D) : (T ↓ t) ∩ D = G}.

Claim 3.8 If t, t ′ are members of T (G) and are incomparable, then t ∧ t ′ = G.

Proof Assume the hypothesis. Then t ∧ t ′ ∈ �, so t ∧ t ′ ⊆ D . If u ∈ t ∧ t ′, then u
is in (T ↓ t) ∩ D = G; if u ∈ G, then u ∈ (T ↓ t) ∩ (T ↓ t ′) = t ∧ t ′. So Claim 3.8
holds. �

Claim 3.9 If t ∈ T (G) and a ∈ [t]≡G ∩ (u0, v0)T ∩ (F \ D), then a ∈ T (G).

Proof Say that G < x (i.e., x is above all members of G) and x ≤ a, x ≤ t . Since
(T ↓ t) ∩ D = G, we have x /∈ D . Hence (T ↓ a) ∩ D = G. So a ∈ T (G). �

Claim 3.10 If t ∈ T (G), then [t]≡G ∩ (u0, v0)T ∩ (F \ D) is a chain in T.

Proof Let a, b ∈ [t]≡G ∩(u0, v0)T ∩(F \D), and suppose that they are incompara-
ble. Claim 3.8 and Claim 3.9 hold. By Claim 3.9, a, b ∈ T (G) and so by Claim 3.8
a ∧ b = G, contradicting a ≡G b. �
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Claim 3.11 If t ∈ T (G), then [t]≡G ∩ (u0, v0)T ∩ (F \ D) = {t}.

Proof Suppose the left-hand side has more than two elements. By Claim 3.10 and
η 6≤ T , let a < b be in the left-hand side, and no member of the left-hand side be-
tween them. Say a <lin c <lin b, c ∈ F . Suppose a, c are incomparable in (T, <).
Now a∧c = b∧c. For a∧c ⊆ b∧c is clear. Suppose x ∈ b∧c. Now a < b, x < b,
so x, a are comparable. Note that b, c are incomparable (c < b implies a, c are com-
parable, which is a contradiction). So b ∧ c ∈ �, b ∧ c ⊆ D . If a < x , then a ∈ D ,
contradiction. So x < a. Thus a ∧ c = b ∧ c. [a]≡a∧c < [c]≡a∧c , a ≡a∧c b.
So [b]≡b∧c < [c]≡b∧c , b <lin c, contradiction. It follows that a < c. Hence
c ∈ [t]≡G ∩ (u0, v0)T ∩ (F \ D), so by Claim 3.10, b and c are comparable, hence
c < b, contradicting the choice of a and b. �

Claim 3.12 If u ∈ T (G), t ∈ (u0, v0)T ∩ F, and t < u, then t ∈ D .

Proof For otherwise Claim 3.11 is contradicted. �

An element t ∈ (u0, v0)T ∩(F \D) is left of D whenever it is less than u in (E, <lin)

for some u ∈ D . Suppose there exist such t, u. For G ⊆ D let T ′(G) be defined by

T ′(G) = {s ∈ T (G) : s <lin t}.

Suppose | T ′(G) |≥ 2 for some G. By Claim 3.8 through Claim 3.11, (T ′(G), <lin)

cannot be in itself and thus choose s <lin s′ both in T ′(G), with no member of
T ′(G) between them. Choose v ∈ F such that s <lin v <lin s′. Note that s, s ′ are
incomparable by Claim 3.11 and hence by Claim 3.7, s ∧ s ′ < v. If b ∈ T (G),
then since v <lin s′ <lin t, v ∈ T ′(G), contradicting the choice of s, s ′. So there
is an x ∈ D , with G < x ≤ v. Since s <lin t <lin u, we have u /∈ G. So
s ∧ s ′ = s ∧ u = s ′ ∧ u = G. Also, s ′ ∧ v = G. In fact, s ′ ∧ v ⊇ G is true since
s ∧ s ′ < v, and to see that s ′ ∧ v ⊆ G, assume that r < s ′, r < v. So r and x are
comparable. If r ≤ x , then r ∈ D and hence r ∈ G, as desired. If x < r , then
x < s ′, hence x ∈ G, contradiction. Now [s]≡G < [s ′]≡G < [u]≡G = [v]≡G , so
s′ <lin v, contradiction. So | T ′(G) |≤ 1, for all G. Let

�′ = {s ∧ s ′ : s, s ′ are incomparable members of (u0, t)T ∩ F}.

Notice that �′ ⊂ � and by our assumption (�, ⊃) is assumed to be a chain. Thus
�′ 6= ∅. Now | �′ |≥ 2. Suppose �′ = {G}. Pick incomparable elements s, s ′ in
(u0, t)T ∩ F . So s ∧ s ′ = G. Say s /∈ D . Pick incomparable w, w′ ∈ (u0, s)T ∩ F .
Say w /∈ D . Then w ∈ T ′(G), s ∈ T ′(G), w 6= s, but this contradicts | T ′(G) |≤ 1.
So | �′ |≥ 2.

The next fact follows easily.

Fact 3.13 If D is a chain and E = I (D) is the set of all initial segments of D, then
D is scattered if and only if (E, ⊇) is scattered.

Hence, notice that (�, ⊃) is scattered since η 6≤ (T, <) and thus choose G, H ∈ �′

with G ⊆ H , so that no member of �′ is between them. Pick s ∈ T (G), s ′ ∈ T (H ).
So s ∈ T ′(G), s ′ ∈ T ′(H ). Note that s ∧ s ′ = G = s ∧ u, so any h ∈ H \ G
shows that s ′ ≡G u and so s <lin s′. Pick incomparable w, w′ in (s, s ′)T ∩ F .
Say w /∈ D . Say w ∈ T (K ). So w ∈ T ′(K ). Now s and s ′ are incomparable by
Claim 3.11. So s ∧ s ′ < w by Claim 3.7, that is, G < w. Hence H ⊂ K by the
choice of G and H plus T ′(G) = {s}, T ′(H ) = {s ′}. But then s ′ <lin u implies
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s′ <lin w (by considering an element of K \ H ), contradiction. Thus, no element of
(u0, v0)T ∩(F \D) is left of D . Suppose | T (G) |≥ 2, for some G. Let t <lin t ′ both
in T (G) with no element of T (G) between them. We easily reach a contradiction
as in the case | T ′(G) |≥ 2 above. So | T (G) |≤ 1 for all G. Then we reach a
contradiction as above. This finishes up the proof of Lemma 3.6. �

So (θ) is finally established. Choose G, H ∈ �, incomparable. Take w1 ∈ G \ H,

w2 ∈ H \ G. Without loss of generality, w1 <lin w2. Clearly, w1, w2 are incom-
parable. Say u1 <lin v1, u1 and v1 are incomparable, u1, v1 ∈ F ∩ (u0, v0)T , and
u1 ∧ v1 = G. Similarly, we get u2, v2 in H . u0 <lin w1 <lin v0; so u0 ∧ v0 < w1 by
Claim 3.7. Hence we are through with the proof of Lemma 3.4. �
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