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Periodicity of Negation

Athanassios Tzouvaras

Abstract In the context of a distributive lattice we specify the sort of mappings
that could be generally called “negations” and study their behavior under itera-
tion. We show that there are periodic and nonperiodic ones. Natural periodic
negations exist with periods 2, 3, and 4 and pace 2, as well as natural nonpe-
riodic ones, arising from the interaction of interior and quasi interior mappings
with the pseudocomplement. For any n and any even s < n, negations of period
n and pace s can also be constructed, but in a rather ad hoc and trivial way.

1 Introduction

In this paper we are concerned with how the various kinds of negation behave under
iteration. The motivation comes first, from the classical and linear negation which
are involutions (¬¬ϕ = ϕ), second, from the intuitionistic one which collapses at
the third iteration (¬¬¬ϕ = ¬ϕ), and third, from certain less common negations
such as the “cyclic negation” of Post logic [9] (see also Malinowski [7] for a more
up to date presentation) or the “chaotic negation” of Mar and Grim [8]. The n-valued
cyclic negation ¬ needs n truth values t0 < · · · < tn−1 and causes a cyclic rotation
of this set in the sense that ¬ti = ti+1, for i < n − 2, and ¬tn−1 = t0. ¬ is obviously
periodic with ¬nϕ = ϕ. On the other hand, the chaotic negation ¬ assumes the
interval [0, 1] as the set of truth values and ¬ : [0, 1] → [0, 1] is the mapping such
that ¬x = 1 − |1 − 2x |. The iterates ¬nx , n ∈ N, for certain x ∈ [0, 1], behave
chaotically.

We shall see below that the modal intuitionistic (or modal classical) negation �¬

closes at the fourth step; namely, (� ¬)4ϕ = (� ¬)2ϕ. On the other hand, the
bimodal intuitionistic (or classical) negation �1�2¬ is, in general, strongly nonpe-
riodic; namely, there can be ϕ such that (�1�2¬)

nϕ 6= (�1�2¬)
mϕ, for all m 6= n.

But what is a negation after all? To start with, according to Gabbay [5], the
basic idea behind the definition of a negation connective A∗ is that a formula B
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should deduce A∗ if and only if A and B together would lead to some “undesirable”
conclusion. More precisely, assuming that we possess a deduction relation `, and a
class of undesirable formulas 2, then a connective A∗ is a form of negation if for
any formulas A, B,

(†) B ` A∗ ⇐⇒ ∃y ∈ 2(B, A ` y)

(see [5], p. 99, Def. D1). Variants of (†) are also studied in [5], but these concern
only the meaning of ‘A, B together imply something’—not the basic ingredient of
(†) which, to our view, is ‘ ⇐⇒ ’.

In this paper we shall examine negation in terms of algebraic semantics rather
than in terms of syntax. That is, instead of formulas we shall consider a distributive
bottomed lattice A = (A,∧,∨,≤,⊥) whose ordering ≤ captures the deduction
relation `, ∧ captures “together”, and ⊥ captures the “bad” formulas 2. Then,
according to Gabbay, a mapping f : A → A is a negation if the translation of (†)
holds, that is,

(‡) x ∧ y = ⊥ ⇐⇒ y ≤ f (x).

However, an f satisfying (‡) is a very special operation, namely, a pseudocomple-
ment. A stronger notion is that of a relative pseudocomplement. A relative pseudo-
complement in A is a binary operation x → y such that for all x, y, z ∈ A,

(£) z ∧ x ≤ y ⇐⇒ z ≤ x → y.

Obviously (£) implies (‡) since f (x) = x → ⊥ is a pseudocomplement. A lattice
A with a relative pseudocomplement is met in the bibliography under the following
names: relatively pseudocomplemented lattice, Brouwerian lattice, pseudo-Boolean
algebra, Heyting algebra. We shall use throughout the name ‘Heyting algebra’ as
it seems to have been established in more recent years. A lattice A is said to be
complete if infinite joins and meets exist, denoted

∨
X ,

∧
X , for every X ⊆ A.

(Existence of either of them suffices for completeness.) It is well known (see, for
example, Birkhoff [1], p. 128) that a complete lattice A is a Heyting algebra if and
only if the following infinite distributivity law holds in A:

(ID) x ∧ (
∨

i yi) =
∨

i(x ∧ yi).

In this case the unique relative pseudocomplement is defined on A by setting
x → y =

∨
{z : z ∧ x ≤ y}. Let −A denote the induced pseudocomplement of

A. We shall refer to it as the natural pseudocomplement of A. Every topology (set
of open sets of a topological space) is a Heyting algebra with respect to ∩ and ∪.
Moreover it is complete and satisfies ID.

2 Defining Negation

Let us look more closely at Gabbay’s defining equivalence (‡). The direction ‘⇐’ is
equivalent to the condition

(N1) x ∧ f (x) = ⊥ (disjointness).

For every “crisp” logic (that is, except the fuzzy and paraconsistent ones) N1 is a
standard requirement. However, the implication ‘⇒’ of (‡) says that f (x) is the
greatest element disjoint from x which is indeed a very special condition. For in-
stance (‡) implies the following (see Proposition 2.2 below).

(N2) x ≤ y ⇒ f (y) ≤ f (x) (order-inversion),
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(N3) x ≤ f 2(x) (regularity),

(N4) x ≤ f (y) ⇒ y ≤ f (x) (strong order-inversion).

Lemma 2.1 N2 + N3 ⇐⇒ N4.

Proof Suppose N2 and N3 hold and let x ≤ f (y). Then by N2, f 2(y) ≤ f (x) and,
by N3, y ≤ f 2(y) ≤ f (x). Hence x ≤ f (y) ⇒ y ≤ f (x). Conversely, suppose N4
holds. Then f (x) ≤ f (x) ⇒ x ≤ f 2(x), from which we get N3. Using the latter, if
x ≤ y then x ≤ f 2(y) which, by N4, gives f (y) ≤ f (x). Thus N2 holds. �

Proposition 2.2

1. (‡) ⇒ N1 + N2 + N3.
2. N1 + N2 + N3 6⇒ (‡).

Proof (1) N1 and N3 are obvious consequences of (‡). To see N2, let x ≤ y.
Since f (y) ∧ y = ⊥, we get f (y)∧ x = ⊥. Thus (‡) yields f (y) ≤ f (x).

(2) We shall specify A and f : A → A such that (A, f ) satisfies N1, N2, N3
but not (‡). Let (A,∪,∩,⊆,∅) be the lattice of open subsets of R (or any locally
compact metric space). For every X ∈ A, let X∗ = {x ∈ R : d(x, X) ≤ ε}, where
d(x, y) is the standard metric of R, d(x, X) = inf{d(x, y) : y ∈ X}, and ε is a fixed
positive real. Intuitively X∗ is the set resulting from X if we add the closed strip
of width ε along its border. Clearly, X ⊆ X∗, X ⊆ Y ⇒ X∗ ⊆ Y ∗, and X∗ is
closed. Therefore setting f (X) = −X∗, f is a mapping from A to A. Obviously
X ∩ f (X) = ∅ and X ⊆ Y ⇒ f (Y ) ⊆ f (X), that is, N1 and N2 hold. Also (‡) is
false in (A, f ) since clearly f (X) is not the greatest element of A disjoint from X .
Thus it suffices to show N3, that is,

X ⊆ f 2(X) = − f (X)∗ = −{x : d(x, f (X)) ≤ ε} = {x : d(x, f (X)) > ε},

or
x ∈ X ⇒ d(x, f (X)) > ε. (1)

�

Claim 2.3 For every x ∈ X and every y ∈ ∂(X∗), d(x, y) > ε.

Proof Let x ∈ X and y ∈ ∂(X∗). Clearly d(y, X) = ε, and since d(x, y) ≥ d(X, y),
d(x, y) ≥ ε. Assume d(x, y) = ε. Since X is open, we can find x ′ ∈ X such that
d(x ′, y) < d(x, y) = ε. But this contradicts the fact that d(y, X) = ε. This proves
the claim. �

Claim 2.4 x ∈ X & y ∈ cl( f (X)) ⇒ d(x, y) > ε.

Proof Let x ∈ X . If y ∈ f (X), then, by the definition of f (X), d(x, y) ≥

d(y, X) > ε, and the claim holds. Suppose y ∈ ∂( f (X)). But ∂( f (X)) = ∂(−X ∗)

= ∂(X∗). Then, by Claim 2.3, d(x, y) > ε. �

Proof of Equation (1) Let x0 ∈ X . For every y ∈ f (X), d(y, X) > ε, hence,
since d(x0, y) ≥ d(y, X), d(x0, y) > ε. Thus d(x0, f (X)) ≥ ε. Assume
d(x0, f (X)) = ε. By Claim 2.4, there is no y ∈ f (X) such that d(x0, y) = ε.
So for every n > 0, there must be a yn ∈ f (X) such that ε < d(x0, yn) < ε + 1/n.
Clearly we can take all yn to be, say, in the interval [x0 − 1, x0 + 1], so, by com-
pactness, there is a subsequence of (yi)i converging to y+. Then y+ ∈ cl( f (X))
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and d(x0, y+) = ε. Since, however, x0 ∈ X and y+ ∈ cl( f (X)), by Claim 2.4,
d(x0, y+) > ε, a contradiction. This proves that d(x0, f (X)) > ε as required. �

So, again, what is a negation? All we can say is that most negations share N1 and
N2. Most but not all. Post negation, for instance, referred to at the beginning, is not
order-inverting; indeed as soon as there are at least three truth values t0 < t1 < t2, we
have t0 < t1 and yet ¬t0 = t1 < t2 = ¬t1. On the other hand, the standard negation
of fuzzy logic ¬ : [0, 1] → [0, 1], such that ¬x = 1−x , does not satisfy N1. (Recall
that in the last case we refer to the lattice [0, 1] with operations ∧ = min, ∨ = max,
and ⊥ = 0.)

In this paper we shall confine our attention to negations satisfying N1 and N2 as
basic properties. N3, on the other hand, is a special property.

Lemma 2.5

1. N1 + N2 + N3 imply that f (⊥) is the top element of the lattice, in which
case we write f (⊥) = >. Moreover, f (>) = ⊥.

2. N1 + N2 imply that f (⊥) is the top element of the set f [A] and we write
f (⊥) = > f . Then f (> f ) = ⊥.

Proof (1) Since for every x , ⊥ ≤ f (x), f 2(x) ≤ f (⊥), therefore, by N3,
x ≤ f 2(x) ≤ f (⊥), that is, f (⊥) = > is greatest. Further, since by N1
f (>) ∧ > = ⊥, necessarily f (>) = ⊥.

(2) For every x ∈ A, ⊥ ≤ x implies f (x) ≤ f (⊥) = > f . Hence the first claim.
In particular, f (> f ) ≤ > f , so ⊥ = > f ∧ f (> f ) = f (> f ). �

Definition 2.6 Given any lattice A, a negation in A is any mapping f : A → A
satisfying N1 and N2. If f satisfies, in addition, N3, it is said to be regular. f is
a pseudocomplement if it satisfies (‡) and a complement if and only if, in addition,
f 2(x) = x for all x . The mapping f is said to be periodic, if f m = f n for some
m 6= n. The global period of f is the least n for which there is m < n such that
f m = f n . In this case the number s = n − m is said to be the global pace of f .
Similarly we define local periodicity, local period, and local pace of f at a point x .
The pair (n − s, n) for a periodic f is the global index of f . If k, t is the period and
the pace respectively of f at x , (k − t, k) is the local index of f at x .

Lemma 2.7 For every regular negation f , f 3 = f .

Proof By regularity f 2(x) ≥ x for every x ∈ A. This implies, on the one hand,
f 3(x) ≥ f (x) replacing x by f (x), and on the other, f 3(x) ≤ f (x) by order-
inversion. �

Notice that a periodic f is periodic at each particular point but the converse is not
true. The following contains some standard facts about periodicity.

Lemma 2.8 Let f be any periodic (respectively, periodic at x) mapping with index
(local index) (m, n). If k < l and f k = f l (respectively, f k(x) = f l(x)), then
n ≤ l, m ≤ k, and n − m| l − k.

Proof We show the global case, the local being similar. Let k < l and f k = f l .
By the definition of n, n ≤ l. If l = n, clearly k = m (otherwise f k = f m

which means that n is not the least collapsing iterate). So n < l and the first claim
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holds. Suppose k < m. Let s = n − m and let p = max{a : l − as ≤ n}. Then
l− ps ≤ n < l−(p−1)s, hence k < m = n−s < l− ps < n. But f l−ps = f l = f k

which again contradicts the fact that n is the period. So the second claim holds.
Finally, assume that l − k is not a multiple of s = n − m. Define p as before and
also let q = max{a : k − as ≤ n}. Then clearly s ≤ k − qs 6= l − ps ≤ n and
f l−ps = f k−qs . Since s = k − qs and n = l − ps cannot both be true, this is a
contradiction. �

Lemma 2.9 Let (m, n) be the global index of f and (k, l) the local index at x. Then
k ≤ m, l ≤ n, and l − k| n − m. Moreover, the global pace s = n − m is even.

Proof The relation between (k, l) and (m, n) follows immediately from Lemma 2.8.
In particular, by Lemma 2.5, the index of ⊥ is always (0, 2), therefore 2|n−m, hence
s is even. �

Definition 2.10 Given a Heyting algebra A, x is said to be complemented if there
is y such that x ∧ y = ⊥ and x ∨ y = >. Such a y is said to be a complement of x .

It is well known that for a distributive pseudocomplemented A, every x ∈ A can
have at most one complement and this is −x . Moreover, A is a Boolean algebra if
and only if every x ∈ A is complemented.

Proposition 2.11 Let A be a lattice as above. There can be no periodic negation
of index (0, n), for n > 2.

Proof Let f have index (0, n). Observe first that f must be one-to-one because
f (x) = f (y) implies f n(x) = f n(y), hence x = y. Second, we can easily
see that x < y ⇔ f (y) > f (x). One direction follows by order inversion and
the other by the periodicity. Further f must be a dual automorphism, that is,
f (x ∧ y) = f (x) ∨ f (y) and f (x ∨ y) = f (x) ∧ f (y). Indeed, obviously
f (x ∧ y) ≥ f (x) ∨ f (y). So assume f (x ∧ y) > f (x) ∨ f (y). Then by
the preceding remarks, f 2(x ∧ y) < f ( f (x) ∨ f (y)) ≤ f 2(x) ∧ f 2(y). That
is, f 2(x ∧ y) < f 2(x) ∧ f 2(y). Continuing this way, since n is even, we get
f n(x ∧ y) < f n(x) ∧ f n(y), or x ∧ y < x ∧ y, a contradiction.

Claim 2.12 For every complemented element x ∈ A, f (x) = −x and f (−x) = x,
hence f 2(x) = x.

Proof If x is a complemented element, then by the previous comments, f (x)∧
f (−x) = ⊥ and f (x) ∨ f (−x) = >, that is, f (x) and f (−x) are complements of
each other, or

(∗) − f (x) = f (−x).

Now f (x) ≤ −x , hence − f (x) ≥ x . Therefore, in view of (∗), f (−x) ≥ x . Since
also f (−x) ≤ x , we get f (−x) = x and f (x) = −x . This proves the claim. �

By assumption there is at least one element x ∈ A, such that x , f (x),. . . , f n−1 are
all distinct and n ≥ 4. Then f (x ∨ f (x)) = f (x)∧ f 2(x) = ⊥ = f (>). Since f is
one-to-one, x ∨ f (x) = >. Therefore x is complemented with complement f (x). It
follows from the claim that f 2(x) = x which contradicts our assumption. �
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The following result shows that negations of any global index (m, n), with n − m
even and 0 < m are possible. A set X ⊆ A is said to be an antichain if for any
distinct x, y ∈ X , x 6≤ y and y 6≤ x .

Proposition 2.13 Let A be a Heyting algebra containing antichains of length n.
Then for every 2 ≤ m < n such that n − m is even, there is a negation in A of index
(m, n). If A contains n pairwise disjoint elements, then the same holds for every m
with 0 < m < n, n − m even.

Proof By the hypothesis we can choose an antichain C = {c0, . . . , cn−1} of cardi-
nality n. Set f (ci) = ci+1 for every 0 ≤ i ≤ n − 2 and f (cn−1) = cm . It is easy to
see that the index of ck for k ≤ m is (m − k, n − k) whereas for m ≤ k ≤ n − 1 the
index of ck is (0, n − m).

Set f (⊥) = > and f (>) = ⊥. Next for every x ∈ A, let Cx = {ci ∈ C : x ≤ ci}.
If Cx = ∅, we set f (x) = ⊥. If Cx 6= ∅, we set f (x) =

∨
f (Cx ). Observe that

if Cx 6= ∅, there is no ci such that ci ≤ x ; otherwise we would have ci ≤ x ≤ c j
which is impossible by the fact that C is an antichain.

Now if Cx = ∅, f (x) = ⊥, so the index of x is (1, 3). If Cx is a singleton, say
Cx = {ci}, then f (x) = f (ci ) hence f n(x) = f n(ci) = f m(ci) = f m(x), that is,
the index of x is (m, n). But if |Cx | ≥ 2, and Cx 6= {cm−1, cn−1}, then, because of
the antichain condition,

∨
f (Cx ) 6≤ ci for any ci , hence f (x) = > and f 2(x) = ⊥;

thus the index of x is (2, 4).
Let x, y ∈ A. Then clearly x ≤ y ⇒ Cy ⊆ Cx . Therefore, if Cx = ∅, then

Cy = ∅, too and f (x) = f (y) = ⊥; hence f (y) ≤ f (x). If Cx 6= ∅ and Cy = ∅,
then f (y) = ⊥ ≤ f (x) =

∨
f (Cx ). If Cx 6= ∅ and Cy 6= ∅, then Cy ⊆ Cx clearly

implies
∨

f (Cy) ≤
∨

f (Cx ), that is, f (y) ≤ f (x). Therefore f is order-inverting.
Concerning N1, if f (x) = ⊥ the property holds trivially. Otherwise, x ≤

∧
Cx

and f (x) =
∨

f (Cx ). By distributivity and the fact that f (ci) ∧ ci = ⊥ for all
ci ∈ C , we easily see that (

∧
Cx ) ∧ (

∨
f (Cx ) = ⊥. Hence also x ∧

∨
f (Cx ) = ⊥

or x ∧ f (x) = ⊥.
Finally, since the local indexes of the elements are (0, 2), (1, 3), or (2, 4), and

(m − k, n − k) for k ≤ m, it follows that the global index is (m, n). By Lemma 2.9,
m ≥ 2.

If in the above construction the elements of C are pairwise disjoint, then we easily
check that there are no elements of local index (2, 4). These elements were the only
reason to require m ≥ 2. So m can be taken to be just > 0. �

In contrast to the preceding result, not allowing global indexes of the form (0, n),
n > 2, there exist negations allowing elements to have local index (0, n), even for
odd n.

Proposition 2.14 In a Heyting algebra, for every n > 0, there are negations with
local index (0, n) at some point.

Proof Let c0, c1, . . . , cn−1 be pairwise disjoint. Define f as follows. f (ci) = ci+1
for i < n − 1 and f (cn−1) = c0. If x 6≤ ci for every i , we set f (x) = ⊥. If x = ⊥

we set f (x) = >. Otherwise there is a unique ci such that x ≤ ci . Then we set
f (x) = f (ci). As in the previous proposition, it is easy to check that

1. The index of every ci is (0, n).
2. For ⊥ 6= x < yi , the index of x is (1, n + 1).
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3. The indexes of ⊥ and > are (0, 2).
4. For > 6= x 6≤ ci , the index is (1, 3).

The global pace s of f is the least common multiplier of the local paces of the
elements, that is, s = lcm(2, n). Thus the global index of f is (1, s + 1). �

Observe that whenever we have a point with local index (m,m + s), we have also a
point with index (0, s), that is, a fixed point for the mapping f s . It is well known that
if a continuous real mapping f : I → I , where I is an interval [a, b], has a point of
index (0, s), for odd s, then f has points of index (0, k) for every even k, as well as
for every odd k > s. Especially for s = 3, f is chaotic. This follows from the nice
theorem of Šarkovski (e.g., Block and Coppel [2] or Li and Yorke [6]). The theorem
reveals the tremendous difference between the periods (=paces) 2 and 3.

Although our setting is quite remote from that of analysis, we can still see the
great difference between even and odd pace. In Proposition 2.13 we constructed
negations of any pace, but for most x ∈ A, the orbit of x contains ⊥. This makes the
situation a bit trivial. If we require the orbit of x , and also the orbits of −x , − − x ,
f (−x), and so on, not to contain ⊥, then we can show that, if f is periodic at x , the
pace is even.

Definition 2.15 Given a negation f : A → A, let {−, f }∗ be the the set of map-
pings which is a word of the alphabet {−, f }. The set

N f = {x : (∃h ∈ {−, f }∗)(h(x) = ⊥)}

is said to be the nucleus of f .

Lemma 2.16 Let A be a Heyting algebra and let f be any negation on A. Then for
every x /∈ N f and every k ∈ N,

1. f 2k(x) ∧ x 6= ⊥ and
2. f 2k+1(x) and x are incomparable.

Proof Let x |y mean ‘x, y are incomparable’. Fix some x /∈ N f , that is, for all
h ∈ {−, f }∗, h(x) 6= ⊥. Clearly, for every such h, h(x) /∈ N f . We prove (1) and
(2) by simultaneous induction on k. Let k = 0. Then (1) follows from the fact that
x 6= ⊥. If (2) is not true, then either x ≤ f (x) or f (x) ≤ x . In the first case
x ≤ f (x) ≤ −x , whence x = ⊥ and in the second case f (x) ≤ x and f (x) ≤ −x ,
hence f (x) ≤ ⊥. Thus the claim follows from the fact that x, f (x) 6= ⊥. Therefore
it suffices to assume

(ak) (∀x /∈ N f )( f 2k(x) ∧ x 6= ⊥) and
(bk) (∀x /∈ N f )( f 2k+1(x)|x),

and to prove
(ak+1) (∀x /∈ N f )( f 2k+2(x)∧ x 6= ⊥) and
(bk+1) (∀x /∈ N f )( f 2k+3(x)|x).

Proof of (ak+1) Assume that (ak+1) is false, that is, for some x /∈ N f , f 2k+2(x)∧ x
= ⊥. Then f 2k+2(x) ≤ −x . On the other hand, f (x) ≤ −x implies f 2(x) ≥ f (−x),
whence, applying the order-preserving f 2k , we get f 2k+2(x) ≥ f 2k+1(−x). Thus
f 2k+1(−x) ≤ f 2k+2(x) ≤ −x , that is, f 2k+1(−x) ≤ −x , which, since −x /∈ N f
contradicts (bk). �
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Proof of (bk+1) Assume (bk+1) is false. Then for some x /∈ N f either x ≤ f 2k+3(x)
or f 2k+3(x) ≤ x . �

Case 1 Let x ≤ f 2k+3(x). f (x) ≤ −x again implies (applying f 2k+2)
f 2k+3(x) ≤ f 2k+2(−x). Therefore x ≤ f 2k+2(−x). But f 2k+2(−x) ∧ f 2k+1(−x)
= ⊥; hence x ∧ f 2k+1(−x) = ⊥ or f 2k+1(−x) ≤ −x ,which contradicts (bk)
because −x /∈ N f .

Case 2 Let f 2k+3(x) ≤ x . Since f (x) ∧ x = ⊥, the preceding inequality implies
f 2k+3(x) ∧ f (x) = ⊥ or f 2k+2( f (x)) ∧ f (x) = ⊥. Since f (x) /∈ N f , this
contradicts (ak+1). �

Lemma 2.17 Let f be a negation and x /∈ N f .

1. If f k(x) = f l(x), then |k − l| is even.
2. Let f k(x) = f k+s(x).

Then the set Y = { f k(x), f k+1(x), . . . , f k+s−1(x)} is an antichain (provided its
elements are all distinct).

Proof (1) Let k < l and l = k + s. Then f k(x) = f k+s(x), or for y = f k(x),
y = f s(y). Since x /∈ N f , clearly y /∈ N f . By Lemma 2.16(2), for s, odd y and
f s(y) should be incomparable. Therefore s must be even.

(2) Note that f k(x) = f k+s(x) implies f k+i (x) = f k+i+s (x) = f k+i+ j s(x),
for every i, j . By Lemma 2.16(2), all elements of Y which are an odd number of
steps apart are incomparable. So it suffices to show that this is also the case for
elements of Y which are an even number of steps apart. Two such elements are of
the form f k+i (x) and f k+i+2 j (x), for suitable i, j . Suppose they are comparable.
Then either f k+i (x) < f k+i+2 j (x) or f k+i (x) > f k+i+2 j (x). Assume the first.
f k+i (x) < f k+i+2 j (x) implies f k+i+2 j (x) < f k+i+4 j (x), and continuing this way
we shall get f k+i (x) < f k+i+2 j (x) < f k+i+2s j (x). But f k+i+2s j (x) = f k+i (x),
hence f k+i (x) < f k+i (x), a contradiction. The case f k+i (x) > f k+i+2 j (x) is
similar. �

Remark 2.18 Are there negations without periodic points except ⊥ and >? Note
that for every negation f , the mappings f 2n are order-preserving, hence, if A is com-
plete, by Tarski’s Fixed Point Theorem (see [1]), for every x such that x ≤ f 2n(x)
there is a point a ≥ x such that f 2n(a) = a. However, the proof of this theorem
does not guarantee either that a 6= ⊥,> or that 2n is the least k such that f k(a) = a.

3 Negations Induced by Interiors

Definition 3.1 A mapping i : A → A in the lattice A is said to be an interior
operator on A (or just an interior), if

1. i(x ∧ y) = i(x)∧ i(y),
2. i(x) ≤ x , and
3. i 2 = i .

i is a quasi interior if (1) and (2) hold and is a weak interior if (2) holds and i is
order preserving.
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The dual definitions of a closure, quasi closure and weak closure c : A → A
read in the obvious way with the preceding conditions replaced with: (1) c(x ∨ y) =

c(x) ∨ c(y), (2) x ≤ c(x), and (3) c2 = c.

It follows easily that every quasi interior i (quasi closure c) is order-preserving; there-
fore every quasi interior (closure) is a weak interior (closure) but not vice versa.

Notice that the classes of quasi and weak interiors (closures) are closed under
composition. We often write f g instead of f ◦ g and i x, cx instead of i(x), c(x).

Proposition 3.2 Let f be a regular negation. For every interior i (closure c) the
mapping g = i f (respectively, g = f c) is a negation such that g4 = g2; that is, g
has period at most 4. Moreover, there are i, f, c as above such that i f and f c have
period 4.

Proof That i f and f c are negations is obvious. We show the claim for g = i f ,
the other being similar. We have i f x ≤ f x , hence f i f x ≥ f 2x . By assumption
f 2x ≥ x , therefore f i f x ≥ x . This implies i f i f x ≥ i x , and setting i x for x ,
g2(i x) = i f i f (i x) ≥ i 2x = i x . Therefore the restriction g1 of g to i [A] is regular;
hence as in Lemma 2.7, we see that g3

1 = g1. Thus

g4(x) = g3(i f (x)) = g3
1(i f x) = g1(i f x) = g(i f x) = g2(x).

Further we give examples of f and i such that i f is of period exactly 4 (in fact f
will be a complement). Let i be the interior operator in R with respect to the usual
metric and let −X be the complement in the Boolean algebra P(R). Consider the
mapping g(X) = i − X . Clearly g satisfies the conditions of (2) above, so g4 = g2.
We show that g3 6= g, that is, for some X ⊆ R, g3(X) 6= g(X). Let

X = {0} ∪ (1, 2].

Then

rcl − X = (−∞, 0) ∪ (0, 1] ∪ (2,∞).

g(X) = i − X = (−∞, 0) ∪ (0, 1) ∪ (2,∞).

−g(X) = {0} ∪ [1, 2].

g2(X) = i − g(X) = (1, 2).

−g2(X) = (−∞, 1] ∪ [2,∞).

g3(X) = i − g2(X) = (−∞, 1) ∪ (2,∞) 6= g(X).

−g3(X) = [1, 2].

g4(X) = i − g3(X) = (1, 2) = g2(X).

Note that if f is a complement, i an interior, and set c = f i f , then f c = i f , so the
above example provides also a closure c with the required property. �

A Heyting algebra A endowed with an interior i is a topological Heyting algebra
(tHA). Recall that the logical analogue of i is a necessity operator �. Augmenting
the language of Intuitionistic Propositional Logic (IPL) with �, let IML (for Intu-
itionistic Modal Logic) consist of the usual axioms of IPL plus the modal axioms
�ϕ → ϕ, � (ϕ → ψ) → (�ϕ → �ψ)), and �ϕ → ��ϕ, and the rules Modus
Ponens and Necessitation. It is well known (see, for example, Font [4]) that tHAs
form sound and complete algebraic semantics for IML. Due to this correspondence,
Proposition 3.2 yields immediately the following.
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Corollary 3.3 IML proves (� ¬)4ϕ ↔ (� ¬)2ϕ for every ϕ, whereas (� ¬)3ϕ ↔

� ¬ϕ is not provable.

Proof By Proposition 3.2, the interpretation of (� ¬)4ϕ ↔ (� ¬)2ϕ is true in every
(A, i), hence, by completeness, the formula is provable. On the other hand, the
interpretation of (� ¬)3ϕ ↔ � ¬ϕ is false in some algebra, so, by soundness, the
equivalence in question is unprovable. �

This result is not new. Došen [3] and [4] have shown that in the system IML
above there are only thirty-one non(provably)-equivalent modalities, that is, strings
of words s1, . . . , sn , with si ∈ {¬,�}.

Given an interior i , call modality any function f ∈ {−, i}∗, that is, f is a word of
the alphabet {−, i}. It is natural to ask which of the modalities are negations, and, if
periodic, of what index.

Lemma 3.4 Let A be as before, i be an interior in A, and h : A → A be a modality
with respect to i and −. If h is a negation then h is one of the following: −, i−, and
− − i−. These are periodic with indexes (1, 3), (2, 4), and (2, 4) respectively.

Proof Note that − regular, hence (−)3 = −. Consequently, by Proposition 3.2,
(i−)4 = (i−)2. Let g = −− i−. Since g contains three −s, g is order-inverting. On
the other hand, i −x ≤ −x , hence −i −x ≥ −−x ≥ x . Hence gx ≤ −−i −x ≤ −x .
Thus g is a negation. Moreover, g2 = − − i − i−, g3 = − − i − i − i−, and
g4 = −− i − i − i − i −− = −− i − i− = g2 (by the periodicity of i−). Hence g is
of period 4. Note that ig = i − −i− is also a negation. However, ig = i−. Indeed,
since y ≤ − − y, i − x ≤ − − i − x ≤ −x , whence i − x ≤ i − −i − x ≤ i − x ,
Therefore i − x = i − −i − x for every x .

We show that there are no other negations formed from − and i . Let h be such a
negation. Since h is order-inverting, it must contain an odd number of −s, say 2k+1.

1. For k = 0, all possible words are −, i−, −i , i − i , of which only the first two
are negations and these are contained in our list.

2. For k = 1, the possible words are − − i−, i − −i−, i − −i − i , −i − −,
i − i −−, −i −−i , i − i −−i , −i − i−, i − i − i−, −i − i − i , i − i − i − i .
It is tedious to check that from these only the first two are negations which
also belong to our list (the second being equal to i−).

3. For k = 2 (five −s), if the word contains i −−i− or i −i −i −i−, it collapses
to one with fewer −s, since i − −i− = i− and i − i − i − i− = i− as we
saw above. So the only nonreducing words of this type are − − i − i − −,
−i − i − i − −, and − − i − i − −i . But none of these is a negation.

4. For k > 2, clearly the word contains some of the patterns i − −i−,
i − i − i − i−, so it eventually collapses to one of the previous cases.
Thus all the possible negations are captured in steps (1) – (3). �

Can we characterize all negations of a Heyting algebra in terms of quasi or weak
interior operators and the pseudocomplement? The next result says that this is true
for Boolean algebras but not for Heyting ones.

Lemma 3.5 Let A be a lattice with pseudocomplement −. For every negation f in
A, there is a weak interior i such that i− ≤ f ≤ −, hence i f = i−. If A is Boolean,
f = i−.
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Proof Let f be a negation. Then f x ≤ −x . Set i x = x ∧ f − x . Then i x ≤ x .
Further, let x ≤ y. Then f −x ≤ f − y, hence x ∧ f −x ≤ y ∧ f − y or i(x) ≤ i(y).
It follows that i is a weak interior. Also from − − x ≥ x we get f − −x ≤ f x ,
therefore i − x = f − −x ≤ f x ≤ −x . Thus i− ≤ f ≤ −, and applying i to the
latter, i− = i f . If A is Boolean, i − x = f − −x = f x , that is, i− = f . �

4 Nonperiodic Negations

Strangely enough, Proposition 3.2 does not generalize to n > 4. Period 4 and Pace
2 seem to be the highest barriers for “naturally defined” periodic negations. Higher
periods and paces can be obtained by the method of Proposition 2.13.

The only reasonable way to generalize Proposition 3.2 seems to be by combining
two or more interior operators (modalities), for example, considering the negation
g = i j−, where i, j are interiors. But i ◦ j is no longer an interior; it is a quasi
interior, as already pointed out in the last section (even if − is a complement). But
when i is a quasi interior, the mapping g = i− is, in general, nonperiodic. More
strongly, it can be nonperiodic at a point. In this section we give an example of such
a negation.

In the lattice P(N) consider the mappings

j (X) = {x ∈ X : x + 1 ∈ X} and h(X) = j − X.

It is easy to see that j is a quasi interior. Let also C : N → N be the predecessor
mapping of N, that is, C(x) = x − 1, if x > 0 and C(0) = 0. Given X and x ∈ X , x
is said to be isolated in X if x − 1 (when it exists) and x + 1 do not belong to X .

Lemma 4.1

1. If 0 is not isolated in X, then C(X) ⊆ h2(X).
2. If −X does not contain isolated elements, then h2(X) ⊆ C(X).

Proof (1) Let 0 be nonisolated in X . Then either 0 /∈ X , or 0 ∈ X and 1 ∈ X .
We have to show that x ∈ X ⇒ C(x) ∈ h2(X). Let x = 0 and x ∈ X . By
the nonisolation of 0, 1 ∈ X . We verify that C(0) = 0 ∈ h2(X). Notice that by
j − X ⊆ −X we get − j − X ⊇ X for every X . So 0, 1 ∈ X implies 0, 1 ∈ − j − X .
Thus by the definition of j , 0 ∈ j − j − X = h2(X).

Let now x ∈ X and x 6= 0. We shall show that C(x) ∈ h2(X).

Case 1 x − 1 ∈ X . Then x − 1, x ∈ − j − X , and by the definition of j ,
x − 1 ∈ j − j − X = h2(X), or C(x) ∈ h2(X).

Case 2 x − 1 /∈ X . Then x − 1 ∈ −X . Since x /∈ −X , x − 1 /∈ j − X , hence
x − 1 ∈ − j − X . So again x − 1, x ∈ − j − X , and as before C(x) ∈ h2(X).

(2) Let X be as stated and let x ∈ h2(X). We must show that x ∈ C(X) or
x + 1 ∈ X . Now x ∈ j − j − X implies x + 1 ∈ − j − X . To reach a contradiction,
assume x + 1 /∈ X . Then x + 1 ∈ −X , and by assumption, either x ∈ −X or
x + 2 ∈ −X . Assume the first. Then x, x + 1 ∈ −X , hence x ∈ j − X . But this
contradicts the fact that x ∈ − j − X . Assume x +2 ∈ −X . Then x +1, x +2 ∈ −X ,
hence x + 1 ∈ j − X . But also x + 1 ∈ − j − X , a contradiction. This proves the
claim and the lemma. �
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Proposition 4.2

1. There is X ⊆ N such that h above is nonperiodic at X, that is, hn(X) 6= hm(X)
for all m 6= n.

2. For every n > 0 there is X ⊆ N such that h is periodic at X with local index
(2n − 2, 2n).

Proof (1) Consider a partition of N into disjoint intervals Ik , Jk , k ≥ 1 such that
(i) I1 < J1 < I2 < · · · < Ik < Jk < · · · .

(ii) |Ik | = k, while |Jk| = 2 for all k ≥ 1.
Thus, I1 = {0}, J1 = [1, 2], I2 = [3, 4], J2 = [4, 5], I3 = [6, 7, 8], and so on.
Let X = ∪k≥1 Ik . Then −X = ∪k≥1 Jk and h(X) = j − X = ∪k≥1 J ′

k , where
J ′

k = Jk − {max Jk}. By Lemma 4.1, for every k > 0, h2k(X) is either Ck(X) or
Ck(X) − {0}, and h2k+1(X) is either Ck(h(X)) or Ck(h(X))− {0}. Since C pushes
X leftward, and X is a union of intervals of increasing length, for every m there is k
such that Ck(X) contains only intervals of length ≥ m. Similarly the sets C k(h(X))
contain bigger and bigger gaps between their elements. So the reader can easily
verify that for no m < n, hm(X) = hn(X).

(2) For n = 1, just take X = ∅. Then h2(∅) = ∅. For n = 2 let X = {0}.
Then h2(X) = ∅, h3(X) = N, and h4(X) = ∅ = h2(X). For n > 2 let again
X = [0, n − 2]. Since neither 0 is isolated in X nor −X contains isolated elements,
by Lemma 4.1, h2(X) = C(X) = [0, n − 3]. Inductively h2(k−2)(X) = [0, n − k];
hence h2(n−2)(X) = {0} and h2n(X) = h4({0}) = ∅ = h2({0}) = h2n−2(X).
Therefore for every n ≥ 2, h is of period 2n and pace 2 at X = [0, n − 2]. �

Remark 4.3 The quasi interior j used in the preceding example is the composition
of two interiors io, ie defined in P(N) as follows:

io(X) = Xev ∪ {x ∈ Xod : x + 1 ∈ X}, ie(X) = Xod ∪ {x ∈ Xev : x + 1 ∈ X},

where Xev and Xod are the subsets of X of even and odd elements, respectively. Then
j = io ◦ ie = ie ◦ io. The topology generated by io (or ie) is called the Hjalmar Ekdal
Topology (see Steen and Seebach [10], p. 78).
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