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Shavrukov’s Theorem on the Subalgebras of
Diagonalizable Algebras for
Theories Containing | Ay + exp

DOMENICO ZAMBELLA

Abstract Recently Shavrukov pioneered the study of subalgebras of diagonaliz-
able algebras of theories of arithmetic. We show that his results extend to wesker
theories (namely to theories containing | Ag + exp).

1 Introduction A diagonalizable algebra (cf. Magari [4],[5], Bernardi [2], Bel-
lisima [1], and Montagna [6]) is a Boolean agebra (D,—,1) with an additional
operator (1 which satisfies the axioms:

YX,yOX - y) - (Ox —-0y)=T,
VxO@X — X) - Ox =TT,
T =T

Let T be a sufficiently strong axiomatized theory in the language of arithmetic. The
predicate of provability of T generatesinanatural way an operator onthe Lindenbaum
algebra of T. The resulting diagonalizable algebra D is called the diagonalizable
algebraof T. Thesubalgebrasof D+ havebeen studied in Shavrukov [7], inparticular
the general problem of when a diagonalizable algebra D is embeddable in Dt was
considered there. We intend to present a modification of Shavrukov’'s construction
that allows usto prove the same results for awider class of theories, namely all those
containing | Aq + exp.

We will trandate this question about subalgebras into problems of provability
logic. For thiswe need some notation. Let £ be the set of modal formulas generated
by thelanguage (—,00, L,{ pi }ico)- Wewrite B = Aif A can bederived using modus
ponens and necessitation from the formula B and L6b’'s axioms (hence = A means
that A isatheorem of Lob’'slogicand B = A means = (OB — A, where OB is
B AOB). Wewrite B I Aiff =B — A. When A isaset of modal formulasin the
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language Lwewrite A = A, and A I Aif for some conjunction B of formulasin A,
B = A, resp. BIF A. Givenaset A, consider theequivalencerelationonL: A~ 4 B
iff A = A < B, andlet L/A be the sets of ~ 4-equivalence classes. The operator
which mapsthe equivalenceclassof Atothat of OAisawell defined operator on L/A
which turnsit into adiagonalizable algebra. For every (denumerable) diagonalizable
algebraD thereisaset A such that D isisomorphic to L/A.

Let T be an axiomatized theory in the language of arithmetic and let Thm(.) be
the provability predicate of T. A T-interpretation is amap ¢ which maps formulas of
L to sentences of the language of arithmetic such that T proves:

(1) (TA) < Thmli(A)];
(2 —u(L);
(3) «(A— B) < (t(A) — «(B)).

(In the following we shall ssimply say an interpretation since the theory T will be
fixed.) If for every formula Ain L, A = Aiff TH («(A) wesay that ¢« interprets.A in
T. Wesay that A isinterpretablein T if there exists an interpretation which interprets
AinT.

Given an interpretation of A in T one can construct in a natural way an embed-
ding of L/A in Dt and vice versa: from an embedding one can easily construct an
interpretation. So for any given theory T, the problem of classifying the subalgebras
of Dt reducesto classifying the sets of modal formulas A which are interpretablein
T.

We write as usua 0°L for 1. and 0" L for OO"_L; the minima n such that
A = O"L is called the height of A. If such an n does not exist, we say that A
has infinite height. We say that A has the strong digjunction property (s.d.p.) or,
equivaently, that A isstrongly digunctive(s.d.) iff A isconsistent and for all formulas
Aand B if A =0A v OB then either A = A or A = B. The same classification
is, mutatis mutandis, applied to diagonalizable algebras. In the following T will be
afixed axiomatized theory (i.e., the theory is given along with a Kalmar elementary
axiomatization of it). The language of T contains the language of the arithmetic
and—only for the sake of convenience—a symbol for exponentiation. Thm(.) is the
provability predicate of T. Wewrite Thm”(_L) for the sentence 0 # 0 and Thm™1 (L)
for Thm(Thm"(_L)) (inthefollowing we shall alwaysomit the Godel number symbols
™). Theminimal n suchthat T -+ Thm"(_L) iscalled the height of T. If such an n does
not exist we say that T has infinite height. The height of T isin fact the height of its
diagonalizable algebraD. If all X, sentencesprovablein T aretruein the standard
model, then T is X', -sound, otherwise T is X1 -ill. Shavrukov proved that every r.e. set
of modal formulasisinterpretable in the diagonalizable algebra of every (sufficiently
strong) X, -ill theory provided it hasthe sameheight asthetheory. Moreover anr.e. set
of modal formulasisinterpretable in the diagonalizable algebra of every (sufficiently
strong) X;-sound theory if and only if it iss.d. Recall that the Godel numbering of
arithmetical sentences gives anatural recursive enumeration of aset A such that L/A
isisomorphic to Dt. So an interesting consequence is that diagonalizable algebras
of X,-sound theories are mutually embeddable. The same holds for X, -ill theories
of any fixed height.

The results mentioned above have been proved in [7] for theories which contain
3, induction. Infact, the construction makes use of a Solovay function which ranges
over a Kripke model. In the case of infinite height theories the models used have



SHAVRUKOV'S THEOREM 149

nonstandard height, so X; induction is needed to guarantee the existence of the
limit. In Section 3 we show by Theorems 3.1 and 3.2 that the use of X, induction
isinessential and the result isvalid for all theories containing | Ay + exp. (Actualy
Theorems 3.1 and 3.2 consider only theories of infinite height; in fact in the case of
finite height the proof in [7] goes through for | Ay + exp with minor modifications.)

For X -ill theories astronger result holds. In[7] acharacterization was given of
all (non necessarily r.e.) subalgebras of the diagonalizable algebra of a X, -ill theory.
Also this theorem holds for weaker theories than those considered in [7]. We shall
not give a proof of thisfact sinceit is easily derivable from Shavrukov’s as follows.
To embed D in the diagonalizable algebra of some “weak” theory T, first apply the
result of [7] to embed D in the diagonalizable algebra of some sufficiently “strong”
theory T*. Finaly, embed Dt+ in Dt. Composing the two embeddings one obtains
the desired subalgebra.

2 Alemma In this section we prove alemma which will be used to characterize
ther.e. sets of modal formulasinterpretablein atheory T 2 | Ay + exp. We assume
the reader is familiar with the techniques introduced in Solovay [8].

Afinitetree-likeKripkemodel k (inthesequel simply amodel) isatriple(W,R,I-)
where (W,R) isafinitetreewith nodesw € W strictly ordered by therelation R, and
I- isafinite subset of W x w. We call W the universe of kand (W, R) the frame of k.
Wewrite w I- p; if (w, 1) €lF. Thereation w I- A (w forces A) is then extended to
all the formulas of L inthe usual way. We say that K = (W', R, IF) isa generated
submodel (in the sequel simply asubmodel) of k = (W, R, I) if theuniverse of K is
W' = {w} U {u | wRu} for some node w of k, and R’ and I’ are the restrictions of
Rand I-. Wewritek I A (k forces A) iff the formula A isforced at the root of the
model k, and we writek = A (kisamodel of A) if every node of k forces A. Then
we have that k isamodel of A iff k forcesJA. If A isafinite set of formulas we
writek I- A (resp. k = A) if forevery A e A, kIF A(resp. k= A). Thenitiseasy
to check that, if A isfinite, then A &= A iff every model of A isamodel of A, and
A I Aiff every model which forces A forces A (if A isinfinite this may not be the
case).

In afirst-order formulaan occurrence of aquantifier issaid to be bounded if itis
of theformVx <t or Ix <t, wheret isaterm of the language of T. The A,-formulas
of T are the formulas provably equivalent to formulas with only bounded quantifiers
(having assumed exponentiation as a primitive function of the language we should
properly write Ay (exp), but in the present paper there will be no risk of confusion).
The X,-formulas are those equivalent to a A,-formula preceded by an existential
quantifier. The theory whose axioms are those of Robinson arithmetic plus the
characteristic axioms for exponentiation and the induction schemafor A,-formulas
iscaled | Ag + exp; the theory which contains also the schema of X, induction is
caled | £,. We refer the reader to Hgeck and Pudl&k [3] for more details on these
theories.

Wefix anatural coding of modal formulas and of modelsin arithmetic; we shall
use the same symbol both for aformula (resp. model) and its code. We require that
the coding assigns to proper submodels of k a smaller code than to k itself. Having
exponentiation as a primitive function, we may require without loss of generality that
ki Aand k = Atrandate into A,-formulas. We also use in the following that the
completeness theorem of L6b's logic with respect to (finite) models is formalizable
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inl Ay 4+ exp. Givenanr.e. set A of modal formulaswe may find, formalizing in the
language of arithmetic the algorithm enumerating A, a Ap-formula“A € A x” (here
A and x are the free variables of the formula) such that for every A € £, A € A iff
dnewTk A e A, Weaso require that (provably in T) if A € A x then A < X,
i.e., the code of A islessthan that of x. We call such aformula a description of A
(in T). We may formalize in T aso the notion of Lob’s derivability so that we can
use the expression A , = A both when arguing in the real world and in the theory.
Formalizing the proof of the completeness theorem for Lob's logic in 1 Ay + exp
one can find a Ay-formula describing the relation A , = A. We shall aso use the
expression “A = A” whenreasoning in T; thisstandsfor 3x (A x = A).

Once we fix adescription of A, it makes perfect senseto say “T provesthat A is
s.d” Thissimply means:

TF-UAE L AVABAEDOAVOB) » (A= AVAE B).

Obvioudly, anr.e. set of formulas.A may have different descriptions, and for one
description the theory T may prove that A is s.d. whereas for another description it
may not. Note also that possibly the “opinion” of T about A may be incorrect. In
fact, when T is X, -ill there are descriptions of A which do not satisfy A € A iff T -
IX(A € A x). Soit may happen T proves A iss.d. when thisfailsto reflect reality.
Weuseessentially thisfact in the next section; for the moment we keep the description
fixed and assume T provesthat A iss.d.

Lemma2l LetT beanaxiomatizedtheory of infinite height containing | A, +exp
and A anr.e. set of modal formulas. If thereisa description of A in T suchthat T
provesthat A iss.d. then A isinterpretablein T.

Proof: Let T be an axiomatized theory and“ A € A ,” be adescription of anr.e. set
of modal formulas as in the hypothesis of the lemma. We shall define a Solovay
function h(n) whose value is either 0 or the code of amodel of A ,, for somem < n.
We agree that 0 I- A is some fixed provably false sentence (e.g., 0 # 0), so the
expression h(n) I- A will always have a meaning. The Solovay function is defined
simultaneoudly with the sentences A, and A a, by an arithmetical fixed point. The
definition is the following.

Let A, bethe sentence Ynh(n) = 0. We order the modal formulas by increasing
code and let A; be the i-th formula in this order (this enumeration of formulas is
redundant, since here formulas are actualy codes, but we introduce it for better
readability). For every i and every string o € 2' define aformula:

As:= \{AnIn<iando(n) =1} A A{=As|n<iando(n) =0).
Theformula i a (with free variable A) is:

Aa: = Hoe2i+1[0(i)
=1A3®nh(n) IF A, AVTe2 i (x <o — ¥®nh(n) If A,
wherei issuchthat A = A and t < o hasto be read as t precedes o in the

lexicographic order. 3°°n is an abbreviation of Yman > m and v*°n of —=3*°n—.
Let h(0) = 0. For n+ 1 if n codes aproof of 1, v A a for someformula A, then:
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(@ if h(n) =0and A, & A, then choose the minimal model k of A , which
forces—A and defineh(n + 1) = k.

(b) if h(n) = h # 0 and the root of some submodel of h forces — A then let k
be the minimal such submodel and defineh(n + 1) = k.

(c) indl other caseslet h(n + 1) = h(n).

Notethat (provably in T) thegraph of hisAy. A straightforward formalization of the
compl eteness theorem for Lob’'s modal logic shows that h(n) is (roughly) bounded
by 22" (h increases only if at stage n case () obtains; at that stage the code of —A
and of al the formulasin A , is bounded by n). So A, induction shows that h isa
total function.

If the theory T is strong enough one is able to use for A o Simply the sentence
dmvn>mh(n) I A. Then A, v A Simply means that the limit of h is either 0 or a
model whichforcestheformula A; inparticular, if h movedtoh(n+1) becausen codes
aproof of A,V Aa, therewill beaproof that h(n+ 1) isnot thelimit of thefunction (in
fact h(n+ 1) ischosen sothat h(n+ 1) IF = A). Butin | Ay + exp it we do not know
how to prove that the limit of the Solovay function exists (one needs 2, induction).
It cannot be excluded that for some formula A both h(n) I- Aand h(n) I- —A occurs
for infinitely many n; thus one would not have as desired, A—a < —Aa. To help
the reader’s intuition we present the following semi-formal description of A o which
should clarify the definition above. To each formula A we attach an infinite set C(A)
such that either Vn € C(A)h(n) I Aorvne C(A) h(n) I —=A. Theset C(A) is
defined in the following way. Let C(Ay) = {n | h(n) IF = Ay} if thisis infinite,
C(A¢) = {n | h(n) IF Ao} otherwise. Let C(Ai11) = {n € C(A) | h(n) IF =Ai1,}
if thisisinfinite, C(Aj+1) = {n € C(A) | h(n) I Aj,.} otherwise. Finaly, let 1 a
be the sentence Vne C(A) h(n) I- A.

Claim 22 T proves Vn[h(n) # 0 — Thm@mh(m) isa proper submodel of
h()]].

Proof. Infact, if h(n) # 0, then at some stage s < n for some formula A, s codes a
proof of 1o vVAaandh(s+1) = h(n) I —A. By provable X, completeness Thm[—A].
Thistogether with Thm[io Vv A o] yieldsThm[A o] andin particular Thm[3*°n h(n) I+ AJ.
From h(n) I+ = A we get Thm[h(n) I —A] by provable ¥; completeness, and the
claim follows.

Claim 23 Vnew3dmew suchthat T provesh(n) # 0 — Thm™(L). (So, since T
has infinite height, for every standard n, h(n) = 0.)

Proof: Thisisan easy corollary of the previous claim.

To define («(A) we need to assign “ad hoc” amodel to 0. Following Shavrukov
we will construct aformula T in such away that for all standard formulas A and B
the following properties are provablein T.

D =T

(2) T(A— B) < (T(A) — T(B))
B AEA—-TA

4 TOA - A EA.

(Roughly speaking theformulaT(A) saysthat A belongsto some maximal consistent
set T containing A U {—=OA | A ¥ OA}. Such a set T exists (within T) since
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otherwise for some A, ..., A, suchthat A b= OA,, ..., A = OA, wewould have
A EOAy V... Vv UOA,. Thiscontradicts the provable s.d.p. of A.) For the proof of
the lemma only (1)—(4) are needed, so we prefer to postpone the definition of 7 and
the proof of (1)—(4) until after the proof of the lemma.

We define T to bethe sentence Ay A T(A), and finally define: ((A): = AaV a,
i.e, ApV [Ag A T(A)]. Weshal provethat ¢ isan interpretation (Claim 2.6) and that
cinterprets A in T (Claim 2.7).

Claim24 Forevery Ae L, T provesvV*nh(n) I A — Aa.

Proof: Since A is standard we can replace in the defintion of A 5 the quantifications
over strings by finite conjunctions and disunctions. So the claim istrivial.

Claim25 Forevery Aec L, TprovesVnh(n) =0AAn E A— ((A)].

Proof: Assumeh(n) =0and A = A. Reasoning in T we want to show Ap V ta.
Since h(n) = 0 and A, = A, the function can leave 0 only to a model of A and
eventually move to some submodel of it. So =, implies v*°nh(n) = A. By the
previous claim, this implies Aa. On the other hand, by (3), we have T(A), so A
implies ta.

Claim2.6 Thefunction:isaninterpretation (i.e., properties(1)—(3) from Section 1
areprovableinT).

Proof: We have to prove that for every standard formula A properties (1)—3) are
provablein T, i.e, («(OA) <> Thmt(A)], ~«(L), and «(A — B) < (t(A) — «(B)).
The proof is more readable if we derive them both from T + A, and from T + —A,.
In fact, under the hypothesis 1, the sentence ((A) is equivalent to T(A) (by our
convention that 0 I A), and under the hypothesis —¢, t(A) isequivalent to A a.

T+ A F «(OA) — Thm[(A)]. Assume ((OJA) and A, and reason in T. As we
just remarked, under the assumption X, t(OA) reducesto T(OA). By (4) we abtain
A = A, soforsomen, A, = A. Sinceweassume g, h(n) = 0. Both A , = Aand
h(n) = 0 are ¥, formulas, so by provable ¥; completeness we have ThmA , = A
and Thm{h(n) = 0]. By Claim 2.5 we have Thm[¢(A)].

T+ A F (DA — «(OA). Assume Thm[ra Vv ta] and Aq. It suffices to show,
reasoning in T, that T(OA). Since Thm[Aa V ta], afortiori Thm[xy v A a]. Let n be
the code of aproof of Aq v L a. Sincewe assumed Aq, h(n) = 0. Then A, = A, or
else the function would leave 0 at stage n + 1, contradicting A. Then A = A, and
so by (3), T(TA).

T+ Ao = —(L). Immediate from (1).
T+ A t(A— B) < (t(A) = «(B)). Immediate from (2).

T+ =i F «(TA) — Thm[(A)]. Assume ((JA) and —x,. It suffices to prove
Thm[xa] in T. By our assumption Aga holds, in particular for some n, h(n) I+ OA.
Thelatterisax, formulaso Thmh(n) I+ TA]. Sinceh(n) # 0, by Claim 2.2 wehave
Thm[*3Imh(m) isasubmodel of h(n)”], thus Thmv*>nh(n) I+ A]. By Claim 2.4,
Thm(a a] follows.

T4+ =g F Thmi(A)] — «(TOA). Assume Thmlia Vv ta] and —X,. It sufficesto
derive Aga reasoning in T. Since Thm[Aa V ta], afortiori Thmji, v Ap]. Let n be
the code of a proof of A, v A which islarge enough to have h(n) # 0. (Suchann
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exists since we assumed —2, and any provable sentence has arbitrary large proofs.)
If h(n) - OAthen h(n 4+ 1) = h(n), otherwise h(n + 1) will be the least submodel
of h(n) forcing —A. In both casesh(n + 1) I OA (recall that the code of amodel is
larger than the code of its proper submodels). Afterwards, h remains confined in a
submodel of h(n + 1), so we can conclude that V*°n h(n) I JA. Thus Aga follows
by Claim 2.4.

T+ —Ao F —(L). Immediate.

T+ —=Ao Ft(A— B) < (t(A) — (B)). Proof isleft to the reader.
This concludes the proof of Claim 2.6.

Clam?27 Forevery Aec L, A Aiff TE((A).

Proof: (=) Assume A = A, sofor some A, = A. Sincenisstandard, h(n) =0
and, by X; completeness, TH h(n) =0 A An = A. So«(A) by Claim 2.7.

(<) Viceversy, if TF ((A) we havein particular that T = 1y v Aa. ASSume
for a contradiction that A [~ A and let n be the code of the proof of 1y v Aa. In
particular we have that A ,, = Athenh(n + 1) = 0. Thisn isastandard number, so
this contradicts the fact that h will spend al its standard lifein 0.

The proof of the lemmais complete but for the definition of the predicate 7. We
introduce the formula V (o) which saysroughly: A, isJ-conservative over A, i.e.,

V(o). = VAIA = A, = TOA) - (A =E0OA)].

Assume strings have been coded into numbers in some natural way (e.g., choose
E(,(m:ﬂ‘ as the code for o), so that on strings of equal length the relation “ <”
coincideswith therelation “ precedes lexicographically,” or, when strings are thought
of asnodes of abinary tree, “ison theleft of.” Let U (o) be the sentence which says
that o isthe leftmost string satisfying V (o):

U():= V(o) AVTe2 ™ (t <o — =V (1)).

If A= A let T(A) hold if thereiso e 2*! such that U(o) ando (i) = 1. We
have to show that for every standard formula properties (1)—(4) of T are provable
in T. First let us remark that for all standard i, T proves 3o € 2'*' U (0), i.e,, there
exists the leftmost string o satisfying V (o). Reason in T. A string satisfying V (o)
must exist or else for every o € 2'*! there would be a modal formula C, such that
Ak A; - 0OC, and A |= OC,. Since \/, .,i+1 As isatautology, one would have
A E Vyein OC,. By the sd.p. of A (provableinT), A = OC, for some o,
a contradiction. Now once we know that one string o exists satisfying V (o), the
existence of the minimal one is again a consequence of the standardness of i since
the quantifiers over strings in 2+ may be transformed in finite conjunctions and
disjunctions. This proves our remark. Now we check in turn that properties (1)—(4)
which we required for T are provablein T.

D =T

(2) T(A — B) < (T(A) — T(B))
() A= A— T(A

(4) T(OA) — A = A.
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We reason in T. It is obvious that for no string o such that V (o), o(L) = 1, so
(2) holds. (We write o (A) for o(i) where A = A;.) To prove (2) assume first
that T(A — B) and T(A). Let o be a sufficiently long string such that U (o) and
0(A— B) =0(A) =1. Theno(B) = 1 or else A, <> L and surely could not
satisfy V (o). Theconverseissimilar. Property (3) isa so adirect consequence of the
existence of an arbitrary (standard) long string satisfying U (o). For such astring we
must have o (A) = 1 or else A = A, — L and, by the definition of V (o) we have
that A = L. Lastly, to prove (4) assume that T(OA). Let o be a sufficiently long
string such that U (o) and o (OA) = 1. Then A &= A, — OA, s0, by the definition
of V (o), wehavethat A = OA. By thes.d.p. of Aweget A = A.

This completes the proof of Lemma 2.1.

3 Thetheorems We shall use Lemma 2.1 to prove the two theorems announced
inthe Introduction. They characterize ther.e. setsinterpretable in atheory of infinite
height.

Theorem 3.1 If A isanr.e set of modal formulas and T is a X;-sound theory
containing | Ay + exp, then A isinterpretablein T iff A iss.d.

Theorem 3.2 If Aisanr.e setof modal formulasand T isa X;-ill theory of infinite
height containing | Ay + exp, then A isinterpretablein T iff A hasinfinite height.

The “only if” parts of the theorems are trivial. To prove the first theorem we
show that, if A isanr.e. set withthes.d.p.and T isa X, -sound theory, then we can find
adescriptionof A inT suchthat T provesthes.d.p. of A. Analogously for the second
theorem. For the sake of readiability we shall give these proofsin an informal style,
i.e., we shall merely describe algorithms and take for granted their formalizability in
the language of T.

Suppose A is an r.e. set of modal formulas and let A € A s be any description
of A. With this description we associate in a natural way the algorithm {A s}sc,
enumerating A, i.e., anincreasing recursive sequence of finite sets {A s}sc.,, such that
A = Ugep, A.s. We shall construct a new agorithm {V s}sc,, enumerating the same
set A such that the canonical trandation of {V s}se., in the language of arithmetic
yields a description with the desired properties.

The proofs of Theorems 3.1 and 3.2 need two modal lemmas, respectively Lem-
mas 3.3 and 3.4. These are the adaptations of some lemmas from [7]. We shall
present them in aform which is easily formalized and proved in | Ay + exp. Their
proofs are moved to the end of this section.

A finite set € of formulasis said to be adequateif it is closed under subformulas
and (up to provable equivalence) closed under boolean connectives; i.e., (i) L € C;
(it) al subformulas of any B € C arein C; and (iii) for every B, C € C there exists
D e CsuchthatI- D < (B — C).

Lemma3.3 Let C bea finite adequate set containing A. The following are equiv-
alent:

(@) Aissd,;

AKELandVBCecCAREOBVOC = A= Bo Ak C.

Proof of Theorem 3.1: We are now ready to present the algorithm required to prove
Theorem 3.1. Wemay codefinitesetsof formulaswith natural numbers. Theproperty
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“s codes an adequate set” is A. With the same notation as the example given above,
consider the following algorithm {V s}sce-

Sage0. V= 2.

Sages+1. Let Abetheminimal formula(if suchexists) suchthat A € A s—V .
If for some adeguate set C of codelessthans, A € €,V s € A sNC, and condition (b)
of Lemma3.3holdsfor A sNC, thenletV s, = (A sNC); otherwiseletV sy = V.

We check by induction onthe codeof the(standard) formula Athat A € A iff A €
Usew V.s- Since’V s € A s, only one implication needs to be proved. Suppose for a
contradiction thereis aformulasuch that A € A s — V s for all large enough s € w.
Fix A and s such that for all r > s, Aistheleast formulain A, —V,. Fix an
adeguate set C such that {A} UV s € C. Clearly Vs € A,NC. Since A iss.d. and
we assumed it closed under =, condition (b) of Lemma 3.3 holds for A, N C. So
V n+1 = A nNEC, acontradiction. It remainsto be checked that T provesthes.d.p. of
UsV.s. For this we need a formalized version of Lemma 3.3 in | A, + exp, and
we invite the reader to check that all models used in the proof reported below are
bounded by a few nested exponentiations of the code of the given adequate set C.
Consequently, the theorem holds in any model of | Ay + exp. From Lemma 3.3 it
followsthat for all stages s the sets'V s are s.d., which clearly suffices.

Lemma3.4 Let C beafinite adequate set containing A. The following are equiv-
alent:

(1) A hasinfinite height;

(2) thereexists B € C suchthat Bissd.and B = /\ A.

Proof of Theorem 3.2: Given a X;-ill theory T choose a A, formula o (x) such that
TkF IXo(X) and w = VX—o(X). In every model of T there is a Ay-definable
number n, namely the minimal witness of Ix o (x). The idea of the proof is the
following: given any agorithm A s enumerating A, we construct a new algorithm
which smulates A s until the nonstandard stage n. Once this stage is reached we
stop the simulation and enumerate some arbitrary s.d. set containing A ,. Inthereal
world this stage n is never reached, so this new agorithm enumerates the same set
as the old one. But in any model of T this algorithm enumerates a finite s.d. set.
Lemma 3.4 is used to guarantee that some s.d. formula B = A s always exists.

Sage 0. V, = @.

Stages+1. Let Abetheminimal formula(if suchexists) suchthat A € A s—V .
If for some adequate set C of codelessthans, A€ C, Vs C AsNC, forsomeB € €
condition (b) of Lemma 3.3 holds, and B = A s N C, then:

Casel: if¥x<s—o(X) etV i1 =VsUAsNC).
Case2: ifIx<so(x) letVsy1 =V sU{A}

Otherwise, let Vs = V.

We check by inductiononthecodeof theformulaAthat A € A iff A e (g, Vs
Since Vs € A s, only one implication needs to be proved. We need consider only
standard stages (recall that a description of A should verify: A€ AiffdsewT F
A € V), so Case 2 never obtains. Suppose for acontradiction that thereisaformula
suchthat Ae As—Vsforalse w. Fix Aandssuchthat foralr > s, Aisthe
least formulain A, — V. Fix an adequate set € such that {A} UV s € € (such an
adequate set exists since A is standard). Let n > s be larger than the code of € and
suchthat ANC € AnNC. Clearly Vs € A ,NC, and since A hasinfinite height, so
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does A ,NC. Thus, condition (2) of Lemma3.4 holdsfor A N €. We may conclude
that V ny1 = An N C, acontradiction. To check that T proves the s.d.p. of [ J Vs
recall that in every model of T, (JsV.s = Us-ps1 V.s» Where n is the least number
suchthat o (n) and (Js_,,, V.s isequivalent to asingle s.d. formula B.

Proof of Lemma 3.3: The direction (8) = (b) istrivial. For the converse assume
(b). Fix aset At C C such that:

At:= {G € @ |VCeC éither G I C or G I- =C}.

The elements At are called atoms; roughly, they are conjunctions of maximal con-
sistent subsets of ©. By the adequateness of C, for every C e €, if I¥ —C then there
issome atom G I C. Also, I \/ At, or else for some atoms G, G I —\/ At quod
non. Lety = {G € At | A}~ G}. From I+ \/ At and A = L we can conclude that
y # @. We claim that thereisamodel of A U {0G | G € y}. Infact, if not then
AE \/Gey O0-G. By (b), thereisG e y suchthat A = =G quod non. This proves
the claim.

Suppose now that for some formulas B,, B, both A |~ B, and A & B,, so we
may assume that there are two models k; and k;, of .A forcing respectively =B, and
—B,. We shall show that A j~ OB, Vv OB, by constructing a model k' of A which
contains k; and k, as proper submodels. The s.d.p. of A will follow.

Letkbeamodel of AU{OG | G € y}. Letr, r, and r, betherootsof respectively
k, ki, and k.. Let R, R, and R, be the respective accessibility relations. Let k' bethe
model obtained by grafting k; and k, abovetheroot of k. More precisely, the universe
of K isthedigjoint union of theuniversesof k, k;, and k,, and the accessibility relation
of k' isthetransitive closure of therelation RU R, U R, U{(r, ry), (r, r5)}. Theforcing
relation of k' isthe union of the forcing relations of k, k;, and ks.

We claim that k' isamodel of A and K I+ =0OB; A =[B,. Obviously k' forces
=B, A =B, because k; and k, are submodels of k', forcing respectively B, and
B,. To show that k' is a model of A, we prove by induction on the complexity of
subformulasC € Cthat K I- C iff kI C. Thebasisstepistrivial, asistheinduction
for Boolean connectives. We prove the induction step for 0. Assume K' I —C.
Then for some proper submodel w of K, w I —=C. The model W' is a submodel of
k; or k, or isaproper submodel of k. If w' isaproper submodel of k, then k I- —=0OC
follows. Otherwise, let G be the atom forced in w'; since C e C, by the definition of
an atom either G I- C or G I =C. But G I C leads immediately to contradiction,
so G I =C. Since both k; and k, are models of A, G € y. By our choice of
k, K I- Age, 0G, so there is a proper submodel w of k which forces G. Hence
w - =C and k IF =0OC. Vice versg, if k IF =0OC then for some proper submodel w
of k, w I =C. Since w is aso a proper submodel of K, k' I- =OC follows. This
completes the proof of Lemma 3.3.

Proof of Lemma 3.4: (<) isimmediate. (=) List theformulasof C = {C4, . ..,
C,}. Define Ay := Aandforali < nlet Aj, := A; U{C;}if thishasinfinite height,
Ai41 := A; otherwise. Finaly choosein € aformula B equivalent to A\ Anyq. If
B = 0OC; v OC; then B A Cj or B A Cj has infinite height. (For suppose for
some n both BAC; = 0"L and BACj = O"L then B = OC; — O™ and
B = OC; — O"'. Thus B = O0"'L, quod non.) So, oneof C; and Cj, say C;j,
has been enumerated in An.1, S0 B = C;. By Lemma3.3, Biss.d.
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