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Some Logics Related to
von Wright's Logic of Place

RAMON JANSANA

Abstract Inthispaper westudy somelogicsrelated tothelogic of placeintroduced
by von Wright and studied by Segerberg. For every n > 1 we study the logic of
the class of frames whose accessibility relation R satisfies the following condition:
if X # y then thereis j < n such that xRly. For afixed n > 1 the logic is the
one axiomatized by K + [n]p — [n+ 1]¢ + ¢ — [n](n)¢, which we call Kn.4B,
where [njp isp A Op A ... A O"¢. We prove that these logics are canonical and
hence complete, and that they have the finite model property, being thus decidable.
We also characterize their classes of frames. In the way of studying them we also
study thelogicsK + [n]Je¢ — [n+ 1]g, caled Kn.4, and K 4+ ¢ — [n](n)¢, caled
Kn.B. A tranglation between these logics and S5 is also presented, and the relation
among them all is established.

1 Introduction  G.H. von Wright [6] presents the modal logic of place where the
box is interpreted intuitively as “everywhere else” In this interpretation we can
assume that sentences express propositions that can be true or false of places. Under
this assumption a sentence of the form Ol will be true of aplacei if the sentence ¢
istruein every other place that can be reached fromi, and a sentence of the form ¢¢
istrue of aplacei if the sentence ¢ istrue in some other place that can be reached
fromi. von Wright also assumed that each place can be reached from every other
place. With this interpretation von Wright put forward the normal modal logic with
the following axioms:

Op Ao — OO
¢ — O0p,
astheonethat better codifiestheintuitionsjust described. Von Wright'slogic of place

is, aswas shown by Segerberg [5], thelogic of the class of frameswhose accessibility
relation is the nonidentity (i.e. XRy iff x # y). And its frames are the symmetric
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and weakly transitive ones (if xRy and yRz then xRz or x = z). Thislast condition
is called aliotransitivity by Segerberg.

In this paper we present a joint study of the logic of place and some natura
weakenings of it. For every n > 1 we study the logic of the class of frames whose
accessibility relation R satisfiesthe following condition: if x #£ y thenthereisj <n
such that xR y. The frames of thislogic are, as we will see, the frames we call n-
symmetric and weakly n-transitive (see Definitions 4.2 and 3.4). In the course of the
work we study also the logic whose class of framesisthe class of weakly n-transitive
frames and the logic whose class of frames is the class of n-symmetric frames.

Intuitively our logic for the case n can be seen as codifying thelogic of “in every
other place that can be reached in fewer than n + 1 steps.” In the Kripke frames
the steps are represented by the accessibility relation in the following way: indices
represent places, and from one place x aplace y can bereached directly if xRy. And
from aplace x aplace y can bereached in j stepsif xRly.

The logics that | call Kn.4 with axiomatization K + [nj¢ — [n + 1] have
been studied for example in Blok and Kohler [1], wheretheir algebraic semanticsare
presented, and in Rautenberg [4], where some of their main features are expounded
in the main text (pp. 164, 173, 324, 327) and in some exercises (Ex. 5, p. 145 and
Ex. 2, p. 154). For the sake of completeness we prove canonicity of these logics
and characterize their classes of Kripke frames. We do not study their algebraic
semantics.

2 Preliminaries Thelanguage of propositional (or sentential) modal logic that we
assumeinthepaper hasonebinary connective, —, apropositional constantinterpreted
alwaysasfalse, 1, and the modal operator, O. In the paper we use standard notation
in modal logic, which the reader can find in Hughes and Cresswell [3].

Let usintroduce the following notation: [0]¢ iS¢, [N+ 1]g iSO g A[n]e, (0)e
isp and (n+ 1)g isO" e v (n)e, where 0"¢ and ("¢ are defined as follows: [1°¢
ise, O"e isO0"p, ¢%p ise, and O" e is OONp.

The logics we will study in this paper are the normal modal logics axiomatized
by the axioms (n.4) and (nB) below:

n.4 (N — [N+ 1]y,

whichfor n = 1 isequivalent to thefirst axiom of von Wright, for n = 0 isequivalent
to the axiom ¢ — O, and for n > 1 the relation that holds between the axiom for
the case n and the axiom for the case n — 1 isthe same that holds between the case 1
and the case 0. And,

nB ¢ — [n[(n)e,

whichfor n = 1 givesthe same normal logic asthe one given by von Wright's second
axiom, for n = 0 isthe tautology ¢ — ¢, and for n > 1, the relation that holds
between the axiom for the case n and the axiom for the case n — 1 is the same that
holds between the case 1 and the case 0.

First of all we will study, once n is fixed, the norma modal logic axiomatized
by the axiom [nj¢ — [n + 1]¢. We call this logic Kn.4. In the second place we
will study the normal modal logic axiomatized by the axiom ¢ — [n]{(n)¢, which we
call Kn.B. Finaly we will study the normal modal |ogic axiomatized by the axioms
[N — [N+ 1] and ¢ — [n]{n)e, which we call Kn.4B.
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3 Kn.4logics Inthissection we study the Kn.4 logics. First of all we prove some
syntactic lemmasfor further use, then we study the Kripke framesfor the Kn.4 logics
and prove completenessrelative to frames. Finally we study the relationship between
the Kn.4 logics (for n > 0) and the logic $S4 using a generalization of a trandation
of Goldblatt in [2].

Lemma 3.1 For every formula ¢, every n and every m, the formula [n][mj¢ <>
[N + mjy isatheoremof K.

Proof: By induction on n. If n = 0 the claim is obvious. Assume it holds for
n. By definition of [n + 1], K = [n + 1][m]g < O""'[m)p A [n][m)e. But K +
O mle < O"HOMpA. .. AO ! 0pA.. . AO" e, Hence, sinceK + [n]mjg —
OMMo A ... AO g, we get that [n + 1][m]e <> O '0Mp A [n][M]e is atheorem
of K. By inductive hypothesiswe get that K - [n+ 1][m]g <> O™ 0Mp A [N+ m]e.

Lemma3.2 For everymodal formula g, and every m, theformula[njo — [n+mje
isatheoremof Kn.4.

Proof: By induction on m. If m = 0 the claim is obvious. Assume that it holds
for m. Inthiscase, by Lemma 3.1, Kn.4 + [nj¢ — [n][m]e. Therefore, using the
axiom of Kn.4, Kn.4 + [nj¢p — [n+ 1][m]p. Againby Lemma3.1, Kn.4F [njp —
N+ m+ 1.

Proposition 3.3 Thelogic Kn.4 can be axiomatized in each one of the following
ways:

() K+ [njg < [n+1jg

(ii) K+ [njp — O™ lg

(i) K +[nje — [n][nje (ifn > 0)
Proof: Clearly, giventhedefinition of [n], thelogics(i) and (ii) arethelogicKn.4. We
seethat (iii) isthelogic Kn.4. Using Lemmas 3.2 and 3.1 we have that the formulas
[Nl — [N+ njp and [n+ njp — [n][n]¢ aretheoremsof Kn.4, so [nj¢ — [n][n]e is
aso aKn.4 theorem. On the other hand, since [n][n]¢ — O[ny is atheorem of K,
we have that [nj¢ — [n + 1] isatheorem of (iii).

We study now the Kripke frames for Kn.4.

Definition 3.4  Wesay that arelation Ronaset W isaweakly n-transitive relation
if and only if Va, b € W, if aR""!b then thereis j < n such that aR'b (R is the
identity on W). Hence, R isweakly 0-transitiveiff va, b € W, if aRb thena = b.

Proposition 3.5 AKripkeframe (W, R) isaKn.4 frameif and only if R isweakly
n-transitive.

Proof: Assume that (W, R) isa Kn.4 frame and that u € W. Let us take the set
X ={veW:3j <nuRlv}. Let ebeavaluationin (W, R) such that e(p) = X.
Thenu € e([n]p). Henceu € e([n + 1]p) since (W, R) isaKn.4 frame. Therefore
we have that Vv € W(UR" v — v € e(p)). From this follows that R is weakly
n-transitive. On the other hand it is easy to see that the formula [njp — O 'pis
valid on every frame (W, R) where R isweakly n-transitive.

Wewill provethat thelogicsK n.4 arecompleterel ativeto their classes of frames.
To prove it we will prove that for every n the canonical frame of thelogicKn.4isa
Kn.4 frame. A logic with this property is usually called canonical. First of all we
need the following lemma.
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Lemma3.6 Foreverynandeveryformulagy, ..., ¢, theformulad"p,AO" 1, A
o AOpn_1 Agn — O" (g V...V ¢p) isatheoremof Kn.4.

Proof: It iseasy to check that for every | < n

K|_|:|n§00/\|:|n_1(p1/\.../\D(pn_l/\gﬂn—>Dj(q)o\/...\/(pn).

Hence,
KEFO AO" Moy Ao ADpn—1 Agn — [N)(@o V...V on).
Therefore,
Kndrk O, A0 o1 Ao AD@n—1 Agn — 0" (@o V...V gn),
since

Kn4dk nj(goV...Ven) — 0" ey V... Vo).
Proposition 3.7  For every n, thelogic Kn.4 is canonical.
Proof: Let (W, Re, e:) bethecanonical model for Kn.4. Let usseethat R; isweakly

n-transitive. Suppose that u, v € W, and that uRZI*v. Assume for a contradiction

that for every j < n, nouRlv. So, u # v. Let ¢, ..., ¢n be formulas such that
¢n €Ubut gy € v,0pp_; €eubutgn_; €v,...,and0"p, € ubut ¢y & v. Then,
since by Lemma 3.6 we have that

Dn(po AN Dn_l(pl VANPINAN D(pn_l VAN ®n — Dn+1((p0 V...V (pn) e u,
O" (o V...V ¢n) € U. Therefore, (g Vv ...V ¢n) € v. But thisis absurd since
forevery j <n, ¢ ¢v.

Corollary 3.8  For every n the logic Kn.4 is complete relative to the class of its
Kripke frames.

Now we are going to study therelationship betweenthelogicskn.4and K4. This
relationship is the one stated in Corollary 3.8. We need the following two lemmas
that we will also use later.

Lemma39 If (W, R)isaweakly n-transitive frame then,

vkyxy € W(xRy — 3j < nxRly).

Proof: By induction on k. If k = 0 the claim is obvious. Assume it holds for k.
Assume also that xRKt!y. Then let z be such that xR¥z and zRy. By inductive
hypothesis take j < n such that xR!z. Then xRI*'y. If j < n, we have what we
want. If j = n, since that frame is weakly n-transitive there is j’ < n such that
xRi'y.

Lemma3.10 If (W, R)isaweakly n-transitive framethen it isweakly k-transitive
for every k > n.

Proof. By the previous lemma.

Proposition 3.11  For everyn, Kn+1.4 ¢ Kn.4.
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Proof: Take into account the frame ({0, 1, ..., n + 1}, R) where R is the relation
defined by:
iRjiffi <jor(i=n+1andj =0)

Thisframeisweakly n + 1-transitive but it is not weakly n-transitive. Therefore the
axiom of Kn.4isnot validinit. Hence this axiom in not atheorem of Kn+1.4 since
thislogic is complete relative to the class of weakly n 4 1-transitive frames. On the
other hand it is clear that the axiom of Kn+1.4, [n + 1]J¢ — [n+ 2]e, isatheorem of
Kn.4, since every weakly n-transitive frame is aweakly n + 1-transitive frame and
Kn.4 is complete relative to the class of weakly n-transitive frames.

Proposition 3.12 K1.4 ¢ K4.
Proof: Since Op — OOy is a theorem of K4, the axiom of K1.4, [1]¢p — D2,

is atheorem of K4. On the other hand the frame ({0, 1}, {(0, 1), (1, 0)}) is weakly
1-transitive but is not transitive. Hence the axiom of K4 isnot vaid init.

Corollary 313 K¢...¢cKn+l4gcKndg...c K1L4¢ K4g K04

Proof: By Propositions 3.11 and 3.12 we have all the inclusions from |eft to right
except the last one. To havethisit isenough to see that the axiom of K0.4, ¢ — O,
is not atheorem of K4 but that O¢p — OOy isatheorem of K0.4.

Proposition 3.14  In the lattice of normal modal logics,

K=inf{Kn4:nec w).
Proof: If ¢ isnot atheorem of K then, since K hasthe finite frame property, thereis
afinite frame, say of cardinality n, on which ¢ isnot valid. But every finite frame of
cardinality n isweakly n + 2-transitive. Hence, ¢ is not atheorem of Kn+2.4.

We now study the relationship that holds between the logics Kn.4 and $4. It
happens that for n > 0 the logic Kn.4 is such that [n] has the properties of O
axiomatized in the system $4, that is. for every moda formula ¢ the formulas
[Nj¢ — ¢ and [n]p — [n][n]¢ aretheorems of Kn.4.

Consider the following well known trandation: to every modal formula ¢ asso-
ciate the modal formula one obtains when substituting systematically (Ov° A ¥°)
for the subformulas of ¢ of the form Oy, where v/° isthe translation of . Goldblatt
[2] provesthat for every model (W, R, v), every a € W, and every modal formula g,

(W, R, v) =4 ¢ if anonly if (W, RU AW, v) =4 ¢.

From this fact it can be easily concluded that a modal formulais a theorem of $4
if and only if its trandation is a theorem of K1.4. We generalize this fact to every
n > 1 by defining in each case an appropriate trandlation. To do it wefirst generalize
Goldblatt’'s lemma.
Given aframe (W, R) definetherelation Rn (n > 0) by

Rh=Ildy URU...UR",

and consider for each n > 1 the trandation (n) between modal formulas defined by
1™ s L
pj(n) is pj
(@ = ¥ ™Wise™ - y™)

(Cp)™ is[njp™.

We then have the following lemma.
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Lemma 3.15 For every n > 1, every model (W, R, v), every a € W, and every
modal formula ¢,

(W, R, v) =a ™ if and only if (W, Rn, v) Ea .

Proof: By induction on the construction of ¢. Itisobviousthat it holdsfor sentential
variables and for L. It is routine to see that if it holds for ¢ and it holds for
(¢ — ). We prove the only interesting case. Suppose it holds for ¢ and that
(W, R, v) = (@p)™. So, (W, R,v) =4 [nje™. If c € W and aRnc there is
j < nsuchthataRic. Sincea € v(@lp™), ¢ € v(p™). By inductive hypothesis,
(W, Rn, v) E=¢ ¢. Hence we conclude that (W, Rn, v) =5 Og. To prove the other
direction of the biconditional assumethat (W, Rn, v) =5 Op and that (W, R, v) Fa
(Op)™. Then thereism < n such that a ¢ v(dMp™). Let b € W be such that
aR™b and b ¢ v(¢™). By inductive hypothesis (W, Rn, v) Fp ¢. But, sinceaR™b
and m < n, aRnb. Therefore (W, Rn, v) £, Og contradicts the initial assumption.

Lemma3.16 For every frame (W, R), Risweakly n-transitive (n > 0) if and only
if Rnistransitive and reflexive.

Proof: (=) If (W, R) isaframe with R weakly n-transitive, since by definition Rn
is reflexive we have to show that R is transitive. It is enough to prove by induction
on n that

vk < nVa,b,ce WVj < n(@R/b A bRc — aRnc).

(«) If Rn is transitive and reflexive, it is trivial to check that R is weakly
n-transitive.

Proposition 3.17 For every n > 1 and every modal formula ¢, ¢ is a theorem of
S4if and only if ™ isatheoremof Kn.4.

Proof: (=) If ¢™ is not a theorem of Kn.4, let (W, R) be a weakly n-transitive
frame where ¢™ isnot valid. By Lemma3.15, ¢ is not valid in the frame (W, Rn).
But this frame is by Lemma 3.16 transitive and reflexive and hence an $4 frame.
Therefore ¢ is not atheorem of $4.

(<) If ¢ isnot atheorem of $4, let (W, R) be atransitive and reflexive frame
where ¢ isnot valid; it existssince $4 iscompl eterelative to the class of these frames.
Then, since Rnis R, ¢ isnot valid in the frame (W, Rn). Hence, by Lemma 3.15,
o™ isnotvalidin (W, R). But thisframeis aweskly n-transitive frame, and so ¢ ™
is not atheorem of Kn.4.

4 KnBandKn.4Blogics Inthissectionwestudy thenormal modal logicsK nB and
K n.4B obtained when onerespectively addstheaxiom ¢ — [n]{n)¢ tothe systemsK
and Kn.4. Thereason that explains the names given to these logicsisthat ¢ — O0g
is known as B. First of all we prove some syntactic lemmas. Afterwards we study
the Kripke frames of the logics mentioned. And finally we study the relationship
between the logics Kn.4B (for n > 0) and S5.

Proposition 4.1 The following logics are the logic Kn.4B:

(i) Knd+ (me — [){n)g
(i) Kn.4+ [nlg v n)=[nlg.
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Proof: (ii) isequivalent to (i) sincein K the formulas (n)¢ — [n]{n)p and [n]—¢ Vv
[n]—[n]—¢ are equivalent. (i) isequivalent to Kn.4B: on one hand, since (n)(n)p —
(n)g is atheorem of Kn.4; [n](n)(n)¢ — [n](n)g is aso atheorem of it, and since
(n)p — [n]{n)(n)¢p isatheorem of Kn.4B, (n)¢ — [n](n)¢ isalsoone. Onthe other
hand ¢ — (n)¢ isatheorem of K and so ¢ — [n](n)¢ isatheorem of (i).

Definition 4.2 We say that abinary relationon W, R, isn-symmetricif and only if
forevery a,b € W, if thereis j < n suchthat aR!b then there exist k < n such that
bR¥a.

Obvioudly R isn-symmetric if and only if the relation Rn defined in Section 3
issymmetric and if arelation R is symmetric it is n-symmetric.

Proposition 43 p — [nj(n)p isvalid in a frame (W, R) if and only if R is
n-symmetric.

Proof: (=) Assumethat p — [nj(n)pisvalidin (W, R). Assumethata,b € W,
that 3j < n such that aRIb and that Yk < n it is not the case that bRKa. Let ebea
valuation on (W, R) such that e(p) = {a}. Inthiscaseb ¢ e((n)p). Solet j < nbe
suchthat aR/b.j # 0 since on the contrary bRa. Hencea ¢ e([n](n) p). Therefore
a € e(p), and thisis not the case.

(<) If (W, R) isann-symmetric frameand eisavaluation onit thenif a € e(p)
anda ¢ e([n](n)p), let j <nandb € W besuchthat aR!b and b ¢ e((n) p). Since
R is n-symmetric, let k < n be such that bRKa. Sincea € e(p), b € e((n)p), and
thisis absurd.

The last proposition gives us that the Kripke frames for the logic Kn.B are the
n-symmetric frames and that the Kripke frames for the logic Kn.4B are the weakly
n-transitive and n-symmetric frames. In the next propositions we prove that KnB
and Kn.4B are complete relative to their classes of frames.

Proposition 44 For every n > 1 thelogic K 4+ ¢ — [n](n)¢ is canonical and
hence complete relative to the class of its frames.

Proof: Let (W, Re, &) be the canonical model for K + ¢ — [n]{n)p. We see
that R is n-symmetric. Suppose that u,v € W, and 3] < n such that uRlv.
Assume for a contradiction that VK < n it is not the case that vR'gu. For every
k < nlet ¢ besuch that ¢ € uand OKgx & v. Then gy A ... A ¢n € U. Hence
NN (@oA. .. Agp) € uanddl (NY (@ A. .. A@n) € U. Therefore (N)(@oA. .. A@n) €
v. Butforeveryi < n,0'(go A ... Agn) — O'¢i isatheorem of K. Hence
(N (o A ... Agn) = O V... vV Ol V g isalso atheorem of K. We conclude
that O"pn V...V O'g, V @, € v. Thereforethereisk < n such that OKgy € v, and
thisis absurd. Hence (W, R;) isaframefor K + ¢ — [n](n)¢. Asa consequence
thislogic is canonical and complete relative to the class of its frames.

Corollary 4.5 For every n > 1 thelogic Kn.4B is canonical and hence complete
relative to the class of all its Kripke frames (the weakly n-transitive and n-symmetric
ones).

Proof: By Propositions 3.7 and 4.4.
Next we will see that the logic of the class of frames that satisfy the condition
*) Vxy € W(x # y — 3j < nxRly)

isprecisely thelogic Kn.4B. To see it we first prove the following three lemmas.
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Lemma4.6 Inevery weakly n-transitive and n-symmetric frame (W, R), it holds
that:
vkyxy € W(xRy — 3j < nyR/x).

Proof. Obvious using Lemma 3.9 and n-symmetry.

Lemma 4.7 If (W, R) is a generated frame, then it is weakly n-transitive and
n-symmetric if and only if it satisfies condition (*) above.

Proof: (<) FromVYxy € W(x # y — 3j < nxRly) it follows that Yxy € W3j <
nxRIly. Fromthisweconcludethat theframeisweakly n-transitiveand n-symmetric.
(=) Assume that t is the generator of the frame. If x # y let k and | be such
that tR*x and tR'y. We havethatt # x ort # y. If t # x, let j < n be such that
tRIx. If y = t, yRIx. Hence by n-symmetry thereism < n such that yR™x. On
the other hand if y # t, let j’ < n besuch that tRi'y. By n-symmetry let j” < n be
such that yRI"t. Hence yRI"+ix. By Lemma4.6 thereism < n such that xR™y.

Lemma 4.8 If (W, R, &) is the canonical model for Kn.4B and u € W, the
subframe generated by u is weakly n-transitive and n-symmetric.

Proof: Let W be the domain of the subframe generated by u and R its relation.
If X,y € W and xR™'y then xRI"'y. Let j < n be such that xRly. Let
X, X1, ..., X}, y bean R; sequence. Sincex € W, Xy, ..., Xj € W. HencexRly. In
an analogous way it can be seen that the subframe generated by u is n-symmetric.

Theorem 4.9 Thenormal modal logic of the class of frames that satisfy the condi-
tion (*) above is precisely the logic Kn.4B.

Proof: Suppose that ¢ is not atheorem of Kn.4B. Let u be a possible world in the
canonical model for Kn.4B inwhich ¢ isfalse. Takethesubmodel generated by u. By
thelast lemmatheframeof thismodel isweakly n-transitive and n-symmetric. Hence
by Lemma 4.7 it satisfies the condition. By the theorem on generated subframes we
havethat ¢ isnot valid in aframe that satisfiesthe condition. Hence using Lemma4.6
we have the theorem.

In the next part of this section we study the relationsthat hold between the logics
Kn.4B, Kn+1.4B and K4B. First of all we prove alemma.

Lemma4.10 Everyweakly n-transitive and n-symmetric frameisa weakly n + 1-
transitive and n 4 1-symmetric frame.

Proof: Suppose that (W, R) is a weakly n-transitive and n-symmetric frame. We
know that it is weakly n + 1-transitive. To see that it is n + 1-symmetric suppose
that thereis j < n+ 1 suchthat xR}y. If j < n+ 1, by n-symmetry thereis j’ < n
suchthat yRI'x. If j = n+ 1, by weak n-transitivity thereis j’ < nsuchthat xRI'y.
Therefore by n-symmetry thereis j” < n such that yRI"x.

Proposition 411  For everyn > 0, Kn+1.4B ¢ Kn.4B.

Proof: The frame used in the proof of Proposition 3.11 is weakly n + 1-transitive
and n + 1-symmetric, but it is not weakly n-transitive. Hence [njp — O""! p isnot
validinit. Thereforethisformulaisnot atheorem of Kn+1.4B. On the other hand, as
we already know, the axiom of Kn+1.4 isatheorem of Kn.4B. Also by Lemma4.10
we know that every weakly n-transitive and n-symmetric frame is weakly n + 1-
transitive and n 4+ 1-symmetric. Since the logics we consider are complete relative
to their classes of frames we obtain the proposition.
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Proposition 4.12 K1.4B ¢ K4B.

Proof: Itisevidentthat ¢ — O(Q@ V) isatheoremof K4B. Andweknow that K1.4
isincluded in K4. On the other hand the frame used in the proof of Proposition 3.12
is symmetric and weakly n-transitive but it is not transitive. Hence the inclusion is
proper since these logics are complete relatively to their classes of frames.

Proposition 4.13
(1) fn#0,Kn4g Kn.4B.
(2) K0.4= K0.4B.
(3) K4B ¢ K0.4.

Proof: (1) Obvioudly the inclusion holds. To seethat it is proper let us consider the
frame with domain {0, .. ., n} and relation the defined by

iRjiff j =i+ 1.

Thisrelation is not n-symmetric since 0R1 but for every j < n it isnot the case that
1RJ0. Obviously the frame is weakly n-transitive. Since the logics are complete
relative to their classes of frames we get the desired result.

(2) isclear sincetheaxiom OB is¢ — ¢.

(3) The K0.4 frames are the ones whose relation is included in the identity. So
they are transitive and symmetric. On the other hand there are obvioudly transitive
and symmetric frameswhoserelationisnot included in theidentity. Sinceboth logics
are complete relative to their classes of frames we have the desired result.

We do not know if the infimum in the lattice of norma modal logics of the
collection of logics Kn.4B isthelogic K, but our conjectureisthat it is not.

The relationships between the logics we have been studying are summarized in
the next diagram:

..CKn+l4cKn4c...cK14 ¢ KAg K04

...CKn+14B ¢ Kn4B ¢ ...¢ K1.4B ¢ K4B ¢ K0.4B

To conclude this section the next Proposition states via trandations the relation
between the logics Kn.4B and S5.

Proposition 4.14  For every n > 1 and every modal formula ¢, ¢ is a theorem of
S5if and only if ™ is a theorem of Kn.4B.

Proof: (=) If ¢™ is not atheorem of Kn.4B, let (W, R) be an n-transitive and n-
symmetric framewhere o™ isnot valid. By Lemma3.15, ¢ isnot valid in the frame
(W, Rn). But by Lemma 3.16 and the observation made after Definition 4.2, this
frame is transitive, reflexive and symmetric, and therefore is a frame for S5. Hence
@ isnot atheorem of Sb.

(<) If p isnotatheoremof S5, let (W, R) beatransitive, reflexiveand symmetric
frame in which ¢ is not valid. It exists since S5 is complete relative to the class of
these frames. Since Rn is R, by Lemma 4.8 ¢™ is not valid in the frame (W, R).
Therefore o™ isnot valid in aweakly n-transitive and n-symmetric frame. Hence it
is not atheorem of Kn.4B.
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5 The finite model property In this last section we show that the logics Kn.4B
have the finite model property and hence the finite frame property.

Theorem 5.1 Thelogics Kn.4B have the finite model property, and therefore are
decidable.

Proof. Consider the canonical model for Kn.4B. Let ¢ be a formula that is not a
theorem of Kn.4B. Let u be a possible world in the canonical model on which ¢ is
false. Take the submodel generated by u, (W, R, e). By Lemma 4.8 it is a model
with a weakly n-transitive and n-symmetric frame. By Lemma 4.7 it also satisfies
the condition

(*) vxy € W(x # y — 3j < nxRly).

Consider now the filtration of this model by the finite set of subformulas of ¢ with
the greatest appropriaterelation R'([x]R'[y] if and only if thereisw € [x] and thereis
v € [y] such that wRv). Thismodel isfinite. By the theorem on filtrations ¢ isfalse
in [u]. Let us see that the frame of the filtration we have taken is weakly n-transitive
and n-symmetric. First we prove that it is weakly n-transitive. If [x]R™"![y] let
w € [x]and v € [y] besuchthat wRv. If w = v, [X] = [y]. If w # v, let ] < nbe
suchthat wRIv. Letw, x4, ..., Xj, v bean R-sequence. Then [w], [X,], ..., [Xj], [v]
is an R'-sequence. Hence, [x]R'1[y]. To conclude we see that it is n-symmetric. If
[X]R'I[y] forsomej <nand j =0, [x] = [y] and [y|R[x]. If j # 0, take w € [X]
andv € [y]. f w=v,[X] =[y]and[y]R°[x]. If w# vlet j” < n besuch that
wRI'v. By n-symmetry let j” < n be such that vRI"w. Reasoning as in the case of
the weak n-transitivity we have that [y]R'1"[x]. Therefore ¢ is not valid in a model
on afinite weakly n-transitive and n-symmetric frame, afinite model of Kn.4B.
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