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Well Ordered Subsets of Linearly Ordered Sets

HARTMUT HOFT and PAUL HOWARD

Abstract The deductive relationships between six statements are examined
in set theory without the axiom of choice. Each of these statements follows from
the axiom of choice and involves linear orderings in some way.

1 Introduction We consider the following six consequences of the axiom of
choice:

e CF: Every linearly ordered set has a cofinal sub-well-ordering.
e LFC: Ifalinear order has the fixed point property then it is complete.

e DS If alinear order has no infinite descending sequences then it is a well
ordering.

e LDF = F: Every linearly orderable Dedekind finite set is finite.

e PDF: VX, if P(X) is Dedekind finite then every subset B8{ X) which is
linearly ordered byc has a maximum element.

e DF = F: Every Dedekind finite set is finite.

Where the relevant definitions are

1. Apartially ordered setA, <) has theixed point property ( fpp) if every func-
tion f : A— Awhich satisfiegx < y = f(x) < f(y)) has a fixed point.

2. Apartially ordered setA, <) is completeif every subset oA has a least upper
bound.

3. A set A isDedekind finite if it has no countably infinite subsets.

4. If (A, <) isalinearly ordered set, th&€hC Ais acofinal sub-well-ordering of
Aif < well ordersC and

(Vae A)3ceC)(a<o)

The statemenDF = F is the best known of these weak forms of the axiom of
choice. Both Cantor and Dedekind asserted that it\trag.” Other historical details
can be found in]J. The statemenDSis frequently used in set theory with the axiom
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of choice to show that a set is well order&d [The statemen€F was studied by
Sierpinski ] and Manka []. Jech showed (see Problem 6.9 on page 95 offj)s [
that PDF is not provable in set theory without the axiom of choi€DF was also
studied in[B]. Hickman in E] considered.DF = F.

We show that in the theory ZFU (Zermelo-Fraenkel set theory weakened to per-
mit the existence of atoms) that

CF=LFC= DS= LDF=F = PDF

andthatDF = F impliesLDF = F. Further the following implications are not prov-
able in the theory ZFU:

LFC= CF, DS= LFC, DF=F = DS

CF= DF=F, PDF = LDF =F.

Our results are summarized in the following diagram. Numbers refer to refer-
ences, lemmas and theorems where the results are proved.

[1] 2.1 29 trivial
CF <& LFC <& DS =5 LDF=F <& PDF
3.3&3.4 35 3.6-3.9

CF—4 DF=F -4 DS
31 3.2

DF=F — LDF=F
trivial
This decides, in the theory ZFU, whether or Wots B is provable for evenA
and B chosen from our six consequencesAa.
Some of our independence results transfer to Zermelo-Fraenkel set tAéOry (
using the transfer theorems of Pincus. We can show that the implications

DF=F = DS, LDF=F = DF=F andPDF = LDF=F

are not provable irZF using these transfer theorems since the statenightsF,
LDF=F and PDF are injectively boundable. We refer the readefd@pfpr the de-

tails. Other independence results4iir, except those that follow directly from the
three above and known implications, are open problems. For example, we conjec-
ture thatZF ¥ DS— CF andZF ¥ DS— DF=F.

2 Thelmplications  The implicationCF = LFC is due to Davis]] who proved
LFC in the theoryZF + AC. An examination of the proof shows that onyF is
needed. The implicationsDF=F = PDF and DF=F — LDF=F are clear.
We prove:

Theorem 21 LFCimpliesDS
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Proof: Assumel FC and that(A, <) is a chain with no infinite descending sequen-
ces. LetC be any non-empty subset &, let B = C U {bg} whereby ¢ C and let
<* be the linear ordering oB defined bys <* tifand only if (sS;t e BAs<1t) or

t =bg. Thatis,(B, <*) is the linear ordering obtained froBby addingbg as largest
element. (B, <*) has fpp otherwise the sequendgby), @ (by), @ (by), ... is

an infinite descending sequenceg iy, <). By LFC, (B, <*) is complete. Therefore
(B, <*) has a least element which must bedeast element of.

Theorem 2.2 DSimpliesLDF=F.

Proof: AssumeDS and that(A, <) is a linear order wheré\ is Dedekind finite.
Then(A, <) has neither infinite descending sequences nor infinite ascending sequen-
ces. ByDS, (A, <) is a well order with no infinite ascending sequences which im-
plies thatA is finite.

3 TheModels In this section we construct several models of the thetify) for
our independence results. Given a moslélof ZFU + AC which hasA as its set of
atoms, a permutation mod®l of ZF A is determined by a grou@ of permutations
of A and a filterT" of subgroups of5 which satisfies

(Vae A)@H eI (VY € H)(¥(a) =a)

and
(V¢ € G)(VH e D) (yHy Lt e).

Each permutation of A extends uniquely to a permutatiod 0by € induction and for
anyy € G we identifyy with its extension. IfH is a subgroup o6 andx € M’ and
(V¢ € H)(¥(X) = x) we sayH fixes x. We will also use the following notation: If
E € AandH is a subgroup o then fixy (E) will denote{y» € H | (Yae E)(y(a) =
a}.

The permutation modeé¥l determined byM’, G andI" consists of all thos&
M’ such that for every in the transitive closure of, there is soméd € I" such that
H fixesy. Werefer the reader to page 46 E for a proof thatM is a model ofZF A.

Theorem31 ZFU'/CF — DF=F.

Proof:  For this argument, we use the basic Fraenkel model describEg. ie
describe this model brieflyA is a countable se is the group of all permutations
of Aand

I'={H | 3E C A)(E s finite and fixx(E) € H}.

In this modelM, Ais an infinite, Dedekind finite set (see problem 4 on page 92pf |
ThereforeDF=F is false. Also, inM, every linearly ordered set is well-orderable
[3]. It follows easily from this that every linearly ordered set has a cofinal sub-well-
ordering inM.

Theorem3.2 ZFU}/ DF=F — DS
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Proof: Let M’ be a model oZFU + AC with a countable sef of atoms ordered
by < so that(A, <) has the order type of the rationals. L@tbe the group of all
order automorphisms oA and letl” be the filter of subgroups @ generated by the
support groups fig(E) whereE ranges over subsets éfthat satisfy the following
three conditions:

1. The setE is well ordered by<.

2. The setE is bounded in the ordering on A.

3. Ifb:a — Eisanorder preserving bijection from an ordinadntoE andi < o
is a limit ordinal then{b(y) : y < A} has no least upper bound in the ordering
(A, =). (Thatis, if we identify( A, <) with the rational numbers then the least
upper bound ofb(y) : y < A} isirrational.)

(We note that any order preserving permutation of a well ordere& setst fix E
pointwise hence fig(E) = {¢ € G| ¢ fixes E pointwise}.) Since the union of two
subsets ofA satisfying (1), (2) and (3) also satisfies (1), (2) and (3), every group in the
filter contains a group of the form f(E) whereE satisfies (1), (2) and (3). Therefore

if we let M be the model determined by the filiéyfor everyx € M there is a subset

E of A satisfying (1), (2) and (3) such that

(Vo € fixg(E)) (9(X) = X).

When this happens we s&yis a support ok.

We show thatDSiis false inM by showing (by contradiction) thatA, <) has
no infinite descending sequencesMn Assume thatE is a support of an infinite de-
scending sequend€n, a,) | n € w} of elements ofA. Then

(*) (Vo efixg(E)(Vn € w)(p(an) = an).

SinceE is well-ordered by there is at least ories w such that; ¢ E. Condition (3)
insures that there are two elemeetsande, of A such thaty; is in the open interval
(e1, &) and(eg, &) N E = @. Wecan now obtain a one to one, order preserving func-
tion from (e, &) onto (e, &) which movesy; (since(ey, &) is order isomorphic to
the rationals). This can be extended to a permutatiohA which fixesA — (e, &)
pointwise. The permuatiop therefore moves; and fixes E, contradicting«).

DSis false inM since(A, <) is an infinite linear order with no infinite descend-
ing sequences ivl.

Wewill show DF=F in M by showing that every infinite set M has an infinite
subset which is well-orderable M. AssumeX in an infinite set in M. SinceX is in
M, there is some subs&tof A such that for every in fixg(E), ¢(X) = X and such
that E satisfies (1), (2) and (3). If fix(E) fixes every element oX, then X is well
orderable inM and we are done. We may therefore assume that therg ¢4 and
apermutationyg € fixg(E) such thatpg(y) # y. SupposeE’ is a support ofy such
thatE € E’ and letF = E' — E.

Asin (3) assumd is an order preserving bijection from some ordiaanto E.
We will use the ordinals< « to index the intervals iA, <) determined by the sdéi
as follows: For O< n < a,

I, ={ae A: (VB <n)(b(B) <ana< b))}
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And
ly ={ae A: (V8 < a)(b(B) < a)}.

Eachl, is an interval (in the sense thataf < a, < az anda; andag are inl,, then
azisinl,) and the set of intervald,, : 0 < n < «} is a partition of A—E. Further by
properties (1), (2) and (3), each of the sktss non-empty.

Temporarily fixn, 0 < n < «, and letF, be the intersection of the support of
y with I,,. Thatis,F, = I,n F. Sincegyg is in fixg(E), ¢o(F,;) < |,,. We claim that
there are two elemensg andt,, of I, such thatF, U ¢o(F;,) € (s,, t,). (Here(s,, t;)
denotes the open interval in the orderif¥y, <).) The argument, which is omitted,
uses the fact thd andE’ satisfy property (3), the fact that the ordek, <) is dense
and (ifn = o) property (2) ofE’. Let (aj, c}). (a].c]). ... be a sequence of open
intervals in the orderingA, <), each contained i, and chosen so that

ty<aj<cj<al <cf <...<bn)

and so that the s¢#(, ¢/, a], ¢/, ...} has no least upper bound (A, <) (and in ad-
dition if n = « we require thafa], cj, a], ¢/, ...} be bounded). Finally, for each
i € , let ¥ be an element of fig(E) such thaty fixes A — I, pointwise, and
vil((s). 1)) = (@', ¢).

Now we combine the permutatioglg, 0 < n < «, for eachi € w: For each € ,
let ¢ be the element of fix(E) that agrees withy’fi” onl,foralln,0<n<a. The
permutationy; thus defined is in fig (E) and therefore fixeX. Henceyi(y) € X
for eachi € w. Furthery;; (F) U E is a support off; (y) and

vi(F < | @.gh.

nea+1
We also claim:

A Uie, ¥i(F) satisfies (1), (2) and (3). (From which it follows that the{glt(y)
i € w} is well orderable in M.)

B: Foralli, j € w,i # j implies ¢i(y) # ¥(y).(From which it follows that
{¢¥i(y) 1 i € w}is infinite.)

We outline the proof ofB: There is an element* of fixg(E) such thatp* agrees
with o on F and such thap™ is the identity outside ofJ, ., 1(s;, t;). This uses
the denseness of the ordering Arand the fact thaF andgg(F) are both subsets of

Un€a+1(s'7’ t’))'
Thereforep™(y) = ¢o(y) # Y. For each € w, let

o =viogptoyit
theng;" is the identity outside dfJ, ., , 1 (&, ¢). Therefore forj # i, ¢ restricted to
U, ear1(@], € is the identity. So foij # i, ¢ fixes the supponyj (F) U E of ¥ (y)

|
pointwise and hence fixas;(y). On the other hand

OF (Wi (V) = Vig* ¥ i (Y) = Yig*(Y) # i(Y)

sinceg*(y) # Y. Sincey; movesy;(y) and fixesy;(y) we conclude that/; (y) #
vi(y).
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Theorem 3.3 ZFU}/LFC — CF.

Proof: Let M’ be a model oZFU + AC with a countable sef of atoms. For the
construction of the mode¥l we will assume thah: w x Z —> Ais one to one and
onto so that

A={a,])|ieonje’}

wherew is the set of natural numbef8, 1, 2, ...} andZ is the set of integers.

For each € w let i : A — A be the permutation defined h¥; (a(, j)) =
a(i, |+ 1) andysi(ack, j) = a(k, j) for k £ i and letG be the group of permutations
generated by v | i € w}. We note that eacly € G is an order automorphism of
(A, <) where< is the ordering oA induced by the lexicographic ordering ernx Z,
thatisa(i, j) < a(m,n) ifand only ifi < mor (i = mandj < n). For each finite
subsetE C wwe letGe ={y e G| (Vi e E)(Vk e Z)(y(a(i,k)) =a(i, k) }. Tis
the filter of subgroups d& generated by the grou@: whereE ranges over the finite
subsets ofv. M is the permutation model determined by G dhd

The linear ordering A, <) defined above is iM since it is fixed byG. It is
also the case thath, <) has no cofinal-sub-wellordering M since noH e I" fixes
acofinal subset of A, <) pointwise. Therefor€F is false inM.

We now argue that. FC is true inM. First note that the linear orderind\, <)
does not have the fixed point propertyihsince the functiorf defined byf (a, j))
=a(, j+ 1) is order preserving, has no fixed points and is fixe®tand is therefore
in M.

Now let (C, <) be any linear ordering iM. We will assume thatC, <) is not
complete inM and construct a fixed point free order preserving function ft@n<)
into (C, <) which is in M. Since(C, <) is not complete there is some subBet C
with B € M and such thaB has no least upper bound. We assume without loss of
generality thatB is closed downward (i.e(vc € C) ((3be B)(c < b) - ce B).)

It follows that if we letD = C — B, thenC=BUD, (Yvbe B)(vde D)(b=<d), B
has no least upper bound aBdhas no greatest lower bound. LEEbe a finite subset
of w such that for ally € Gg, ¢ fixes (C, <), BandD.

Lemma3.4 M contains a fixed point free order preserving function on B and a
fixed point free order preserving function on D.

Proof: Wewill prove the lemma foB. The proof forD is similar.
Wefirst partition B into two sets:

Br ={be B (Yo € Ge)(¢(b) =b)}

and
Bm ={beB| (3¢ e Gg)(p)#b}.

Casel. Bgiscofinal in(B, <). Inthis case, sinc8g is well-orderable in M (not
necessarily by), (Br, <) has a cofinal sub-well-ordering without greatest element
which we call(Br, <). Inthis case the functiori : B — B defined by

f(b) = the least element of B whichis> b

is a fixed point free order preserving function on B.
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Case2: For somebg in By, (Vb € B)(bg < b — b € By). We first note that for
eachb € By, only finitely manyys, i in w — E, moveb. (If E" is a support ob then
nov; fori ¢ E' movesb.) Choose, for each € By, apermutationy;, from the set

(Yiliew—E}U{yit|iecw—E}

so thatn,(b) is as large as possible in the orderirgn B.

Now we claim that ifo € By andg € fixg(E), thenny(¢(b)) = nywm) (¢(b)).
It is clear thaty, (¢ (b)) < nym) (¢(b)). Suppose thai,(¢(b)) < nym) (¢(b)), then
e(np(b)) < @(n,mw) (b)) since G is abelian. Thereforg(b) < n,w) (b) which con-
tradicts our choice ofy,. This proves the claim.

Now we define a functiog : B — B by

(b ifbeB
g(b)—{ no(b) if be By

Note that forb € By, b < g(b) since some/; must moveb and if v (b) < b then
b < ¥ 1(b).

We show thatg € M by showing that for alp € fixg(E) and for allb € B that
¢(g(b)) = g(p(b)). This is clear ifb € Bg since for sucth, b = ¢(b) = g(b). If
b € By then:

@(g(b)) = @(np(b)) = np(e(b)) = neyw) (9(b)) = g(e(b))

where the second to last equality uses the claim proved above.

We showg is order preserving ofB, <). Assume thabq, b, € B and thato; <
b,. If by andb, are both inBg, theng(b;) = b; < by, = g(by). If b; € BF andb, €
Bwm theng(by) = by = np, (b1) < np,(b2) = g(by). Similarly if by € By andb;
Br, g(by) < g(by). If by andb, are both inBy theng(by) = ny, (b1) < np, (b2) <
nb, (02). The functiong has fixed points iBr # &. To get the fixed point free, order
preserving functionf on (B, <) we definef by

bo Ifb-<bo

f(b):{ g(b) if b by

It follows from our assumptiofib € B | bg < b} € By and the fact that fob € By,
b < g(b) that f is fixed point free. It also follows, sinagis order preserving, that
is order preserving. Finallyf is in M since it is definable frong, (B, <) andbg all
of which are inM. This completes the proof of the lemma.

The proof of Theorem 3.3 is completed by combining the fixed point free order
preserving functions on B and D to get a fixed point free order preserving function on
C.

Theorem35 ZFUl/ DS— LFC.

Proof: Let M’ be amodel oZFU + AC with a set of atom#\ and an ordering: on
Asuch that( A, <) is order isomorphic to the real numbers with their usual ordering.
Let G be the group of all order automorphisms(éf, <) and let

I'={H | Hisasubgroup o6 A (FE C A)(E boundedA fixg(E) C H}.
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M is the model determined byl’, G andT". If z€ M then there is some bounded
E C Asuch that for all € fixg(E), ¢(z) = zand as in the proof of Theorem 3.2 we
will call such anE asupport of z.

We first argue that inM, (A, <) is a witness to the failure diFC. The linear
ordering(A, <) is clearly not complete sinca& has no largest element. To show that
(A, <) hasthe fixed point property i assume that : A— Aisan order preserving
map onA which is in M. Suppose thaf has supporE C A. We may assume that
E = [a, bl—some closed bounded interval in the order{y <). If f has a fixed
pointwe are done. Otherwise foreverg A, f(x) mustbein§, b]. (If f(x) ¢[a, b]
then, sincex # f (x), there would be an elemeatof fixg ([a, b]) such thatp(x) = x
bute(f(x)) # f(x). This would mearw(f) # f contradicting our choice of] b]
as a support off.) This means thaft|[a, b] : [a, b] — [a, b]. Since([a, b], <) isa
complete linear ordering iM” where AC holds, f|[a, b] has a fixed point which is
also a fixed point off in M.

To argue thaD Sis true inM, let (X, <) be a linear ordering it which is not
a well ordering. We will show that ifM there is a sequengg;);<., of elements oiX
such thatVi € w)(Yi11 < ¥i). Let E =[a, b] be a sipport of (X, <). Choosec andd
in Asothatc < a < b < d. Our plan is to find an infinite descending sequepge
y1 > Y2 --- of elements ofX such that eacly; has a support contained iq [d] (from
which it will follow that the sequencéy)ic., is in the modelM.) More specifically,
let (S)icw and(t;)ic,, be two sequences of elements of A satisfying

C<- << <H<a<bctmz<ti<th<---<d.

We will constructy; so that it has supporsi, ti].

The construction is by induction on the subsciipto constructyy, choose any
elementzy € X and assume thasy, t;] is asupport ofzo which contains¢, d]. There
is ago in fixg([a, b]) such thaip([s), ty]) = [So. to] and welet yg = ¢o(2o). It fol-
lows that [, to] is asupport ofyq.

Assume thaty; has been defined satisfying € X, y; has supportg, t;] and
yi < yjforall j e w, j <i. The elemeny; is notleast inX therefore we can choose an
elementz,; € Xsuchthay 3 < yi. Assumethat{_ ,, t/ ,]isasupportofz ; con-
taining [c,d]. There is @1 € fixg([si, ti]) such thatpi 11 ([ 1, t/ 1] = [Si+1, tisa]
and we lety; ;1 = ¢j11(z11). Clearlyy;,1 € X and has suppors], 1, tj1]. Further

Vit1 = ¢i+1(Zir1) < @i (Vi) =i

where the middle inequality holds becayse; fixes [a, b] pointwise and therefore
fixes <. This completes the proof of Theorem 3.5.

Theorem 3.6 ZFU '/ PDF — LDF=F.

Proof:  For the construction of the permutation model we begin with a mbHelf

ZFU + AC with a countable seA of atoms and an ordering of Asothat(A, <) has

the same order type as that of the rational numbers. We assumgithtite disjoint
union A= D; U D,U D3 of three dense subsdis, D, andD3. Welet G be the group

of all order automorphismg of A such thatp(D;)=D;, i = 1, 2, 3. The argument

we give below will require the existence of several types of permutations in G. For
example:
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Lemma 3.7

A If E;, FL € Dyq, E;, / C Dy, E3, F3 C D3, Ej and F arefinitefori =1, 2
and3and o : (E;U E; U E3) — (FLU F U F) isone to one, onto, order
preserving and satisfieso(E1) = Fy, 0(E2) = F»> and o(E3) = F3 then there
isag e Gsuchthat ¢|(E; U E; U E3) = 0.

B: If (a,b) isaninterval in (A, <) and v is a permutation in G which satisfies
(a,b)Uy((a b)) C (u,v)andifs; < u< v < sy thenthereisay’ € fixg(A—
(s1, S»)) which agrees with v on (a, b).

Lemmas of this type can be proved by the back and forth construction used to
prove that any two countable dense linear orderings without first and last element are
order isomorphic.

We will call a subsetE of A asupport if it satisfies the following conditions:

1. EN Dy is finite.

2. EN Dy is well ordered by<

3. If b: a — EN D5 is an order preserving bijection from an ordinabnto E N
D, andA < « is a limit ordinal then the least upper bound{df(y) | ¥ < A}
in (A, <) exists and is irD3.

I is the filter of subgroup#i of G such that for some suppdg, fixg(E) € H
andM is the permutation model determined by, G andTI".

If Eis asupportthen for evetye D4, aslong ast is not in the finite seEN Dy,
thereis ap € fixg(E) such thap(t) #t. It follows that no well ordering of an infinite
subset oD, isin M. Therefore(Dy, <) is alinearly ordered, Dedekind finite, infinite
setinM henceLDF=F is false inM.

Now let X be any non-empty set iM. We will show that if P(X) is infinite in
M then?(X) is Dedekind infinite inV from which it follows thatPDF is true inM.

Assume thatP(X) is infinite. It follows thatX must be infinite. IfX is well-
orderable irlM thenP(X) is Dedekind infinite and we are done. We therefore assume
that X is not well-orderable irM. Let E be a support oK.

Lemma3.8 ThereisasubsetY C X such that

1. @y efixg(E) W (Y) #Y)
2. Y hasasupport E’ suchthat E' — E C D».

Proof: SinceX is not well-orderable irM there is an elemente X such thaBg e
fixg(E) with ¢(t) # t. Assume that has supportd’ © E and letH = H' — E. Let
HN Dy ={dy,dy, ..., dy} and supposéd’ is chosen so thatl N D; has minimum
cardinality.

If HN Dy = @, then takingY = {t} andE’ = H’ satisfies the lemma. Il N
D; # @ then (by minimalityH¢’ € fixg(E) such thaty’ € fixg(H N Dy) andy’(t) #
t. Let b be a bijection for an ordinat onto (H N D,) U E so thattHN D) UE =
{b(y) | y < a}. This is possible by condition (2) in the definition of support. For
eachy < « let

l,={ae Al (¥VB<y)cg<a<c,}
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and let
le={aec Al ¥y <a)(c, <a)}.

Thel, for y < « are the open intervals iPA, <) determinted by the seH N D) U E
and therefore
A—((HNDyUE) =] 1,.

Y=«

It follows thatH N D; < (Uyga Iy). We also note thap'(l,) = I,.

SinceH N D; is finite there are only finitely many < « for whichHN Dy N
|, # @. For each suclr we carry out the following construction. Letn D, N |, =

{d}l’,...,df(’y} then for each, i = 1,2,...k,, ¢'(d") € I, N D;. Chooses] < s,
inl,NDysothatfori=1,2,...,k, s <d' < ands] < ¢/(d") < s). Using
Lemma 3.7, we now chooseyg, € fixg(A— I,) suchthatfoi =1,2,...,k,, s} <
¥, (s)). This will insure that

Y, NS < NS < 8 < S) < Y (8)) < ¥y (sh)
andthatfoi =1,2,...,k,,
v, NS <yt < v N, v NE) < v e dD) < v (s

Yy () < ¥, (d) < ¥y () and iy (s)) < ¢'(d)) < ¥, (S)).

By Lemma 3.7, there is &)  fixg (A— (s].s})) such that fori = 1,2,....k,,
¢ (dl) = ¢'(d), where(s], s}) denotes the interval i0A, <).
The above construction was carried outfdor which I, N HN Dy # @. Now
we let
E’=(HmD2)UEU{sJY |1,NHND1#@,j=1or2}

and letY = {o(t) | o € fixg (E’) }. Weclaim thatY andE’ satisfy the requirements
of the lemma. Clearlff’ — E C D,. Alsoiif 5 € fixg(E’) thenp—! € fixg(E’) so that
bothn(Y) C Y andn~1(Y) C V. It follows from the second inclusion that< »(Y)
and we therefore can conclude that= n(Y). This shows thaE’ is a support ofY
and hence condition (2) of Lemma 3.8 is satisfied.

We must now show that there isjac fixg(E) such thaiy(Y) # Y. Lety be the
composition of the permutations, such thatl, " H N D1 # @. (There are finitely
many such/,,, and they move disjoint sets so the order in which they are composed
does not matter.) Since eagh € fixg(E), ¢ € fixg(E). Similarly, let¢” be the
composition of the permutations, defined above for ordinalg such that, N H N
D; # @. Sinceg” andg’ agree onH’ (a support ott), ¢ (t) = ¢'(t) # t. We will
show thaty(Y) # Y by showing that/(t) ¢ Y.

By our definition ofY this amounts to showing that for everye fixg(E’), o (1)

# Y (t). Assume that € fixg(E"). We will show thato (t) # v (t) by showing that
the permutationy¢” 1 movesy (t) but fixeso (t). The first part we prove by con-
tradiction: Assumaelre” Y 1(y(t)) = ¥ (t), it follows thaty” (t) = t which we have
shown to be false. For the argument thiat’v (o (t)) = o(t) we note that for

eachy such that, N HN Dy # &, {d”, e df(’y} is a subset of the intervg$}, s))
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ando fixes boths] ands}. Therefore{o(d{), o o(d{y)} C (s}, ). Weconclude

thato(H) € J{(s].s)) | I, N HN Dy # @}. Sinceo(H) U E is a support ob (1),
any permutation in fig(E) that fixes{J{ (s}.s)) | I, N HN D1 # &} pointwise,
fixes o(t). But for each y such thatl, " H N Dy # @, ¢’ fixes
(v, 1(s)). ¥, 1(s))) and thereforayy”y ! fixes (s}, s)). This completes the proof
of Lemma 3.8.

Lemma 3.9 If X hasa subset satisfying the conditions of Lemma 3.8 then P(X) is
Dedekind infinite.

Proof: AssumeY C X satisfies conditions (1) and (2) of Lemma 3.8 andHet
E’ — E C D,. As inthe proof of Lemma 3.8 we assume thas an order preserving
bijection from an ordinad onto E. Then E = {b(y) | y < o}. We also defind,, for
y < « as in the proof of Lemma 3.8. For eaeh< y, |, is an interval with right
endpointb(y) € E and left endpoint irE U D3. (We denote the left endpoint df,
by b~ (y).) It follows thatF < J,_, I,

Fix y < a. By our assumption there are elemesgtﬁnds’z” of D, such that

b™(y) <s] <a<s) <b(y)

forallae FN1,. (The set- N1, has aleast element by (2) in the definition of support
and if F N I, has no greatest element then by (3) in the definition of support, the least
upper bound o N 1,, is in D3 and is therefore< b(y).) In addition (and for similar
reasons) we may assume tefit< a < s, forallae w(F) N 1,

By Lemma 3.7 B there is a permutatigh € fixg(E) such that

v e fixg (A— UIEE s§)>
y<o
andy’(a) = y¥(a) forallae Fn (ina Iy). Since v andy’ agree on a support of
Y, we havey’(Y) = ¢ (Y) # V.
For each < @ choose a sequence of interv{a(igf, qiy))iew inthe ordering A, <
) and a point,, € A so that

S<r<g<ry<g<--<t<by @
sup{r/ licw}=sup{d/licw}=t, (2)
r/ andq € Dy fori € (3)

t, € D3 4)

By Lemma 3.7 A, for eache w there is a permutation’ € fixg (A — 1,) such that
n!(s)) =17, n’(sy) =g andy! fixes the interva[ri;1, b(y)) pointwise.
For each € w letn; be the composition of the permutatiogjsfor y < . Since

for eachy < «, 5/ is the identity outside of,, we haven;(x) = »/(x) for all xin
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l,. LetY; = ni(Y). Sincen; fixes X andY e P(X), we haveY; € P(X). Further,
since Y has suppofE U F andp; fixes E pointwise); has supporE U 5;(F). We
will complete the proof of Lemma 3.9 by proving the following two assertions:

Vi jew)(i#] = Y £Y) (5)

J(Euni(F)) is asupport. (6)
icw
From (5) it follows that{ Y; | i € w} is infinite and by (6) it follows that Y, | i € w}
isin M and is well orderable iM.
For the proof of (5), assuniej € w and thati < j. The permutationynp/ni—l
fixes Y; = n;j(Y) since the supportE U n;(F) of Y; is contained inE U

(nya L b(y))> which v/’ andn; both fix pointwise. On the other hand, the equa-
tion niv/n1(Yi) =Y is equivalent to

niy 0 i (Y)) = ni(Y)

which in turn implies the contradictiop’ (Y) =Y. Sincenn//ni‘l fixesY; and moves
Y we conclude thaY; # ;.

For the proof of (6), leS= ., (EUni(F)) = EU (Ujc, ni(F)). We ague
that Ssatisfies the three conditions in the definition of support which follows Lemma
3.7. First note thalf C Dy, hence foii € w, i (F) C D,. ThereforeSNn D, =END;
which is finite since E is a support.

For the argument that S is well ordered $be a non-empty subset of S. If the
least element 0§ N E is least inS' then we are done. Otherwise lebe the least
ordinal such that, N S# @. Thenz # SN 1, = SN (Ui, (r. d)). Leti be the
least natural number such th&tN (r”, q”') # @. Then

g#Sn(rl.q)=nF)Nl,.

Since F is well ordered by, n; (F) is also well ordered by. If welet ¢ be the least
element ofyi (F) N 1, thenc is the least element &.

It only remains to show that iy : A — Swherew is one to one and order pre-
serving and\ is an ordinal, then the least upper bound af(8) | 8 < A} is in Da.
We prove this by looking at several cases.{1i(8) | 8 < A} has a cofinal subse-
guence inE then, sincekE is a support, the least upper bound{ef(8) | B < A} €
Ds. If {w(B) | B < A} has no cofinal subsequencelnthen we may assume that
{wPB) | B<r}C ina . If there is a limit ordinak’ such that

vy <) ({w) B <IN, #2)

and{w(pB) | B < A}N |l = &, then the least upper boundfob (B) | B < A } will be
the same as the least upper boundlafy) | y < A’} which is in Ds.

The only remaining possiblity is that there is a largest « which is such
that{w(p) | B<Ar}Nl, # . Since{w(B) | B<r} S S{wB)IB<r}Nl, <
Uico (r7. dF). If the set{ j | (r/, q') N{w(B) | B < 1} # &} is infinite then

lub{w(B) | B<r}=Ilub{r/|icw}=t,eDs
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by (2) and (4). Finally, if there is a largessuch tha(r?, o) N {w(B) | B <1} # @
thenn 1 ((r7, o) N{w(B) | B < 1}) € F and sinceF is a support the least upper
bound ofn 2 ((r”, q) N {w(B) | B < A}) is in D3. Sincen; € G we conclude that
the least upper bound ¢, o) N {w(B) | B < A} isin Da.
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