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Topological Structure of Diagonalizable
Algebras and Corresponding
Logical Properties of Theories

GIOVANNA D’AGOSTINO

Abstract  This paper studies the topological duality between diagonalizable
algebras and bi-topological spaces. In particular, the correspondence between
algebraic properties of a diagonalizable algebra and topological properties of
its dual space is investigated. Since the main example of a diagonalizable al-
gebra is the Lindenbaum algebra of an r.e. theory extending Peano Arithmetic,
endowed with an operator defined by means of the provability predicate of the
theory, this duality gives the possibility to study arithmetical properties of the-
ories from a topological point of view. We find topological characterization of
31-sound theories and of sentences thabare€onservative over such a theory.

1 Introduction The equational class of diagonalizable algebras was introduced in
the 1970s in order to study properties of arithmetical theories from an algebraic point
of view.

Definition 1.1 A diagonalizable algebra is a pair(D,o ), whereD is a Boolean
algebra with operationg, T, A, —, v, ando is a map fromD to D satisfying the
following identities:

1.oT=T,

2.0(anb)=canob;

3.o(ma— a)=nuoa;

where, as usuad — bis—aVv b. The operator defined asa = —o—ais also used,
and in this case a diagonalizable algebra is considered to be éaij.

The main example of a diagonalizable algebra is the Lindenbaum al@gbra
of an r.e. theoryS extending Peano ArithmetiPA, with theo defined as [p] =
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[Theors (P)]. Here [p] denotes the equivalence class of the sentgneéh respect
to provable equivalence i, while Theor g (x) is the provability predicate d&.

Many results prove the class of diagonalizable algebras to be adequate for the
study of arithmetical theories: among them, we recall that, according to Solovay'’s
Theorem, the diagonalizable algebrafA generates the variety of diagonalizable
algebras. Besides, a recent result of Shavrukov (see Shavii@pshows how the
algebraic structure is sensitive to the change of the base theory, e.g., the diagonaliz-
able algebras oPA and ZF are not isomorphic (while they can be recursively em-
bedded each one into the other).

During the 1980s, the topological duality between Boolean algebras and Stone
spaces was extended to diagonalizable algebras. First, Esakia proved that if a topo-
logical spaceX is scattered (i.e., every nonempty subseXofontains an isolated
point), we get a diagonalizable algebra by defining the operatmm the Boolean
algebraP(X) as the derived set operatdrof the topology; moreover the class of
these “topological” algebras generates the whole equational class of diagonalizable
algebras. Later, Abashidze showed that the ordiffalith the interval topology is
generic in the class of diagonalizable algebras (see Abashidze and B3 akid plso
Blass []).

A duality is obtained as follows. Given a diagonalizable algelwac), con-
sider the Stone spa¢®*, T) of the underlying Boolean algebra (as usual, the clopen
sets of the Stone space are identified with the elemeriiy.oOn this space define a
relation R as follows: xRy iff the ultrafilter x contains the sgva/a € y}. Wecall R
the dual relation of D, <) and for each clopen satof the Stone spaceD*, T), the
clopen seba equalsR—1(a) (see Magari]]).

Definition 1.2  From now on, the word “clopen” always refers to a clopen set in the
Stone topology.

Let us consider in particular the Stone spacd®eh. Here, ultrafilters can be
identified with complete theories extendiRg, and the relatiorR has a logical mean-
ing: xRy iff the theoryx proves the consistency of all the theoriea + a for each
sentencea belonging to the theory. Note that an ultrafiltex is reflexive (with
respect to the relatioR), iff the complete theory proves the reflection principle
Theor pa(a) — afor each sentenca

To obtain a topological duality for diagonalizable algebras, qiize>) is given,
define a new topology in the Stone spacB®* by considering as open sets tRe
hereditary sets (i.e., the subsétof D* with the property thak € H andxRy imply
y € H); in this topology, the interior of a clopep s given by the sep Ao p. The
topologyT turns out to be relatively scattered with respect to the Stone topology, that
is, each clopen set ifi contains an isolated point in the topology It can be proved
that the “topological” diagonalizable algebra, obtained by considering the clopen sets
with the derived set operatdrof the T-topology as>, isisomorphic to the diagonal-
izable algebra(D, ¢) (see Bernardi and D’Aquin@]).

In this paper, the correspondence between algebraic properties of diagonalizable
algebras and topological properties of the dual space is investigated. By restricting
this study to the case of diagonalizable algebras of theories, we find topological char-
acterization o2 1-sound theories and of sentences thabareonservative over such
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atheory (see Corollafg.Sland Theorerfi.3).

In order to prove these results in full generality we recall the definition of net; we
note that this definition would be unessential if we were dealing only with diagonaliz-
able algebras of theories, because in this case the topdlofithe dual space would
be second countable and the definition of sequence would be enough to describe the
properties of the topology.

Definition 1.3 A directed systemis a setStogether with a transitive relatiors,
such that, if, 8 € S, there is ay € Swith @ <sy andg <sy.

Definition 1.4 A netis a map from a directed syste®&into a topological spac.
We write x, for the value of the net at and (X, ).cs for the net itself.

Definition 1.5 A net (X, )qcs is said toconverge at x € X if for each open se©
containingx there ise € Ssuch thatxg € O if o <g B. Inthis case we calk alimit
point of the net(x,)qcs. If the topologial space is not Hausdorff, it is possible for a
net to converge to more than one point.

Definition 1.6 A net(yg)geT is asubnet of a net(x,)q4es if:

1. there is a map on the directed syste with values inSsuch thatyg = X,
foreachg e T,
2. foreachx € Sthere is 8 € T with the property that, iB <1 8, thena <s ¢f'.

We may describe a topological spaXeby using nets; in fact, a subsétof X
is closed iff it contains all limit points of nets with values@ while a pointx is a
cluster point for a subséf iff there is a net inY — {x} that converges ta. We also
recall that compact spaces are exactly those topological spaces in which every net has
aconvergent subnet.
Let D be a diagonalizable algebra. The 8g8tof all ultrafilters of D, endowed
with the Stone topology and with the topologydescribed above, is called the dual
space of the diagonalizable algelba If Ris the dual relation oD*, then the fol-
lowing proposition is proved in D’Agostingy:

Proposition 1.7  Let x, y be elements of D*. Then

Va e S Xy # X
XRy iff thereisa net (X,)qes such that (%) — Xinthetopology T
(X¢) — yinthetopology T.

In particular, an element x of D* isreflexiveiff thereisa net of elements different from
x that convergesto x inboth T and T.

We recall that a diagonalizable algetras said to bev-consistent (see Magari
[6]) if T L, andoa= T impliesa=T.

From the dual point of view, it is easy to see that an algebadsnsistent iff
R~1(x) # @ for each pointx in D* (for a logical counterpart ab-consistency, see
Propositior2.2).

In D’Agostino [4] the following proposition is proved:

Proposition 1.8 D isw-consistent iff D* istheonly T-open set containing the set
of reflexive points.
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2 Firstresults A diagonalizable algebrB is said to possess tlolésjunction prop-
erty (seelp]) if cavob =T impliesca= T orob =T (equivalentlyop A ¢qis
different from_L if ©p, ¢q are different fromL).

D is said to have thetrong disunction property (see []) if it is w-consistent
and has the disjunction property, thatia,vob = T impliesa= T orb =T (equiv-
alently,oa A obis different from_L if both a andb are different fromL). In the class
of diagonalizable algebras tleconsistency and the disjunction property are inde-
pendent from each other, as one can see by considering the following:

Example2.1 The direct product x F of a free algebr& (for instance on the
empty set) with itself iso-consistent but does not have the disjunction property, while
any finite algebra with the disjunction property (e.g., any finite diagonalizable algebra
whereoa = T for all @) is hotw-consistent.

The situation is different if we consider diagonalizable algebras of theories,
where the following holds:

Proposition 2.2 (See ShavrukoW]) Sis X;-sound iff the diagonalizable algebra
Dsisw-consistent iff Dg has the strong disjunction property.

We first intend to characterize the disjunction property anddbeonsistency
from a topological point of view for all kinds of diagonalizable algebras; we will see
later that these characterizations become simpler when considering diagonalizable al-
gebras of theories.

Theorem 2.3 D is w-consistent iff the set of points which have a nonempty T—
derived set is dense in the Sone space.

Proof: Let d be the derived set operator of the topology Notice thatR™!
(y) — {y} = d{y}. If D is w-consistent andi{y} is empty, thenR~1(y) is equal to
{y}, and Propositiofi. 7lguarantees the existence of a fgt), with y, # y for ev-
ery «, that converges ty in both topologies; since eventually the skt/,} is not
empty, we conclude that belongs to the closure (in the Stone topology) of the set
{x/d{x} # 2}.

Vice versa, if there is a nétly,) in {x/d{x} # @} that converges in the Stone
topology toy, then for everyps, ..., pn with p; € vy, there is anr such thatp,...,pn
are iny,. But R"1(y,) is not empty, thus we havep; A ... A op, # L, and the
set{op/p € y} has the finite meet property as set of elements of the Boolean al-
gebraD; thus, there exists an ultrafilter containing the {ggt/ p € y} and this im-
plies R-1(y) # @. Since this is true for all points in the dual space, the algebra is
w-consistent.

Lemma24 Thefollowing conditions are equivalent:

(i) D hasthe digunction property;
(ii) thereisa point zin the dual space such that zRx for each x with R=(x) # @;
(iii) if R"1(x) # @ and R™%(y) # @, thenthe set R~1(x) (| R"(y) is not empty.

Inparticular, D hasthe strong digjunction property iff R=1(x) () R™(y) isnot empty
for every x, y in D*, iff there exists a point z € D* such that zRx for all x € D*.
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Proof: (i) — (ii) Using induction we can prove that the disjunction property im-
plies then-disjunction property, thatis, ¥p; # L, fori=1,...,nthenopi A... A
opn # L (see Friedman [5]). This implies that the $ep/ ¢ p # L} has the finite
meet property, thus it is contained in an ultrafiltgbut if z 2 {op/ ¢ p # L}, then
z satisfies (ii).

(i) — (iii) Obvious.

(i) — (i) If oa, obare both different froml_, two ultrafiltersx, y exist such that
aex, beyandR1(x) # @, R1(y) # @; from (iii) it follows that R~(x) " R~*
(y) # @, andoanob # L.

Remark 25 From the Lemma we see that the disjunction property is equivalent
to the existence of an ultrafiltgrsuch that ifo a € y, theno a = T; then the strong
disjunction property is equivalent to the existence of such that a € y implies

a= T, thatis,y “behaves like” the ultrafilter of the true sentences (in the standard
model) of PA.

From a topologial point of view, sincgRx for all x € D*, the pointy belongs to
the closure of every point of the space, or equivalently, the only open set containing
y is the whole space. We refer to thiss an “antigeneric point.”

Theorem 2.6 D has the disjunction property iff every net in the set {x/R™1(x) #
&} converges.

Proof: (—) Itfollows easily from Lemm&.4dpart (ii).

(<) Givenx, ysuchthaR1(x) # @, R(y) # @, let (x,) be the sequence
that takes alternatively the valursy, and letz be its limit; thus{x, y} € {z} U R(2),
and only one of the following cases occurs:

(i) x=y,
(i) x#y,x=zandy € R(z) (or the symmetrical case);

(i) x#y, {X y} € R(®@.
A simple verification shows that in every case the Ret(x) (N R™X(y) is not
empty, and thu® has the disjunction property according to Len{félpart (iii).

Remark 2.7 Using Lemmd2.4lve can prove something mor®. has the disjunc-
tion property iff there is a point in the dual space to which every net of thixs&r*
(X) # @} converges.

It follows that if D has the strong disjunction property then every ndfrcon-
verges (to the antigeneric point of Remark 2.5; see Thelaélior the converse).

Theorem 2.8 D has the strong disunction property iff every nonempty closed set
inthe space (D*, T) isconnected and contains a reflexive point.

Proof: (—) If C, Cy, C, are nonempty closed sets {iD*, T) suchthaC = C; U
C,, letx e Cy, y € Co. WehaveC; N C, 2 R7(x) (N R71(y), and this last set is not
empty according to Lemnia4] This implies that each closed s&tin (D*, T) is
connected; sinc® is w-consistent, each nonemptyclosed set contains a reflexive
point (see Propositidi.8).

(<) If a, b are different fromL, let x, y be two ultrafilters containing respec-
tively a andb. In the dual space(D*, T) , the setsC; = {x} U R"1(x) andC, =
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{y} U R™1(y) are closed and not empty, and according to the hypotheses there is a
reflexive pointzin C; N C,. Sincezis reflexive, we have e R~1(x) | R~(y), and
sinceca A ©ob € z, we conclude thaba A ob #£ 1.

We can describe the séx/R1(x) # @} of Theorenf2.8lin a topological way
as the closure in the Stone topology of the set of points with nonemyplgrivate set
(see proof of Theorefi.3). In this way we obtain a purely topological characteriza-
tion of the disjunction property, but still the preceding theorems are quite unnatural.
In the next section we will concentrate in the direction of the class of algebras that
most concern us, the algebras of theories: we will see that the use of the topology
T becomes more natural, and allows us to obtain characterizations of relevant log-
ical properties of theories (see Coroll&yb] Theorend.3. Already in the case of
diagonalizable algebras without atoms, things become simpler.

We recall that a Boolean algebra is atomless iff there are no open points in the
dual space, or equivalently, iff for each point of the dual space there exists a net
(Yo)«el Of elements different frony that converges tg in the Stone topology.

3 X;-Sound theories and compactness

Theorem 3.1 If adiagonalizable algebra D is atomless, the following conditions
are equivalent:

(i) D hasthe strong disjunction property;
(ii) theclosed setsin (D*, T) are connected;
(iii) everynetof (D*, T) converges.

Proof: (i) —(ii) This follows from Theorenf2.d|

(i) — (iii) From (i) it follows that there is at most one pointvith R™1(z) = @.

If there is such &, andx # z, we must havezRx; thus, every point of the dual space
belongs to the setU R(z) and every net convergeszoNow suppose thaR1(x)

@ for eachx € D*; if x, y € D*, thenR™1(x) N R~X(y) # @, otherwise the closed
setR~1(x) | R~1(y) would be disconnected. It follows that for every naturaind
X1, ..., %n € D* the setR1(xy) N...N R 1(xy) is not empty. The set®1(x) are
closed in the Stone topology and the Stone space is compacf, Yys R™1(x) #

2. If ze(\yep+ R~1(x), every netin (D*, T) converges ta.

(i) — (i) We will first show thatR~1(z) # @ for eachz in the space, that is,
the algebraD is w-consistent. Assum&1(z) = @, andlet u be a point different
from z the sequence that takes alternatively the valuaadz must converge ta
and sozRu. Since the algebra is atomless, there is a(ggl, consisting of elements
different fromz, that converges ta in the Stone topology; butRu for eachu # z,
thus the net converges malso in theT topology, andzRz according to Proposition
this contradictsR1(z) = @. The disjunction property of the algebra follows
from Theorenfd

Remark 3.2 Wedo not use the hypothesis that the algebra is atomless to prove (i)

— (ii) and (i) — (iii); moreover without this hypothesis we can prove (##) (ii).
Indeed, letC be a closed, nonempty disconnected set, an€ieand C, be

two closed nonempty sets such tita= C, UC, andC; N Cy, = @. If x € C; and
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y € Cy, let (z,) be the sequence that alternatively takes the vakugs If this se-
guence converges to a poipthen the two constant subsequences with vakusasd
y converge ta too, and s@ € C; N Cy, contradicting the fact that; N C; is empty.
The hypothesis of being an atomless algebra, however, is necessary for (i)
we obtain a counterexample by considering a Boolean algebra containing an atom
a, endowed with the operator that is obtained in the usual way from the relation
R={(a, X)/x # a, x € D*} defined in the dual space of the algebra (where we iden-
tify the atoma with the principal ultrafilter generated by it).

The topologyT defined fromR has the property that every net converges to the
pointa; nevertheless, from Lemma 2.4 we see that the diagonalizable algebra defined
in this way has not the strong disjunction property.

From Theorerf8.1Thnd Remarf.2lve see that the dudl-space of a diagonaliz-
able algebra with the strong disjunction property is certainly compact. Our next step
will be to show that, under certain hypotheses, the compactness dfdial space
implies the strong disjunction property of the diagonalizable algebra. In general, this
is not true, as Remalf&Zlshows.

Moreover, the hypothesis of being atomless does not help in this case: we next
describe an atomlesg{consistent) diagonalizable algebra without the strong dis-
junction property that has al'j-compact dual space. Consider the diagonalizable
algebra of Peano Arithmetid)pa, and the direct producdDpa x Dpa. The dual
space is the disjoint union of two copies of the dualDfs (see D’Agostinol[f]),
and it isT- compact becausb},, is so according to Theordf1] while the algebra
is w—consistent and atomless. Nevertheless, the algebra has not the (strong) disjunc-
tion property. This means that in order to prove that the compactness of the space
(D*, T) implies the strong disjunction property, we have to consider a smaller class
of algebras than the atomless ones. However, we can prove:

Theorem 3.3 If Disatomlessand (D*, T) iscompact, then D is w-consistent.

Proof: We shall prove, using Proposition 1.7, that for egdin D* the setR1(y)
is not empty.

Since the algebra is without atoms, for eachn the dual space there is a net
(Yo)ael Of elements different frony that converges ty in the Stone space. If
(D*, T) is compact, there is a subngt, )qc 3 of (Yo )wer that converges inD*, T)
to some poink. If y, # x for eacha € J, we havexRy (see Propositioh.7). In any
case, there must bedae J such that for eaclyr € J, y > 8, y, is different fromx;
otherwise we could find a subnet 0f, ). With constant value. Then, however,
(Ya)ae 3 would converge in the Stone topologykandx would be equal ty, because
the Stone topology i%;. This is in contradiction with the choice of the ngt,) e -

In this way we can prove the existence of a net of elements, different frahat
converges tx in the topologyT and toy in the Stone topology. We then conclude
R~1(y) # @ for eachy in the dual space, and the algebraisonsistent.

Remark 3.4 Ifthe algebra contains atoms, Theofarls not true, even for infinite
algebras. Indeed, consider the example in Refialkwhere the spacgD*, T) is
compact while the algebra is netconsistent.

Since the Lindenbaum algebra of an arithmetical theory is atomless, we obtain:
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Corollary 3.5 Thefollowing conditions are equivalent:

(i) thetheory Sis X1-sound;

(i) all closed setsin (D%, T) are connected;
(iii) everynetin (D%, T) isconvergent;
(iv) the space (D%, T) is compact.

Proof: (i) < (ii), (i) < (iii) follow from TheoremZ dand Propositio®_2]

(il — (iv) is trivial.

(iv) — (i) follows by applying Theorefg.3] because in the case of Lindenbaum
diagonalizable algebra the-consistency of the algebra implies the-soundness of
the theory (see Propositin2).

4 Admissibleelements Wenow want to characterize sentences thabareonser-
vative over ax;-sound theons.

Werecall that an elememtof a diagonalizable algebiais said to be admissible
(see[p]) if a<cbimpliesb =T, or equivalentlya A ob £ L, for everyb # 1.

Proposition 4.1  (See Shavrukov [@). Let Sbe a X;-sound theory. A sentence a
is Xq-conservative over Siff a isadmissible in Dg; then the theory SU {a} is still
¥1-sound iff aisadmissible.

Lemma4.2 Anelement a of adiagonalizable algebra D isadmissibleiff for each
point x of the dual space we have R-1(x) Na # @.

Proof: Let x be a point inD*; if a is admissible, the sga A ob/b € x} has the
finite meet property in the sense of Boolean algebras; indeed, wahayb; A ... A
obhn>anoiA...Aby), thusifby, ..., by e xandaAnoby A ... Acby,= 1, then
aAno(byA...Abp) = L and the admissibility o& contradicts the hypothesig A
... Aby e x. If zis an ultrafilter containinga A ob/b € x}, thenze R-1(x) Na# @.

Vice versa, ibis not_L, let x be an ultrafilter containing. From R1Ix)nNa #+
gitfollows anob# L.

Theorem 4.3 Inadiagonalizable algebra with the strong disunction property, the
following conditions are equivalent:

(i) aisadmissible;
(i) everynetof (D*, T) convergestoapointin a;
(iii) every nonempty closed set of (D*, T) hasa nonempty intersection with a.

In particular, a sentencea inthelanguage of PAis X;-conservative over PAiff, con-
sidering the diagonalizable algebra D = Dpa, (ii) (or equivalently (iii)) holds.

Proof: (i)—(ii) Since the diagonalizable algebra has the strong disjunction prop-
erty, if x4, ..., X, are points in the dual space, using Lenimalve can provean
R1(xy) N...N R 1(xy) # @; but the Stone space is compact, and we deduce the
existence of a point such thatz € a andzRx for each pointx in the space. This
implies that every net of D*, T) converges ira.

(i) — (iii) Easy.
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(i) — (i) From the strong disjunction property we deduce thati# |, then
ob # L; butobis aT-closed set and (iii) impliea A ob #L.

The Stone space of a diagonalizable algebra is alwaysjpace, while the topol-
ogy T is Ty iff the algebra is trivial (i.e., i a = T for eacha in the algebra). Itis
still possible for an algebra to have closed points, and we will see that this property
is linked with the admissible elements. However, we will show that the Lindenbaum
diagonalizable algebra of8;-sound theory does not have any closed point.

Theorem 4.4  If D hasthe strong disjunction property, the following conditionsare
equivalent:

(i) aT-closed point exists (and only one according to Theorem2.8);
(ii) the admissible elements form an ultrafilter Xq (the closed point in (i));
(iii) M{C/Cisclosed and not empty in (D*, T) } isasingleton (the ultrafilter Xo in
(i)).
Proof: (i) — (ii) If the diagonalizable algebra has the strong disjunction property,
then:

(a) the element is admissible;
(b) if a < b andais admissible theb is admissible;
(c) if ais admissible then for eadh eithera A b ora A —bis admissible (seé)}).

To prove that the admissible elements form an ultrafilter we have just to show
that there is n@ such that botta and—a are admissible. If this were the case, us-
ing Lemmd4_2we would haveR1(xy) N —a # @, and R~ (xg) Na # @, which is
impossible ifxg is closed.

(i) —(iii)y 1f ze N{C/Cis closed and not empty ifD*, T) }, thenob € zif
b #£ L. If ais admissiblez does not contairra, otherwise—a A ob would be dif-
ferent from_L for eachb # | anda, —a would both be admissible, contradicting the
hypothesis that the admissible elements form an ultrafigeiThis implies that ev-
ery admissible element is imand thusz = x3. On the other hand, i€ is closed and
not empty in (D*, T), then, for eachx in C, xg € R~%(x), since the closed sets in
(D*, T) are connected (see TheorEmg).

(iii) > (i) The pointxg is closed.

For example, the free algebra on the empty set has a unique closed point, the
ultrafilter of cofinite sets. The situation is different in Lindenbaum algebras; indeed,
since the sef){C/C is closed and not empty itD*, T) } is the set of all ultrafilters
that contain{ob/b # L}, it has cardinality % (see Montagndg]) and from the pre-
ceding theorem it follows that the dual space does not have any closed point.

Admissible elements allow us to obtain a topological property that is shared by
Lindenbaum diagonalizable algebras but not by the whole class of diagonalizable al-
gebras. Let us consider finitely generated quotients of a Lindenbaum diagonalizable
algebraDyg; these quotients correspond to diagonalizable algebras of th&y¥ies
for a sentence such thatS+ ¢ — Teors(¢): in fact, we can choose the provability
predicate ofS+ ¢ to beTeors(¢ — X).

These quotients, when proper, cannotbeonsistent; indeed:
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Dsy, is w—consistentss S+ ¢ is ¥1—sound= ¢ is an admissible element @s
(according to Propositidd.Zland Lemm&LT); but then fromp < o ¢ in Dgwe infer
p=1.

Note:

(a) finitely generated quotients correspond in the dual space to Stone’s clopen that
are open ifT (see Bernardi and D’Aquind®]);

(b) in Lindenbaum algebras these quotientsa@nsistent iff the corresponding
sets in the dual space afecompact (see Corolla.5lnd Propositio 7).

From this we obtain :

Lemma4.5 If Sis X;-sound, in the dual space of the Lindenbaum algebra Dg
there are no nontrivial clopen setsthat are both open and compact in the T-topol ogy.

By considering the dual space of the free algebra on the empty set, we see that
this result is not true in the class of all diagonalizable algebras.

REFERENCES

[1] Abashidze, M., and L. Esakia, “Cantor’s scattered spaces and logic of provaliéiy”
International Topological Conference, Abstracts of Reports, Part 1 (1987), p. 3]

[2] Bernardi, C., and P. D’Aquino, “Topological duality for diagonalizable algebridstte
Dame Journal of Formal Logic, vol. 29 (1988), pp. 345-36&hl 0655.03041
IMR 89i:03114[ 1]

[3] Blass, A., “Infinitary combinatorics and modal logicJournal of Symbolic Logic,
vol. 55 (1990) pp. 771-77Eb1 0699.03008 MR 91k:0313R 11

[4] D’Agostino, G., “Reflexive points in the topological study of diagonalizable algebra,”
Bollettino Unione Matematica Italiana, vol. 6-B (1992), pp. 689—70Fbl 0773.03040
MR 94h:03129

[5] Friedman, H., “The disjunction property implies the numerical existence propPrty,”
ceedings of the National Acadamy of Sciences U.SA., (1975), pp. 2877—-2878.
{zbl 0342.02012 MR 52:4l7

[6] Magari, R., “The diagonalizable algebrad3ollettino Unione Matematica Italiana,

vol. 12 (1975), pp. 117-12Eb[0352.08000 MR 57:104 11

[7] Magari, R., “Representation and duality theory for diagonalizable algeb8xsiia
Logica, vol. 34 (1975), pp. 305-31[Fbl 0355.02021 MR 57:10[{ |1

[8] Montagna, F., “On the Diagonalizable Algebra of Peano ArithmeBo]tettino Unione
Matematica Italiana vol. 16—B (1979), pp. 79581301 0419.0801D MR 81d:0304F]

[9] Shavrukov, V., “Subalgebras of diagonalizable algebras of theories containing arith-
metic,” Dissertationes Mathematicae, vol. 323 (1993)zbL0803.03044 MR 94h:03131
72 2| 2 | | i |

[10] Shavrukov, V., “A note on the diagonalizable algebra®éfand ZF,” Annals of Pure
and Applied Logic, vol. 61 (1993), pp. 161-17@bI 0780 0302F MR 04h-0313P11

Universita degli Sudi di Udine
Dipartimento di Matematica e Informatica


http://www.emis.de/cgi-bin/MATH-item?0655.03041
http://www.ams.org/mathscinet-getitem?mr=89i:03114
http://www.emis.de/cgi-bin/MATH-item?0699.03008
http://www.ams.org/mathscinet-getitem?mr=91k:03123
http://www.emis.de/cgi-bin/MATH-item?0773.03040
http://www.ams.org/mathscinet-getitem?mr=94h:03129
http://www.emis.de/cgi-bin/MATH-item?0342.02012
http://www.ams.org/mathscinet-getitem?mr=52:47
http://www.emis.de/cgi-bin/MATH-item?0352.08009
http://www.ams.org/mathscinet-getitem?mr=57:105
http://www.emis.de/cgi-bin/MATH-item?0355.02021
http://www.ams.org/mathscinet-getitem?mr=57:107
http://www.emis.de/cgi-bin/MATH-item?0419.08010
http://www.ams.org/mathscinet-getitem?mr=81d:03065
http://www.emis.de/cgi-bin/MATH-item?0803.03044
http://www.ams.org/mathscinet-getitem?mr=94h:03131
http://www.emis.de/cgi-bin/MATH-item?0780.03027
http://www.ams.org/mathscinet-getitem?mr=94h:03132

DIAGONALIZABLE ALGEBRAS 573

via Zanon 6
33100 Udine
Italy

email: dagostin@dimi.uniud,it|



mailto: dagostin@dimi.uniud.it

