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A Distinguishable Model Theorem
for the Minimal US-Tense Logic

FABIO BELLISSIMA and ANNA BUCALO

Abstract A new concept of model for the US-tense logic is introduced, in
which ternary relations of betweenness are adjoined to the usual early-later re-
lation. The class of these new models, which contains the class of Kripke mod-
s, satisfies, contrary to that, the Distinguishable Model Theorem, in the sense
that each model is equivalent to amodel in which no two points verify exactly
the same formulas.

1 Introduction The Kripke semantics for the “standard” temporal logic (i.e., the
propositional | ogic endowed with two unary operators F—it will bethecasethat ...—
and P—it has been the casethat ...) satisfiesthe following property: given aKripke
model M = (T, R, V), there existsamodel M’ equivalent to M and which iswith-
out pairs of equivalent points. Following Segerberg [[1], we call a model without
equivalent points a distinguishable model. The existence of a distinguishable model
equivalent to agiven model (this statement will be called in the following the “ Dis-
tinguishable Modedl Theorem™) is a consequence of the Filtration Theorem and has a
fundamental role. Itisclosely connected, aswe shall see, with the construction of the
Canonical Model and the consequent proof of the Fundamental Theorem; in fact in
the Canonical Model each maximal consistent extension of the particular logic under
investigationistaken exactly once. Similarly, inthe proof of correspondence between
temporal structures and temporal algebras, each ultrafilter of the algebra becomes a
point of thedual structure, taken exactly once. And, finally, also in showing theequiv-
alence between the Finite Model Property and the Finite Frame Property one makes
use of the Distinguishable Model Theorem.

What was said referring to temporal logic can be extended to modal logics with
an arbitrary number of unary operatorsJ;, i € |, because these logics also satisfy the
Distinguishable Model Theorem. Indeed, given amodel M = (T, {R}ici, V), the
model MO = (T, {R%ici, VO) (where T® = T/, [t] RO[u] iff thereexistat’ € [t] and
au’ e [u] suchthatt’Ru’, VO(p) = {[t] : t € V(p)}) isdistinguishable and equivalent
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to M. The temporal logic with the binary operators Until and Since (US-logic) was
born as alogic endowed with a Kripke style semantics. The usual frames and mod-
elsof the US-logic are couples (T, R) or triples (T, R, V), and the truth-definition of
U(p, ¥) isasfollows. t = U (¢, ¥) iff there existst’ such that tRt’, t' = ¢ and, for
al t” suchthat tRt” Rt’, t” |= v (analogously for S(¢, ¥), referring to R™1). But this
semantics, in this case, lacks the Distinguishable Model Theorem and turns out to be
highly inadequate.

In §2]we give some examples of Kripke models without US-equivalent dis-
tinguishable Kripke models, thus showing that the Distinguishable Model Theorem
fails. In §31ve define the notion of e-model, which extends that of Kripke model, and
show that the Distinguishable Model Theorem holds for these new models. Finally
in §2lwe define the notion of US-general e-frame and show that for every US-general
e-frame there exists an equivalent distinguishable US-genera e-frame.

2 Some examples We refer to two types of languages: the FP-language, that is
Lep = PCU {F, P}, where F, P are the unary operators of future and past (as usua
G and H stand respectively for —=F— and —P—), and the US-language, that is L5 =
PC U {U, S}, U, S being binary operators (the definition of truth for U (¢, ¥) and
S(¢, ¥) hasbeen givenin theintroduction). Thesymbols | and T stand for any con-
tradiction and any tautology, respectively. Giventwo pointst andt’, wewritet =gp t’
andt =ygt’' tomeanthatt andt’ satisfy the same set of FP-formulasand US-formulas,
respectively; analogously for M =rp M’ and M =ys M’. Since, for every point t
of every model M, t = Foifft =U(p, T)andt = Py iff t = S(p, T), the set of
FP-formulas can be considered as a subset of the set of US-formulas, and thus =5
implies =gp.
We note the following result.

Lemma2l If M = M’ (where = iseither =pp or =ys) and T/ is finite, then
T/= and T'/= have the same cardinality.

Proof:  For each model M", the schema \/o_; j<anij(¢i <> @) holdsin M" iff
T /=| <n. O

Example2.2 Letusconsider themodel M; = (Ty, Ry, Vi), where Ty = {w1, w»},
Ri = {(w1, wy), (w2, w1)}, and V1 (p) = {wq, wy}, for every p belonging to the set
IP of all propositional letters (see Figure 1). It isimmediate to observe that wi =g
wy. Therefore | T/— | = 1, and thusif M’ =ys M and M is distinguishable, then,
by Lemmal21]|T| = 1, i.e, T/ = {t'} for somet’. But from M = FT and M =
U(T, L) it follows that R can be neither empty (otherwiset’ }= FT) nor {(t’, t')}
(because from t’Rt’ Rt’ it followsthat t' j= U(T, 1)).

wie «—> oW?2
Figure 1
Example2.3 Hereisan example of an infinite model. Let M5 = (T,, Ry, Vo) be

asfollows: T, =Z, R, =<, Vo(p) = {2k : k € Z} for each p € P (see Figure 2). We
havethat [T,/ | = 2. Infact, for each h, k € Z, 2k =ys 2h, 2k + 1 =ys 2h + 1, but
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2k #£ys 2h + 1. Therefore, by Lemmal2.1] if M’ =ys M, and M’ isdistinguishable,
then |T'| = 2. But M’ =ys M, implies that M’ =gp M>, and the only M’ having
cardinality 2 and such that M’ =pp M, is(T', R, V'), with T/ = {w, v}, R =T’ x
T and V'(p) = {w} for each p € P. But, again, M’ = U(T, L) whereas M, =
U(T, L).

p —-p p —-p p

®------ O------ - ----- O------ °

-2 -1 0 1 2
Figure 2

Example2.4 Let us consider Mz = (T3, Rs, V3) where T; = R, Rz =< and
Va(p)={xeR:2k<x<2k+1, ke Z}foreach p € P(seeFigure3). Theformulas

(p1) PAS(—p,—p)
(p2) PA=S(=p,—p)
(¢3) =P A S(p, P)
(pa) =PA—=S(p, p)
hold respectively at the sets of points

(X1) {x:x=2kforsomek € Z}

(X2) {x:2k < x < 2k+ 1forsomek e Z}
(X3) {x:x=2k+ 1forsomek € Z}

(Xg) {X:2k+1 < x < 2k+ 2for somek € Z}.

Thismeansthat | T3/— | = 4. Suppose M’ wereamodel with four pointswy, wy, ws,
w4 that isUS-equivalent to Mz. Sincethe g; aremutually exclusive, each of the points
must verify exactly one of these formulas. Furthermore each of the points must be
related to itself and all the others (because for each i < 4, Mz = Fgj). So M’ |~
p— U(p, p), whereas Mz |= p — U(p, p).

Note that Mz and M’ satisfy the same set of variable-free formulas, which is,
in both cases, the set of the variable-free formulas true in the frame costituted by a
single reflexive point, whereas M; is FP-equivalent to the two-points model M’ of
Example@

Figure 3

We use the model of Example[2.2]to show this fact: the standard method for
obtaining the Canonical Kripke Model for alogic L, which consists of defining an
appropriate relation over the set of all maximal consistent extensions of L, isnot, in
general, applicable to US-logics. Infact, let L be the US-theory of the Kripke frame
(T1, Ry) of themodel M, (see Figure 1), and let M = (T, R, V) be aKripke model.
Suppose, for acontradiction, that M has the standard properties of acanonical model
forL:
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1. T istheset of al maximal consistent extensions of L (taken once);
2. wEeoeiffpew,foreachw e T.

Then, since M; = L, we have, by (1), that w = {¢ : w1 = ¢} € T. Let M’ be the
submodel of M generated by w. We show that all pointsin A’ are equivaent. In
fact, foreach pe Pandeachn e N, w1 = pA G"pandhence, by (2), w = pA G"p.
Soforevery ue T and p € P, u = p. Theinductive steps for Boolean connectives
areobvious. Letue T’ andu = U (g, ¥); thenthereexistsau’ € T suchthat U’ = ¢
and so, by the inductive hypothesis, al the points of T’ satisfy ¢. Let v be any point
of T'. SinceL + U(T, L) we have that there exists a v’ € T’ such that vRv’ and
{z: vRzRv'} = @. Thenfrom v’ |= ¢ it follows that v = U (g, ¥). So al the points
of T" areequivalent. Moreover fromvRv' and {z: vRzRv'} = @it followsthat v £ v';
therefore the maximal set {¢ : v = ¢} iscontained in M more than once.

3 e-models and the Distinguishable Model Theorem

Definition 3.1 An emodel A4 is a four-tuple (A, R, 8, V) where (A, R, V) isa
Kripke model and g isafunction from Rinto P(P(A)) such that for al (x,y) € R

1L BXy) #2
2. if X e B(X,y),then X C {z: xRzRy}.

In other words, 8(X, y) is anonempty set of sets of points between x and y (notice
that the case B(x, y) = {&} is not ruled out). The definition of “truth” of aformula
@ at apoint w of an e-model is the standard truth-definition as regards propositional
variables and Boolean connectives, and the truth of U (¢, ¥) and S(e, ¥) is defined
asfollows:

3. w = U(p, ¥) iff there exists a point v such that wRv and v = ¢, and there
exists Z € B(w, v) suchthat u =, foreachu e Z

4. w = S, ¥) iff thereexistsapoint v such that vRw and v = ¢, and thereexists
Z € B(v, w) suchthat u =, foreachu e Z.

Intuitively, aformulaU (g, ¥) istrue at apoint x of an emodel if, for some y in the
futureof x, g istrueat y and v istrue for enough points between x and y. Considering
that Fo =U (¢, T) and Py = S(¢, T), weseethat the definitionsof truth for F and P
coincide with the usua ones. If for every (X, y) € R, |B(X, ¥)| = 1 (thatisB(x, y) =
{Z}) then 4 issaid asimple emodel. In particular, if for each (X, y) € R, B(X,y) =
{{z: xRzRy}}, then the above definitions[B.L1B and[3. 1.4 reduce to the standard case,
and s0 (A, R, 8, V) =ys (A, R, V). Therefore we may consider the class of Kripke
models as a subclass of the class of e-models.

Theorem 3.2 For each US-formula ¢, ¢ istruein every Kripke model iff ¢ istrue
in every e-model.

Proof: LetTLys={¢:(T,R,V)Eg,foreach(T,R,V)}and X={¢: (A, R, B,
V) E ¢, for each (A, R, 8, V)}. Since, as aready observed, each Kripke model is
(equivaent to) an e-model, we havethat X C TLys. For the converse, we know (see
Xu [2]) that TLys isthe set of theorems of the system whose axioms are:
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(0) tautologies

(D G(p—aq — U(p.r) = U@ r)AMUT p)— UTq)

(2 H(p— @) — (S(p,1) = S(q,1) A (S(r, p) — S(r, @)

() pAU(@, 1) — U@A S(p,r),r)

(4 pAS@,r)— S(QAU(p,T),1)
and whose rules of inference are Uniform Substitution, Modus Ponens, ¢/ Gg and
@/ Heg. Itisnow amatter of routineto verify that each e-model satisfies these axioms
and is closed under these rules, and so TLys € X. O

From Definition[Z_1lwe have the following.

Remark 3.3 Let A4 beane-moded, (x,y) € R, and let Z,, Z, be subsets of A such
that Zy, Zo € B(X,y) and Z; C Z,. Then Z, is without influence, i.e., 4 is US
equivalent to 4" = (A, R, g/, V) where g'(X,y) = B(X,y) — {Zz} and B'(u,v) =
B(u, v) for (u, v) # (X, y).

Because of thisfact, it isenough to consider only the minimal sets of (X, y), and so
if B(X,y) hasaleast set B, then we can reduce B(x, y) to {B}. Therefore, if for each
(X, ¥) € RB(X,y) hasaleast element, then 4 is (equivaent to) asimple e-model.

Definition 3.4 Let 4 = (A, R, 8, V) bean e-moddl, let = be aset of US-formulas
closed under subformulas, and, for every w € A, let [w]y = {w' € A:Vpe X, w' E
@ iff w = ¢}. Ane-modd Ax = (As, Ry, Bx, Vyx) isafiltration of 4 through X if

1 Ay = {[u)]): Twe A

2. foreach pe =, Vs (p) = {[w]g : w € V(p)}

3. (8 wRvimpliesthat [w]sRs[v]s
(b) Z € B(w, v) impliesthat {[u]x : u € Z} € Bx([w]s, [v]s)

4. {[u]lx :ue Z} € Bs([w]g, [v]ly) impliesthat
(a) foreachformulaU (g, ) € I, if w & U (¢, ) then either v = ¢ or there
existsu € Z suchthat u (= v
(b) for each formula S(g, ¥) € %, if v = S(g, ¥) then either w £ ¢ or there
existsu € Z such that u (= .

Observe that from condition (4-a) it follows:
4-d. [w]gRg[v]x impliesthat, for all formulas Fp € Z, if w = Fothenv (£ ¢.

Suppose in fact that [w]s Rx[v]s and w (= Fo (i.e, w = U(p, T)). By definition
of emodel, from [w] s Rxs[v] s it follows that there exists Zy, € Bx ([w]s, [v]g). So,
from (4-a) together with w = U (¢, T) andu = T, we obtain v i~ ¢. An analogous
condition for P follows from (4-b).

Lemma35 Givenane-model 4 andaset X of US-formulaswhichisclosed under
subformulas, the class of the filtrations of A through X is not empty.

Proof: We show that there exists at |east the so called “finest filtration.” Let Ry, and
Bx be defined as follows.

1. [w]gRg[v]y iff thereexist w’ € [w]x and v’ € [v]x such that w’ Rv;
2. {[ulg:ue Z} e Bx([w]s, [v]p) iff thereexist w’ € [w]g, v’ € [v]sand Z' C A
such that w'Rv’, Z' € B(w’,v') and {[u]lg : ue Z'} = {[u]x : u e Z}.
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We show that if Ay and Vs, are as in Definition[3.41-2 with V5 (p) = @ for each
p ¢ %, then the four-tuple 4y = (As, Ry, Bx, Vx) isan emodel. First notice that
Bx([w]sz, [v]x) # @, for every ([w]s, [v]x) € Rs. Infact [w]s Ry[v]y impliesthat
w’ Ry’ for some w’ € [w]y and v’ € [v]x; and since A4 is an e-model, we have that
B(w',v") # @ and hence, by (2), B=([w]x, [v]ly) # . Moreover, {[u]z :ue Z} €
Bx([w]g, [vly) implies, by (2), that there exist w’, v/, and Z" such that w’ € [w]g,
vV ev]g, Z e Bw,v)and{[ulg:ue Z} ={ulg:ue Z}. SinceZ C {u:
w’'RURv'} by (1) weaobtainthat {[u]s : u€ Z} C {[U]s : [w]z Rs[U]lsRg[v]s}. Asis
thereforean e-model. Finally, the proof that 4y, isalfiltration of 4 is straightforward.

O

Theorem 3.6 (Filtration Theorem for eemodels)  If Ay isafiltration of thee-model
A through X, thenfor each w € Aand g € X, w = ¢ iff [w]g E ¢.

Proof: The only nonstandard steps of the proof (by induction on the construction
of ¢) aretheinductive steps for the operators U and S. Suppose w = U (¢, ¥); then
there exists a point v such that wRv and v = ¢, and there exists Z € g(w, v) such
that, for each u € Z, u = . By Definition[3.4]3 and the inductive hypothesis we
obtain that [w]s Rxs[v]s, [v]ls E ¢, [Uls E ¢ foreachue Z,and {[u]x : U € Z} €
Bs ((w]s, [v]g), and thus [w]s = U (e, ¥). For the converse, suppose that [w]s =
U(e, ¥), let [v]s be such that [w]s Rg[v]s and [v]s = ¢, and let {[u]s :u e Z} €
Bx ([w]x, [v]y) besuch that [u]s = W for each u € Z. By theinductive hypothesis,
v = pand u = v for each u € Z and so, by conditionB4M4, w = U (g, ). Thecase
of Sisanalogous. O

Now, the Distinguishable Model Theorem for e-models immediately follows from
Lemma[3Eland the Filtration Theorem, simply taking ¥ to be the set of all US-
formulas.

Theorem 3.7 (Distinguishable Model Theorem)  For each e-model A4 there exists
a distinguishable eemodel A’ suchthat 4 =ys.4'.

Considering that Kripke modelsare (equivalent to) particular e-models, we obtain the
following.

Corollary 3.8 For every Kripke model M there exists a distinguishable e-model
A such that M =ys 4.

As an example, we determine the distinguishable e-models equivalent to the Kripke
models of Examples2.2}2.4]

Asregards Examplelﬁl the eemodel equivalent to M, is 4, = (A, R, B1, V))
suchthat A= {a}, R, = {(a, @)}, V;(p) = {a} for every p € P, and B1(a, a) = {@}.
If M, is considered as an e-model, i.e., endowed with the function (w1, w,) = {u:
w1 RIUR wo} = {T} and B(wz, wy) = {U: wrRiUR w1} = {@}, then A isthefinest
filtration of M, through Wf s; in fact [w1] = [wa] = a, whereas w1 Ryw, implies
that aRa, and (w1, wp) = (w2, w1) = (&} impliesthat B1(a, a) = {T}. Asex-
pected, A, is not a Kripke model; in fact {u : aRjuRja} = {a} but p1(a, a) = {9}.
Nevertheless, 4; isasimple e-model.

As regards Example[2.3] the finest filtration of M is 4, = (A, R, B2, V),
where Ay = {[0], [1]}, R, = Az x Ay, Vo (p) = {[0]} for every p e P, B2([0], [1]) =
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B2([1], [OD) = {&,{[0], [1]}}, B=([0]. [OD) = {{[1]}. {[O]. [1]}}, and B2([1].[1]) =
{{[01}, {[0], [1]}}. By Remark B3] B, can be equivaently defined as follows :
B2(101, [1D) = B2([1], [OD) = {2}, B2([0], [OD) = {[1}}, B=([1]. [1D = {{[O]}}; thus
we obtain that 4, is (equivalent to) asimple e-model (not a Kripke model, because
foreach x, y € Ay, {u: XxR,URLYY = A).

Finally, the distinguishable e-model equivalent to ;3 and obtained by the finest
filtration is A3 = (Asz, R}, B3, V), where Az = {a, b, ¢, d} witha = [(], b = [%],
c=[1],d= [%]. Then each world is related to itself and every other world, that is
Rs = A3z x Ag, Vé(p) = {a, b}. Flnally,

B@ a) = B(a,d) = B(b,a) = B(b,d) = {{b, c,d}, Az}
B(a,b) = B(a, c) = B(b,b) = B(b, c) = {{b}, Az}
B(c,a) = B(c,d) = B(d,a) = B(d, d) = {{d}, As}
B(c,b) = B(c, c) = B(d, b) = B(d, c) = {{d, a, b}, As}.

By erasing Az from each set we will obtain asimple e-model.

Therefore the three examples[2.2}2.4] introduced at the beginning to show the
nonexistence of equivalent distinguishable Kripke models, have equivalent distin-
guishable simple e-models. But the class of simple e-models does not satisfy the Dis-
tinguishable Model Theorem, asis shown in the next result.

Theorem 3.9 There exists a model M such that for every distinguishable simple
e-moddl 4, M Z#us A.

Proof: Consider the Kripke model M, where T4 = {w, w’, v, v/, u, U, t,t'}, Ry is
as shown in Figure 4 (in Figures 4—7 below, the symbol TR means that the relation
is transitive), and V, is any valuation such that {p: v € V4(p)} # {p: ue Va(p)}
and, for each x € {w, v, u,t}, {p: X € Va(p)} = {p: X € V4(p)}, for example let
Vi(p) = {w, w’, v, v/, 1, t'} for each p € P. It isamatter of routine to verify that, for
each X,y € {w, v, u,t}, X =ys X and X #ysg y if X #£ y. Since, clearly, Lemmal2.1]
holds aso for emodels, we obtain that every distinguishable e-model A4 equiva
lent to M, must contain exactly four points. Moreover, since 4 =ys M implies
A =gp M, and since the FP-theory of a point does not depend upon B, we obtain
that (A, R, V) hasto be as follows (see Figure 5): A= {ax: x € {w,v,u,t}}, R=
{(ax, ay) : XoRaYo for some xp € {X, X'}, Yo € {y, y'}} and ax € V(p) iff X € Va(p).
This is, in fact, the only model having four points which is FP-equivalent to M.
But there is no B such that (A, R, B, V) is a simple eemodel US-equivalent to M.
Suppose, for instance, that B(ay, a;) = {{a,, ay}}, and consider the formula ¢ =
(G3L A =G?L) — U(GL, pg). We have that M, = ¢, because the only points
which satisfy G3L A —=G?L are w and w’, the only points which satisfy GL are t
and t/, and from {z: wR4zR4t} = {v} and {z: w’ RyzR4t’} = {v'} it follows that w
and w’ satisfy U(G_L, pg). On the other hand 4 [~ ¢ because a,, = —pg. Therefore
B(ay, a) cannot be {{a,, ay}}. Inasimilar way it can be shown that, for each subset
Xof A, eache-model (A, R, 8, V) suchthat g(a,, a;) = {X} isnot US-equivaent to
M (for instance, if X = {a,}, then (A, R, B, V) = ¢, but (A, R, B, V) F~ ¢[ps/~pol»
whereas My = ¢[p,/-py))- Therefore there is not a distinguishable simple e-model
US-equivalent to M. O
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te of’ YN
T N 7 T PN
ve Ue oU oV a,e °qy
we ow’ TR 0a,, TR
Figure 4 Figure5

We observethat the di stinguishable e-model US-equivalent to M, that we obtain
by the finest filtration is such that S(a,,, a;) = {{a,}, {a,}}, anditisnot smple. Ina
similar way, we can show the following.

Theorem 3.10 For every n, there exists a Kripke model M such that for every
distinguishable e-model 4, if M =ys 4 then A contains two points a, b such that
|B(a, b)| > n.

Proof: Letusconsiderthemodel M = (T, R, V),whereT = {t, : k<n+1} U {w; :
F<n+LUfvk:i,k<sn+1}, R={(wst):sr<n+1}U{(wi,vik i,k
N+ 1} U {(vik t) 1,k <n+1}, and V setisfies the following conditions (we write
V*(x) instead of {p:xe V(p)}):

L V(L) = V*(t), V'(wj) = V*(wj),fOI’ ibj<n+1

2. V*(Ul,l) = V*(UZ,Z) == V*(Un,n) = V*(Un+1,n+l)
V*(v12) = V*(v23) = -+ = V*(unnt1) = V¥ (vnt11)
and, in general,
V*(v1,k) = V¥ (v2ke1) = --- = V*(Unkem-1)) = V*(Uny1ken)s

where @ denotes the sum modulon+ 1
3. V*(x) # V*(y) in the other cases.

(InFigure6 wetaken+1=3))

Asfor themodel M, of the previous example, we havethat x =ys yiff V*(x) =
V*(y) and thustheequivalenceclassesaret = {ty : k< n+ 1}, w = {wy : kK< n+ 1},
and, for eachk < n+4 1, vk = {vi kei-1) : | <N+ 1}. Therefore each distinguishable
e-model 4 equivalent to M isasin Figure 7 as regards R, whereas regarding g we

have that, for each k < n+ 1, {v¢} € B(w, t). O
tlo .tz Ot3 ot
V11® VU210 U31@ V120 oUpo V32 0VU13 VU3 0U33 V1@ oVUy eVU3
wie oWy ows3 TR ow TR
Figure 6 Figure7

These last examples of e-models seem to suggest an interpretation of B(X, y)
in terms of possible paths. But this picture is in conflict with other examples. For
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instance, in A4, we have that 8,([0], [0]) contains [1] and not [O], but we have
[O]R[O] R[Q]. In this case B(X, ¥) seems to be the set of admissible paths. But also
thispictureiswrong. Infact, if we consider themodel (A, R, V) of Figure 5 but with
B(X,y) = {{z: XRzRy}}, we havethat (a,, &) = {{ay, a,}}, and sointhiscase S is
not a set of paths but the singleton of their union.

4 General eframes What we have said up to now referring to models can be ex-
tended to general frames. We recall that a general frame for Lgp (or FP-frame)
isatriple (T, R, IT) where (T, R) is a frame and IT is a nonempty set of subsets
of T closed under Boolean operations and under the operators ¢ and wp, where
ap(X) ={w:3Jve X, wRv} and 7p(X) = {w : Fv € X, vRw}. Analogoudly, a
triple (T, R, IT) isaUS-general frame if IT is closed under Boolean operations and
the binary operations 7y and s, where zy (Y, Z2) = {xe T:3ye Y, xRyand {w :
XRwRy} € Z} and 75(Y,Z) = {x e T :3y e Y,yRxand {w : YRwRx} C Z}.
Clearly, the underlying idea in the definitions of 7y and ns is the following: if Y
and Z arethe sets of al the points at which the formulas ¢ and v, respectively, hold,
then 7wy (Y, Z) and (Y, Z) arethe sets of points at which the formulas U (¢, ) and
S(e, ¥), respectively, hold. From the fact that 7 (X) = 7y (X, T) and 7p(X) =
ws(X, T) it follows that a US-general frame is an FP-general frame. Moreover
(T, R, P(T)) isaUS-general frame, and thus Kripkeframes can be considered as par-
ticular cases of US-general frames. M = (T, R, V) isamodel over ¥ = (T, R, IT) if
forevery pe P, V(p) € I1. Thelink between models and general framesliesin the
fact that, on the one hand, if M isamodel over ¥, then, for each ¢, {w : (M, w) =
@} € I1, and, onthe other hand, givenamodel (T, R, V), thetriple (T, R, ITy), where
MMy ={XCT:3¢p, X={w: (M, w) = ¢}},isagenera frame. A genera frameis
said to be distinguishable if, for each w, v € T, there exists X € IT such that w € X
and v ¢ X. It isimmediate to observe that M is distinguishable iff (T, R, ITy) is
distinguishable and that no distinguishable model can be defined over a nondistin-
guishable general frame. The usual proof that, for every model, there exists an FP-
equivalent distinguishable model can be immediatly converted into a proof of the
fact that, among the FP-general frames, for every general frame there exists an FP-
equivalent distinguishable frame. On the other hand, each example among Exam-
ples2.212 4land Theorem B9]provides an example of a US-general frame without
any US-equivalent distinguishable frame; in these casesit isin fact sufficient to con-
sider the IT generated by those sets containing points with the same valuation. So,
from Example[2.2] we obtain that the US-general frame (Ty, Ry, IT;), where [T, =
{2, T1}, iswithout any US-equivalent distinguishable frame; and the same happens
for (T, Ry, ITo), where IT, = {@, Z, {2k : k € Z}, {2k+ 1: k € Z}}, for (T3, Rs, I13),
where T3 = {0, R, {X: 2k < x < 2k+ 1, ke Z}, {x:2k+1<x < 2k+ 2 ke Z}},
andfor (T4, Ry, I14) (seeTheorem@, where IT, contains @ and al possible unions
of the sets {x, X'} for x € {w, v, u, t}. As observed in the introduction, the fact that
there exist general frames without any US-equivalent distinguishable frame says that
this concept is not the appropriate concept for a general treatment of the US-logics.
In fact these structures cannot be interpreted as dual spaces of those algebras obtained
by adding to Boolean algebras two binary operators u and s satisfying the identities
that correspond to the theoremsin TL s (i.e., the minimal US-logic, see [[]).
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So, in analogy with the case of models, we give the following definition of an
e-frame.

Definition 4.1 A US-general e-frameisafour-tuple (A, R, 8, IT), where (A, R, IT)
isaUS-general frame and f is defined as in Definition[3.1]

Afour-tuple (A, R, 8, V) isane-mode over (A, R, 8, IT) iff, forevery pe P, V(p) €
IT; on the other hand, if (A, R, 8, V) isan emodel, then (A, R, 8, ITy) isa US
general e-frame. Therefore we have the following result.

Theorem 4.2

1. For each US-formula ¢, ¢ istruein every Kripke frame iff ¢ istruein every
US-general e-frame;

2. for every US-general frame there exists an equivalent distinguishable US-
general e-frame.

Proof:

1. Both conditions are equivalent to ¢ € TLys (see Theorem[3.2).

2. Let (T, R, IT) be a US-general frame and, for every w € T, let [w]g =
{fv:ve X iff we Xforevery X e IT}. Let us consider the four-tuple
(T',R, B, IT",where T' = {[w] 7 : w e T}, R and 8’ aredefined asin 1-2in
the proof of LemmaB.5]and 17" = {{{w]y : w € X} : X € IT}. From the proof
of Lemmal3.5land Theorem[3.6lwe obtain that thisisaUS-general e-frame and
(T, R, IT) =ys (T', R, B/, IT'). O

O
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