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JAMES H. SCHMERL

Abstract The theory PA(aa), which is Peano Arithmetic in the context of sta-
tionary logic, is shown to be consistent. Moreover, the first-order theory of the
class of finitely determinate models of PA(aa) is characterized.

1 Introduction It has been known since the work of Gödel in 1931 that incom-
pleteness is ubiquitous, being a property of all sufficiently rich systems such as Peano
Arithmetic. This incompleteness phenomenon would not materially affect ordinary
mathematical practice if only contrived sentences (for example, Con(PA)) were in-
dependent. However, the celebrated Paris-Harrington Theorem of 1977 and many
other theorems discovered since then show that there are mathematically interesting
sentences in the language of PA that PA does not decide.

One approach to dealing with the incompleteness of PA is to consider PA in the
context of logics which are more expressive than first-order logic but retain some of
first-order logic’s more desirable features, such as compactness. This approach has
been taken in the papers Macintyre [7], Morgenstern [9], and Schmerl [10] and [11].
Closely related work involving ZF appears in Kakuda [4] and Kaufmann [6].

In this paper the theory PA(aa), which is Peano Arithmetic in the context of sta-
tionary logic, is investigated. Stationary logic, which was inspired by the work of
Shelah [12], was thoroughly studied in the fundamental paper of Barwise, Kaufmann
and Makkai [1], where its completeness and compactness were proved. It will be
shown here that PA(aa) is consistent. A precise description of the first-order con-
sequences of PA(aa) would certainly be hoped for (and was essentially asked for in
Remark 4.8 of [6]), but we are able to determine only the first-order theory of the
finitely determinate models of PA(aa).

Let CA be the second-order theory of arithmetic consisting of PA, the induc-
tion axiom, and all instances of the comprehension scheme. Recall that the Paris-
Harrington Principle is a consequence of (theories much weaker than) CA. Let (Det)
denote the scheme in stationary logic for finite determinateness. The main results of
this paper are summarized in the following theorem.

Theorem 1.1 The first-order consequences of PA(aa) + (Det) are precisely the
same as the first-order consequences of CA.
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2 Preliminaries Let LPA be one of the usual languages appropriate for PA. If L ⊇
LPA is a larger language, then PA∗ is derived from PA by adjoining all instances of
the induction scheme for L-formulas. We formalize PA∗ so that there are terms for
all Skolem functions. In particular, for each n < ω there is a term 〈x0, x1, . . . , xn−1〉
for n-tuple formation.

Now let L ⊇ LPA be a countable language and let T ⊇ PA∗ be a completion of
PA∗. By a type p(x) over T we mean a maximal set of 1-ary L-formulas consistent
with T. A type p(x) is unbounded if it contains the formula t < x for each constant
term t. Gaifman [3] defined minimal types and showed that they exist over any T.
It follows from Theorem 3.9 of Mills [8] that a type p(x) is minimal iff p(x) is un-
bounded and for any (1 + n)-ary L-formula ϕ(x, y0, y1, . . . , yn−1) there is a formula
θ(x) in p(x) such that the sentence

∀x ∃w[∀ ȳ(w < y0 < y1 < · · · < yn−1 ∧ θ(y0) ∧ · · · ∧ θ(yn−1) −→ ϕ(x, ȳ))

∨ ∀ ȳ(w < y0 < y1 < · · · < yn−1 ∧ θ(y0) ∧ · · · ∧ θ(yn−1) −→ ¬ϕ(x, ȳ))]

is in T.
Gaifman [3] discusses iterated extensions. Consider some completion T ⊇ PA∗,

and let M |= T. Fix a minimal type p(x) over T. If (I,<) is a linearly ordered set (for
which M ∩ I = ∅), then there is a model M(I) which is generated by M ∪ I such that
whenever a ∈ M, b, c ∈ I, and b ≤ c, then M(I) |= a < b ≤ c and b realizes p(x).
The model M(I), which is unique up to isomorphism over M ∪ I, is the Ith canonical
iterated extension of M. The set I is indiscernible in M(I). We write J < I if J ⊆ I
is a proper initial segment of I (that is, J �= I but possibly J = ∅). If J < I then
M(I) is an elementary end extension of M(J). Thus, if M is countable and (I,<) is
ω1-like, then M(I) is ω1-like.

We will need second-order structures of the form (M, X ), where M |= PA∗ and
X ⊆ ℘(M). If X ∈ X and m ∈ M, then (X)m = {a ∈ M : 〈m, a〉 ∈ X}. The second-
order LPA-theory CA consists of PA, the induction axiom, and the scheme of com-
prehension axioms

∃X∀x(x ∈ X ←→ ϕ(x)),

where ϕ(x) is a second-order formula which can have undisplayed first or second-
order free variables other than X. The second-order LPA-theory AC consists of CA
plus the scheme of choice axioms

∀x∃Xϕ(X, x) −→ ∃X∀xϕ((X)x, x),

where ϕ(X, x) may have additional undisplayed free variables. It is well known that
if (M, X ) |= CA, then there is X0 ⊆ X such that (M, X0) |= C A + AC. For languages
L ⊇ LPA, we define the second-order L-theories CA∗ and AC∗ in an analogous way.

If M |= PA∗, then Def (M) is the set of parametrically definable subsets of M,
and Def0(M) is the set of subsets of M which are definable without parameters.

Stationary logic is an extension of first-order logic formed by adjoining the
second-order “almost all” quantifier aa. We give a brief description of it here. For
any set A let ℘ω1 (A) be the set of countable subsets of A. A set X ⊆ ℘ω1 (A) is
closed iff whenever s0 ⊆ s1 ⊆ s2 ⊆ · · · is an increasing sequence of elements of
X, then

⋃{sn : n < ω} ∈ X; and X is unbounded iff whenever t ∈ ℘ω1 (A), then
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t ⊆ s ∈ X for some s. To define the satisfaction relation A |= θ, where θ is a for-
mula of stationary logic, adjoin to the usual clauses in the definition of satisfaction
the following clause: A |= aasϕ iff there is a closed, unbounded X ⊆ ℘ω1 (A) such
that for each s ∈ X, A |= ϕ. In other words, A |= aasϕ iff for almost all countable
s ⊆ A, A |= ϕ. By convention, all models for stationary logic are models of the sen-
tence aas ∃x(x �∈ s), and hence are uncountable. Among the valid sentences of sta-
tionary logic are those of the Diagonal Intersection Scheme:

∀x aasϕ(x, s) −→ aas ∀x ∈ sϕ(x, s).

The scheme of finite determinateness, denoted by (Det) and introduced by Kaufmann
[5], is the set of sentences aas0 aas1 . . . aasm−1 ∀x̄[aatϕ(x̄, s̄, t) ∨ aat¬ϕ(x̄, s̄, t)],
where ϕ(x̄, s̄, t) is a formula in which only the displayed variables occur freely. Mod-
els of (Det) are said to be finitely determinate.

Eklof and Mekler [2] studied finitely determinate models and obtained, among
other things, a useful criterion for finite determinateness. Let A be a structure having
cardinality ℵ1. A filtration for A is a sequence 〈Aα : α < ω1〉 of countable substruc-
tures of A such that:

1. if α < β < ω1 then Aα ≺ Aβ ≺ A;

2. if λ < ω1 is a limit ordinal, then Aλ = ⋃{Aα : α < λ};
3. A = ⋃{Aα : α < ω1}.

The following is Theorem 1.3(1) of [2].

Theorem 2.1 (The Eklof-Mekler Criterion) Suppose A has cardinality ℵ1. Then
A is finitely determinate iff there is a filtration 〈Aα : α < ω1〉 for A such that when-
ever k ≤ n < ω, r < ω,α0 < α1 < · · · < αn < ω1, β0 < β1 < · · · < βn < ω1 and
c0, c1, . . . , cr ∈ Aαk ∩ Aβk are such that α j = β j for j < k, then

(A, Aα0 , Aα1 , . . . , Aαn , c0, c1, . . . , cr) ≡
(A, Aβ0 , Aβ1 , . . . , Aβn , c0, c1, . . . , cr).

The theory PA(aa) is the LPA-theory for stationary logic consisting of PA together
with all instances of the induction scheme:

ϕ(0) ∧ ∀x(ϕ(x) −→ ϕ(x + 1)) −→ ∀xϕ(x),

where ϕ(x) is a formula of stationary logic which may have undisplayed free first-
order variables but which has no free second-order variables. The purpose of this
paper is to prove that PA(aa) + (Det) and CA have precisely the same first-order
consequences.

3 Properties of models of PA(aa) In this section we determine some properties of
models of PA(aa).

Proposition 3.1 If N |= PA(aa), then N is ω1-like.
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Proof: Suppose N |= PA(aa), and consider the formula ϕ(x) = aas∀y(y < x −→
y ∈ s). Clearly, N |= ϕ(0) ∧ ∀x(ϕ(x) −→ ϕ(x + 1)), so that N |= ∀xϕ(x). Thus, for
each a ∈ N the set {y ∈ N : y < a} is countable. Each proper initial segment of N is
countable, but N is uncountable; therefore N is ω1-like.

Suppose that N |= PA is ω1-like. Then almost all countable s ⊆ N are cuts of N
such that N|s ≺ N. A subset X ⊆ s is coded if X = s ∩ Y for some Y ∈ Def (N). Let
X (s) be the set of coded subsets of s, and let s∗ = (N|S, X (s)). Notice that if ϕ( ȳ) is
a second-order formula with only the variables y0, y1, . . . , yn−1 free, then there is an
LPA(aa)-formula θ(s, ȳ) having no set quantifiers such that for any elementary cut s
of N (and thus for almost all countable s ⊆ N) and all a0, a1, . . . , an−1 ∈ s, s∗ |= ϕ(ā)

iff (N, s) |= θ(s, ā). �
The sentences of CA that occur as instances of the comprehension scheme involve a
formula ϕ(x) which is allowed to have undisplayed free first and second-order vari-
ables. Let �−CA be the theory consisting of PA together with all instances of the
comprehension scheme in which the formula ϕ(x) does not have free second-order
variables. The following lemma is a consequence of Theorem 1.5 of [10].

Lemma 3.2 CA and �−CA have the same first-order consequences.

The next lemma, with Lemma 3.2, has (the easy) half of the Theorem 1.1 as an im-
mediate consequence.

Lemma 3.3 Suppose N |= PA(aa) + (Det). Then for almost all s ⊆ N, s∗ |=
�−CA.

Proof: Since �−CA contains only countably many sentences, it suffices to show
that for any second-order formula ϕ(x, ȳ) (with only the variables x, y0, y1, . . . , yn−1

free) and for almost all countable s ⊆ N,

s∗ |= ∀ ȳ ∃X ∀x(x ∈ X ←→ ϕ(x, ȳ)).

Let θ(s, ȳ) be an LPA(aa)-formula such that for almost all countable s ⊆ N and all
a0, a1, . . . , an−1 ∈ s;

s∗ |= ∃X ∀x(x ∈ X ←→ ϕ(x, ā)) iff N |= θ(s, ā).

To obtain a contradiction, we now assume that

N |= ¬aas ∀y0, y1, . . . , yn−1 ∈ s θ(s, ȳ).

By the Diagonal Intersection Scheme,

N |= ∃ ȳ ¬aas θ(s, ȳ),

and then by (Det),
N |= ∃ ȳ aas ¬θ(s, ȳ).

Then let a0, a1, . . . , an−1 ∈ N be such that

N |= aas ¬θ(s, ā).



564 JAMES H. SCHMERL

Let B = {x ∈ N : N |= aas [s∗ |= ϕ(x, ā)]}, so N |= ∀x(x ∈ B ←→ aas [s∗ |=
ϕ(x, ā)]). Then by (Det), N |= ∀x aas (x ∈ B ←→ [s∗ |= ϕ(x, ā)]), and therefore,
by the Diagonal Intersection Scheme, N |= aas ∀x ∈ s(x ∈ B ←→ [s∗ |= ϕ(x, ā)]).
But B ∩ s ∈ X (s) for each s, so that for almost all countable s ⊆ N, s∗ |= ∃X ∀x(x ∈
X ←→ ϕ(x, ā)). This is a contradiction. �

Corollary 3.4 If N |= PA(aa) + (Det), then there is (M, X ) |= CA such that M ≡
N.

4 Constructing the models The aim of this section is to construct models of
PA(aa) + (Det). More specifically, for any model M |= PA whose theory is con-
sistent with the first-order consequences of CA, we will construct N ≡ M such that
N |= PA(aa) + (Det). The existence of such a model N, together with Corollary 3.4,
constitutes the proof of Theorem 1.1.

It can be assumed, without loss of generality, that the model M with which
we start is countable. Moreover, it can be assumed that (M, X ) |= CA for some
countable X . As mentioned in Section 2, it can further be assumed that (M, X ) |=
CA+AC.

Consider some countable (M, X ) |= CA+AC, which is to be fixed for the re-
mainder of this section. Let X = {A0, A1, A2, . . .} and let M∗ = (M, A0, A1, A2,

. . .), which is an L-structure for some L ⊇ LPA. Clearly M∗ |= PA∗ and Def (M∗) =
Def0(M∗) = X . Consider some minimal type p(x) over Th(M∗), which is also to
be fixed for the remainder of this section. Throughout this section we will be taking
canonical iterated extensions tacity understood to be relative to this minimal type.

Lemma 4.1 Suppose that (I,<) is a linearly ordered set and that n < ω, and let
I0 < I1 < · · · < In−1 < I. Let J ⊆ I be such that if we set Ji = J ∩ Ii for i < n, then
J0 < J1 < · · · < Jn−1 < J. Then

(M∗(J), M∗(J0), M∗(J1), . . . , M∗(Jn−1))

≺ (M∗(I), M∗(I0), M∗(I1), . . . , M∗(In−1)).

Proof: It will be convenient to let In = I and Jn = J. We introduce the following
notation: if F ⊆ I, then M′(F) = (M∗(F), M∗(F ∩ I0), M∗(F ∩ I1), . . . , M∗(F ∩
In)). With this notation, our objective is to prove that M′(J) ≺ M′(I).

Observe that it suffices to prove the lemma just for finite I. For, suppose that
we have done so, and then let F0 ⊆ J be finite such that F0 ∩ (Ii+1\Ii) �= ∅ for each
i < n. Consider the directed system

DI = {M′(F) : F0 ⊆ F ⊆ I and F is finite},

which is directed by extension. Let DJ be its directed subsystem consisting of those
M′(F) in DI for which F ⊆ J. Using that the lemma has been proved for finite I, we
see that DI and DJ are directed by elementary extension and their unions are respec-
tively M′(I) and M′(J). Then, for any M′(F) in DI we see that M′(F ∩ J) ∈ DJ

and that M′(F ∩ J) ≺ M′(F) ≺ M′(I) and M′(F ∩ J) ≺ M′(J), from which it easily
follows that M′(J) ≺ M′(I).
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Furthermore, it clearly suffices to prove the lemma just for finite I and J for
which |I| = |J|+1 = n +1 ≥ 2. So let I = {a0, a1, . . . , an}, where a0 < a1 < · · · an,
and let m ≤ n be such that J = I\{am}. For each i ≤ n let

Ii =
{ {a0, a1, . . . , ai−1} if i < m,

{a0, a1, . . . , ai} if i > m,

and for i = m there are two possibilities: either Im = {a0, a1, . . . , am−1} or Im =
{a0, a1, . . . , am}. Then Ji = Ii\{am} for each i ≤ n. Let h : n + 1 → n + 2 be such
that Ii = {a0, a1, . . . , ah(i)−1} for each i ≤ n.

Let L ′ be the language appropriate for M′(I); specifically, let L ′ = L ∪{U0, U1,

. . . , Un}, where M∗(Ii) is the interpretation of Ui in M′(I), and M∗(Ji) is its inter-
pretation in M′(J).

In order to prove that M′(J) ≺ M′(I), we consider an arbitrary L ′-formula
ϕ(v0, v1, . . . , vn), with free variables v0, v1, . . . , vn, intending to prove: if M′(I)
|= ϕ(ā), then there is b ∈ M∗(J) such that M′(J) |= ϕ(a0, a1, . . . , am−1, b, am+1,

. . . , an).
Without loss of generality, we can assume that ϕ(v̄) has the form (Q0x0 ∈

Us0 )(Q1x1 ∈ Us1 ) . . . (Qtxt ∈ Ust )ψ(x̄, v̄), where for each j ≤ t, Q j is one of the
quantifiers ∃ or ∀ and s j ≤ n, and ψ(v̄) is an L-formula.

We are about to define a second-order formula σ(v̄) for which we will need some
second-order variables. For each j < ω, we will use the second-order variable X j

to range over functions. First, obtain the formula ψ′( X̄, v̄) by replacing each free
occurrence of x j in ψ(x̄, v̄) by

X j(〈v0, v1, . . . , vh(s j)−1〉).

Then let σ(v̄) be the formula (Q0 X0)(Q1 X1) . . . (Qt Xt)ψ
′( X̄, v̄)

Let X0 = Def0(M∗(I)). Think of each X ∈ X0 as a function; that is, X(a) = b
iff either b is the unique element for which 〈a, b〉 ∈ X or else there is no such unique
element and b = 0. Notice that for any b ∈ M∗(I), b ∈ M∗(I j) iff there is X ∈ X0

such that
b = X (〈a0, a1, . . . , ah(s j)−1〉).

Therefore, it is clear that M′(I) |= ϕ(ā) iff (M∗(I), X0) |= σ(ā).
Since (M, X ) |= CA, there is B ∈ X such that (M, X ) |= ∀v̄(〈v0, v1, . . . , vn〉 ∈

B ↔ σ(v̄)). Then, since p(x) is a minimal type over Th(M∗), there is a formula θ(x)

in p(x) such that either

M∗ |= ∀v̄(θ<(v̄) −→ 〈v0, v1, . . . , vn〉 ∈ B),

or
M∗ |= ∀v̄(θ<(v̄) −→ 〈v0, v1, . . . , vn〉 �∈B),

where we have let θ<(v̄) be an abbreviation for v0 < v1 < · · · < vn ∧ θ(v0)∧ θ(v1)∧
· · · ∧ θ(vn).

We will show that if M′(I) |= ϕ(ā), then the first alternative holds. Suppose,
to the contrary, that M′(I) |= ϕ(ā) and M∗ |= ∀v̄(θ<(v̄) −→ 〈v0, v1, . . . , vn〉 �∈B).
Then (M, X ) |= ∀v̄(θ<(v̄) → ¬σ(v̄)). Now construct a sentence γ as follows: first,
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obtain ψ′′( X̄, v̄) from ψ′( X̄, v̄) by replacing each occurrence of X j, where Q j is ∀,
by (X j)v̄. Then define γ to be the sentence

γ = (Q0 X0)(Q1 X1) . . . (Qt Xt)[∃v̄(θ<(v̄) ∧ ψ′′( X̄, v̄))].

It is easy to see that

AC∗ � ∀v̄(θ<(v̄) −→ ¬σ(v̄)) ←→ ¬γ

and
� ¬γ −→ ∀v̄(θ<(v̄) −→ ¬σ(v̄)).

It follows from (M∗(I), X0) |= σ(ā) that (M∗(I), X0) |= γ, from which it easily fol-
lows that (M∗, X ) |= γ. Then, since (M∗, X ) |= AC∗, it follows that (M∗, X ) |=
∃v̄(θ<(v̄) ∧ σ(v̄)), which is a contradiction. This proves M∗ |= ∀v̄(θ<(v̄) −→
〈v0, v1, . . . , vn〉 ∈ B).

To complete the proof of the lemma, assume M′(I) |= ϕ(ā), intending to prove
M′(J) |= ϕ(a0, a1, . . . , am−1, b, am+1, . . . , an) for some b ∈ M ′(J).

Let t1(v) be the Skolem term which is “the largest element x for which x <

v ∧ θ(x)” and let t2(v) be the Skolem term which is “the smallest element x for
which x > v ∧ θ(x).” We will use t1(v) if Im = {a0, a1, . . . , am−1}, and t2(v) if
Im = {a0, a1, . . . , am}. Since the two cases are so similar, we will consider only the
second one. So, assume that Im = {a0, a1, . . . , am}.

Let θ′(x) ∈ p(x) be such that M∗ |= ∀x(θ′(x) −→ θ(x)) ∧ ∀xy∃z(θ′(x) ∧
θ′(y) ∧ x < y −→ x < z < y ∧ θ(z)). Clearly there is such a formula θ′(x); ei-
ther the formula asserting that x is the kth element for which θ(x) for some even
k, or the formula asserting the same thing for odd k, will work. Let b ∈ M∗(I)
be such that M∗(I) |= b = t2(am−1). (If m = 0, then let b be the smallest such
that M∗(I) |= θ(b).) Notice that b ∈ M∗(Jm) ⊆ M∗(J). We claim that M∗(J) |=
ϕ(a0, a1, . . . , am−1, b, am+1, . . . , an).

First, observe that M∗(I) |= a0 < a1 < · · · < an ∧ θ′(a0) ∧ · · · ∧ θ′(an). There-
fore, M∗(I) |= a0 < a1 < · · · < am−1 < b < am+1 < · · · < an ∧ θ(a0) ∧ · · · ∧
θ(am−1) ∧ θ(b) ∧ θ(am+1) ∧ · · · ∧ θ(an). Next, let σ′(v0, v1, . . . , vm−1, vm+1, . . . ,

vn) be the formula obtained from σ(v̄) by replacing each free occurrence of the
variable vm with t2(vm−1). Then, as we saw before, M∗ |= ∀v̄(θ′(v0) ∧ · · · ∧
θ′(vm−1) ∧ θ′(vm+1) ∧ · · · ∧ θ′(vn) ∧ v0 < v1 < · · · < vm−1 < vm+1 < · · · < vn −→
σ′(v0, v1, . . . , vm−1, vm+1, . . . , vn)). Thus, it easily follows that M∗(J) |= ϕ(a0,

. . . , am−1, b, am+1, . . . , an). �

Corollary 4.2 If (I,<) is ω1-like, then M∗(I) is finitely determinate.

Proof: Since (I,<) is ω1-like, it has a filtration 〈Iα : α < ω1〉 such that Iα < Iβ < I
whenever α < β < ω1. Then 〈M∗(Iα) : α < ω1〉 is a filtration for M∗(I). We will
show that this filtration satisfies the Eklof-Mekler Criterion.

Let k, n, r, α0, α1, . . . , αn, β0, β1, . . . βn, c0, c1, . . . , cr be as in that criterion.
Pick some

a j ∈ Iα j+1\Iα j

and
b j ∈ Iβ j+1\Iβ j
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for j = k, k + 1, . . . , n − 1 and pick

an ∈ I\Iαn

and
bn ∈ I\Iβn .

Let
J = (Iαk ∩ Iβk ) ∪ {ak, ak+1, . . . , an}

and
K = (Iαk ∩ Iβk ) ∪ {bk, bk+1, . . . , bn}.

Then Lemma 4.1 implies that M′(J) ≺ M′(I) and M′(K) ≺ M′(I). On the other
hand, there is an isomorphism f : M∗(J) −→ M∗(K) which is the identity on

M∗(Iαk ∩ Iβk )

and which maps
M∗(J) ∩ Iαi

onto
M∗(K) ∩ Iβi

for i ≤ n. Therefore (M′(J), c0, c1, . . . , cr) ≡ (M′(K), c0, c1, . . . , cr), so the
Eklof-Mekler Criterion is verified. �

Remark 4.3 In some situations it is much easier to prove that M∗(I) is finitely de-
terminate. For example, if (I,<) has order type η · ω1 (where η is the order type of
the rationals (Q,<)), then in the Eklof-Mekler Criterion we can easily get an iso-
morphism, not just elementary equivalence, thereby getting the stronger property of
M∗(I) which might be referred to as “fully determinate.” For this conclusion we do
not even need that (M∗, Def (M∗)) |= CA+AC, but only that M∗ |= PA∗. However,
Lemma 4.1, its proof, and the ideas contained therein will be useful in the proof of
the next lemma.

Lemma 4.4 Suppose that (I,<) is a linearly ordered set and that n < ω, and let
I0 < I1 < · · · < In = I. Let M′(I) = (M∗(I), M∗(I0), M∗(I1), . . . , M∗(In)). Sup-
pose D ∈ Def (M′(I)). Then D ∩ M∗(I0) ∈ Def (M∗(I0)).

Proof: By Lemma 4.1 we can assume that I = {a1, a2, . . . , an}, where a1 < a2 <

· · · < an and I j = {a1, a2, . . . , a j} for j ≤ n. Let ϕ(v0, v1, . . . , vn) be an L-formula
and suppose that D = {b ∈ M ′(I) : M′(I) |= ϕ(b, ā)} and, without loss of generality,
that D ⊆ M∗ = M∗(I0). As in the proof of Lemma 4.1, we can assume that ϕ(v̄) has
the form

(Q0x0 ∈ Ur0 )(Q1x1 ∈ Ur1 ) . . . (Qtxt ∈ Urt )ψ(x̄ v̄),

where for each j ≤ t, Q j is one of the quantifiers ∃ or ∀ and s j ≤ n, and ψ(x̄, v̄) is an
L-formula. Similar to what was done in the proof of Lemma 4.1, obtain the formula
ψ′( X̄, v̄) by replacing each free occurrence of x j in ψ(x̄, v̄) by X j(〈v1, v2, . . . , v j〉).
Then define

σ(v̄) = (Q0 X0)(Q1 X1) . . . (Qt Xt)ψ
′( X̄, v̄).
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Then for each b ∈ M∗

M′(I) |= ϕ(b, ā) iff (M∗(I), Def0(M
∗(I)) |= σ(b, ā).

There is B ∈ X such that

(M, X ) |= ∀v̄(〈v0, v1, . . . , vn〉 ∈ B ←→ σ(v̄)).

Since p(x) is a minimal type over Th(M∗), there is a formula θ(x) in p(x) such that

M∗ |= ∀v0∃w[∀v1v2 . . . vn(w < v1 ∧ θ<(v1, . . . , vn) −→ 〈v0, v1, . . . , vn〉 ∈ B)

∨ ∀v1v2 . . . vn(w < v1 ∧ θ<(v1, . . . , vn) −→ 〈v0, v1, . . . , vn〉 �∈B)].

Obtain ψ′′( X̄, v̄) from ψ′( X̄, v̄) by replacing each occurrence of X j,where Q j is ∀,
by

(X j)〈v1,v2,...,vn〉.

Then define

γ(v0) = (Q0 X0)(Q1 X1) . . . (Qt Xt)[∃v1, . . . , vn(θ
<(v1, . . . , vn) ∧ ψ′′( X̄, v̄))].

It is easy to see that

AC∗ � ∀v0[∀v1 . . . vn(θ
<(v1, . . . , vn) −→ ¬σ(v̄)) ←→ ¬γ(v0)]

and
� ∀v0[¬γ(v0) −→ ∀v1 . . . vn(θ

<(v1, . . . , vn) −→ ¬σ(v̄))].

Thus, if b ∈ D, then

M∗ |= ∃w∀v1 . . . vn(w < v1 ∧ θ<(v1, . . . , vn) −→ 〈b, v̄〉 ∈ B)

and if b ∈ M∗\D, then

M∗ |= ∃w∀v1 . . . vn(w < v1 ∧ θ<(v1, . . . , vn) −→ 〈b, v̄〉 �∈B)

Therefore, the formula

∃w∀v1 . . . vn(w < v1 ∧ θ<(v1, . . . , vn) −→ 〈x, v̄〉 ∈ B)

defines D in M∗. �
The following theorem completes the proof of Theorem 1.1.

Theorem 4.5 Suppose (M, X ) |= CA+AC is countable, (I,<) is ω1-like, and N =
M∗(I) � LPA. Then N |= PA(aa)+(Det).

Proof: By Corollary 4.2, M∗(I) is finitely determinate, so clearly N also is. We
now prove that N |= PA(aa). Suppose a ∈ N and ϕ(x, y) is an LPA(aa) for-
mula in which the only free variables are the first-order variables x and y. Sup-
pose D = {b ∈ N : N |= ϕ(b, a)} is such that 0 ∈ D and that x + 1 ∈ D when-
ever x ∈ D. Since N is finitely determinate, we can assume that ϕ(x, y) has the
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form aas0 aas1 . . . aasn−1ψ(s̄, x, y), where ψ(s̄, x, y) has no second-order quan-
tifiers. By Lemma 4.4, whenever I0 < I1 < · · · < In = I, there is a formula in
the language of M∗ with parameters from M∗(I0) defining {b ∈ M∗(I0) : N |=
ψ(M∗(I0), . . . , M∗(In−1), b, a)}. It is clear from Lemma 4.1 that this defining for-
mula depends only on I0. By Fodor’s Lemma, there is a single formula θ(x) such
that for a stationary set of I0, whenever I0 < I1 < · · · < In = I, then θ(x) defines
{b ∈ M∗(I0) : N |= ψ(M∗(I0), . . . , M∗(In−1), b, a)} in M∗(I0). Then it easily fol-
lows that θ(x) defines D in M∗(I). But M∗(I) |= PA∗, so D = M∗(I) = N. �

REFERENCES

[1] Barwise, J., M. Kaufmann, and M. Makkai, “Stationary logic,” Annals of Mathematical
Logic, vol. 13 (1978), pp. 171–224; (correction in Annals of Mathematical Logic, vol. 20
(1981), pp. 231–232). Zbl 0372.02031 MR 82f:03031a 1

[2] Eklof, P., and A. Mekler, “Stationary logic of finitely determinate structures,” Annals of
Mathematical Logic, vol. 17 (1979), pp. 227–270. Zbl 0448.03025 MR 82f:03033 2, 2

[3] Gaifman, H., “Models and types of Peano’s arithmetic,” Annals of Mathematical Logic,
vol. 9 (1976), pp. 223–306. Zbl 0332.02058 MR 53:10577 2, 2

[4] Kakuda, Y., “The role of a filter quantifier in set theory,” pp. 16–95 in Mathematical
Logic and Applications, Lecture Notes in Mathematics vol. 1388, edited by J. Shinoda
et al., Springer-Verlag, Berlin, 1989. Zbl 0673.03044 MR 90m:03090 1

[5] Kaufmann, M., Some results in stationary logic, PhD. dissertation, University of Wis-
consin, 1978. 2

[6] Kaufmann, M., “Set theory with a filter quantifier,” The Journal of Symbolic Logic,
vol. 48 (1983), pp. 263–287. Zbl 0518.03007 MR 85d:03076 1, 1

[7] Macintyre, A., “Ramsey quantifiers in arithmetic,” pp. 186–210 in Model Theory of Al-
gebra and Arithmetic, Lecture Notes in Mathematics vol. 834, edited by L. Pacholski et
al., Springer-Verlag, Berlin, 1980. Zbl 0464.03031 MR 83j:03099 1

[8] Mills, G., “Substructure lattices of models of arithmetic,” Annals of Mathematical
Logic, vol. 16 (1979), pp. 145–180. Zbl 0427.03057 MR 81i:03105 2

[9] Morgenstern, C., “On generalized quantifiers in arithmetic,” The Journal of Symbolic
Logic, vol. 47 (1982), pp. 187–190. Zbl 0487.03019 MR 84g:03051 1

[10] Schmerl, J. H., “Peano arithmetic and hyper-Ramsey logic,” Transactions of the Amer-
ican Mathematical Society, vol. 296 (1986), pp. 481–505. Zbl 0626.03030
MR 88i:03108 1, 3

[11] Schmerl, J. H., and S. G. Simpson, “On the role of the Ramsey quantifiers in first-order
arithmetic,” The Journal of Symbolic Logic, vol. 47 (1982), pp. 423– 435.
Zbl 0492.03015 MR 83j:03062 1

[12] Shelah, S., “Generalized quantifiers and compact logic,” Transactions of the American
Mathematical Society, vol. 204 (1975), pp. 342–364. Zbl 0322.02010 MR 51:12510 1

Department of Mathematics
University of Connecticut
Storrs, CT 06269
email: schmerl@uconnvm.uconn.edu

http://www.emis.de/cgi-bin/MATH-item?0372.02031
http://www.ams.org/mathscinet-getitem?mr=82f:03031a
http://www.emis.de/cgi-bin/MATH-item?0448.03025
http://www.ams.org/mathscinet-getitem?mr=82f:03033
http://www.emis.de/cgi-bin/MATH-item?0332.02058
http://www.ams.org/mathscinet-getitem?mr=53:10577
http://www.emis.de/cgi-bin/MATH-item?0673.03044
http://www.ams.org/mathscinet-getitem?mr=90m:03090
http://www.emis.de/cgi-bin/MATH-item?0518.03007
http://www.ams.org/mathscinet-getitem?mr=85d:03076 
http://www.emis.de/cgi-bin/MATH-item?0464.03031
http://www.ams.org/mathscinet-getitem?mr=83j:03099
http://www.emis.de/cgi-bin/MATH-item?0427.03057
http://www.ams.org/mathscinet-getitem?mr=81i:03105
http://www.emis.de/cgi-bin/MATH-item?0487.03019
http://www.ams.org/mathscinet-getitem?mr=84g:03051
http://www.emis.de/cgi-bin/MATH-item?0626.03030
http://www.ams.org/mathscinet-getitem?mr=88i:03108
http://www.emis.de/cgi-bin/MATH-item?0492.03015
http://www.ams.org/mathscinet-getitem?mr=83j:03062
http://www.emis.de/cgi-bin/MATH-item?0322.02010
http://www.ams.org/mathscinet-getitem?mr=51:12510
mailto: schmerl@uconnvm.uconn.edu

