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JAMES H. SCHMERL

Abstract Thetheory PA(aa), whichisPeano Arithmetic inthe context of sta-
tionary logic, is shown to be consistent. Moreover, the first-order theory of the
class of finitely determinate models of PA(aa) is characterized.

1 Introduction It has been known since the work of Godel in 1931 that incom-
pletenessis ubiquitous, being aproperty of all sufficiently rich systems such as Peano
Arithmetic. This incompleteness phenomenon would not materially affect ordinary
mathematical practice if only contrived sentences (for example, Con(PA)) were in-
dependent. However, the celebrated Paris-Harrington Theorem of 1977 and many
other theorems discovered since then show that there are mathematically interesting
sentences in the language of PA that PA does not decide.

One approach to dealing with the incompl eteness of PA isto consider PA in the
context of logics which are more expressive than first-order logic but retain some of
first-order logic’s more desirable features, such as compactness. This approach has
been taken in the papers Macintyre [[Z], Morgenstern [[Q], and Schmerl [1Q] and [ILT].
Closely related work involving ZF appears in Kakuda [[4] and Kaufmann [E].

In this paper the theory PA(aa), which is Peano Arithmetic in the context of sta-
tionary logic, is investigated. Stationary logic, which was inspired by the work of
Shelah [[12], was thoroughly studied in the fundamental paper of Barwise, Kaufmann
and Makkai [, where its completeness and compactness were proved. It will be
shown here that PA(aa) is consistent. A precise description of the first-order con-
sequences of PA(aa) would certainly be hoped for (and was essentially asked for in
Remark 4.8 of [6]), but we are able to determine only the first-order theory of the
finitely determinate models of PA(aa).

Let CA be the second-order theory of arithmetic consisting of PA, the induc-
tion axiom, and all instances of the comprehension scheme. Recall that the Paris-
Harrington Principle isaconsequence of (theories much weaker than) CA. Let (Det)
denote the scheme in stationary logic for finite determinateness. The main results of
this paper are summarized in the following theorem.

Theorem 1.1  The first-order consequences of PA(aa) + (Det) are precisely the
same as the first-order consequences of CA.
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2 Preliminaries Let Lpp beone of the usual languages appropriate for PA. If L D
Lpa isalarger language, then PA* is derived from PA by adjoining al instances of
the induction scheme for L-formulas. We formalize PA* so that there are terms for
all Skolem functions. In particular, for each n < w thereisaterm (Xg, X1, ..., Xn_1)
for n-tuple formation.

Now let L D Lpa be acountable language and let T © PA* be a completion of
PA*. By atype p(x) over T we mean amaximal set of 1-ary L-formulas consistent
with T. A type p(x) is unbounded if it contains the formulat < x for each constant
term t. Gaifman [@ defined minimal types and showed that they exist over any T.
It follows from Theorem 3.9 of Mills [B] that atype p(x) is minimal iff p(x) isun-
bounded and for any (1 + n)-ary L-formulae(X, Yo, Y1, - - -, Yn_1) thereisaformula
A(x) in p(x) such that the sentence

YXFw[VY(w < Yo < Y1 <+ < Yn-1AO(Yo) A+ AB(Yn-1) —> @(X, ¥))
VoVY(w < Yo <Y1 < <Yn-1AO(Yo) A AB(Yno1) —> —o(X, ¥))]
isinT.

Gaifman [E] discussesiterated extensions. Consider some completion T 2 PA*,
andletM = T. Fix aminimal type p(x) over T. If (1, <) isalinearly ordered set (for
which M N | = @), thenthereisamodel M (1) whichisgenerated by M U | such that
wheneverae M, b,ce l,andb <c,then M (l) =a < b < cand brealizes p(x).
Themodel M (1), whichisunique up toisomorphismover M U |, isthe Ith canonical
iterated extension of M. Theset | isindiscerniblein M (1). WewriteJ < I if JC |
is a proper initial segment of | (that is, J # | but possibly J = @). If J < | then
M (1) isan elementary end extension of M (J). Thus, if M iscountableand (I, <) is
w1-like, then M (1) iswq-like.

We will need second-order structures of theform (M, X), whereM = PA* and
XC M) If Xe Xandme M, then (X)m={ae M: (m, a) € X}. The second-
order Lpa-theory CA consists of PA, the induction axiom, and the scheme of com-
prehension axioms

AXVX(X € X <— ¢(X)),

where ¢(X) is a second-order formula which can have undisplayed first or second-
order free variables other than X. The second-order Lpa-theory AC consists of CA
plus the scheme of choice axioms

VxIXp(X, X) —> IXVXp((X)x, X),

where ¢ (X, X) may have additional undisplayed free variables. It iswell known that
if (M, X) = CA,thenthereisXp C X suchthat (M, Xp) = CA+ AC. Forlanguages
L D Lpa, we define the second-order L-theories CA* and AC* in an analogous way.
If M &= PA*, then Def (M) isthe set of parametrically definable subsets of M,
and Defp(M) isthe set of subsets of M which are definable without parameters.
Stationary logic is an extension of first-order logic formed by adjoining the
second-order “almost al” quantifier aa. We give a brief description of it here. For
any set A let #,, (A) be the set of countable subsets of A. A set X C 8, (A) is
closed iff whenever s € 51 € s, C --- is an increasing sequence of elements of
X, then (J{sh : n < w} € X; and X is unbounded iff whenever t € €, (A), then
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t € se X for somes. To define the satisfaction relation A = 6, where 0 is afor-
mula of stationary logic, adjoin to the usual clauses in the definition of satisfaction
the following clause: A = aasy iff thereis a closed, unbounded X < &, (A) such
that for each s € X, A = ¢. In other words, A = aasyp iff for amost all countable
sC A A = ¢. By convention, all modelsfor stationary logic are models of the sen-
tence aasax(x ¢ s), and hence are uncountable. Among the valid sentences of sta-
tionary logic are those of the Diagonal Intersection Scheme:

vxaasp(X,S) —> aasvx € sp(X, S).

The scheme of finite determinateness, denoted by (Det) and introduced by Kaufmann
[5], is the set of sentences aaspaas; . .. aasy_1 VX[aate(X, §, t) Vv aat—¢(X, §, t)],
where (X, §, t) isaformulainwhich only the displayed variables occur freely. Mod-
elsof (Det) are said to be finitely determinate.

Eklof and Mekler [2] studied finitely determinate models and obtained, among
other things, auseful criterion for finite determinateness. Let A be a structure having
cardinality ®;. A filtration for A isasequence (A, : @ < w1) of countable substruc-
tures of A such that:

Lifa<pB<withenA, <Ag<A;
2. if A < wpisalimitordina, then A, = [ J{A, @ < A};
3 A=Ay o < w1}

The following is Theorem 1.3(1) of [2].

Theorem 2.1 (The Eklof-Mekler Criterion)  Suppose A has cardinality ®1. Then
A isfinitely determinate iff thereisafiltration (A, : « < w;) for A such that when-
everk<n<owr<wa<ai<---<ap<wi,Po<pPi1<-<PBn<w and
Co, C1, ..., Cr € Ay N Ag, aresuchthat oj = gj for j <k, then

(A’ AXO’ Axl’ MR Aan’ CO? Cl’ MR Cr) =
(A, AﬁO’ A,Bl’ cey Aﬂn’ Co, C1, ..., Cr).

The theory PA(aa) isthe Lpa-theory for stationary logic consisting of PA together
with all instances of the induction scheme:

P(0) AVX(p(X) —> p(X+ 1)) — VXp(X),

where ¢(x) is aformula of stationary logic which may have undisplayed free first-
order variables but which has no free second-order variables. The purpose of this
paper is to prove that PA(aa) + (Det) and CA have precisely the same first-order
conseguences.

3 Propertiesof modelsof PA(aa) In this section we determine some properties of
models of PA(aa).

Proposition 3.1  If N = PA(aa), then N is w;-like.
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Proof: Suppose N = PA(aa), and consider the formula ¢ (X) = aasvy(y < X —>
y € s). Clearly, N = ¢(0) A VX(p(X) — @(X+ 1)), sothat N = Vxe(X). Thus, for
eacha e Ntheset {y € N:y < a} iscountable. Each proper initial segment of N is
countable, but N is uncountable; therefore N is wq-like.

Supposethat N = PA isw;-like. Then amost all countables € N are cutsof N
such that Njs < N. A subset X C siscodedif X =sNY for someY € Def (N). Let
X (s) bethe set of coded subsetsof s, and let s* = (N|S, X(s)). Noticethat if ¢(y) is
asecond-order formulawith only thevariablesyg, 1, ..., Yn_1 free thenthereisan
Lpa(aa)-formulad(s, y) having no set quantifiers such that for any elementary cut s
of N (andthusfor amost al countables C N) andall ap, ai, ..., an_1 €S, S E¢(a)
iff (N, s) = 6(s, a). a

The sentences of CA that occur asinstances of the comprehension scheme involve a
formula ¢(x) which is allowed to have undisplayed free first and second-order vari-
ables. Let A—CA be the theory consisting of PA together with all instances of the
comprehension scheme in which the formula ¢(x) does not have free second-order
variables. The following lemmais a consequence of Theorem 1.5 of [[10].

Lemma3.2 CAand A—CA havethe same first-order consequences.

The next lemma, with Lemma[B.2] has (the easy) half of the Theorem[I.I]as an im-
mediate consequence.

Lemma3.3 Suppose N &= PA(aa) + (Det). Then for almost all s € N, s* =
A—CA.

Proof: Since A—CA contains only countably many sentences, it suffices to show
that for any second-order formulag(x, ) (withonly thevariablesx, yo, V1, ..., Yn_1
free) and for amost al countable s C N,

S" = VYIAXVX(X € X <— ¢(X, Y)).

Let (s, V) be an Lpa(aa)-formula such that for aimost all countable s € N and all
g, A1, ..., An—1 €S,

S* = IXVX(X € X «—> (X, &) iff NEo(s, a).
To obtain a contradiction, we now assume that
N &= —aasVvyo, Y1, ..., Yn_1 € SO(S, V).
By the Diagonal Intersection Scheme,
N £ 3y—aaso(s, y),

and then by (Det),
N = 3yaas—o(s, V).

Thenletag, ai, ..., ap—1 € N be such that

N = aas—d(s, a).
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Let B={xe N:N E aas[s* & ¢(X, )]}, SON = VX(x € B «— aas[s" =
¢(x,a)]). Then by (Det), N = Vxaas(x € B «<— [S* = ¢(X, &)]), and therefore,
by the Diagonal Intersection Scheme, N = aasVx € s(x € B «— [S* &= ¢(X, @)]).
But BN se X(s) for each s, so that for amost all countables € N, s* = 3XVx(x €
X «<— @(X, a)). Thisisacontradiction. O

Corollary 3.4 IfN = PA(aa) + (Det), thenthereis (M, X) &= CAsuchthat M =
N.

4 Constructing the models  The aim of this section is to construct models of
PA(aa) + (Det). More specifically, for any model M = PA whose theory is con-
sistent with the first-order consequences of CA, we will construct N = M such that
N = PA(aa) + (Det). Theexistence of such amodel N, together with Corollary[3.4]
constitutes the proof of Theorem[L1]

It can be assumed, without loss of generality, that the model M with which
we start is countable. Moreover, it can be assumed that (M, X) = CA for some
countable X. As mentioned in Section 2, it can further be assumed that (M, X) =
CA+AC.

Consider some countable (M, X)) = CA+AC, which is to be fixed for the re-
mainder of thissection. Let X = {Ag, A1, Ay, ...Jandlet M* = (M, Ag, A1, A,
...),whichisan L-structurefor some L O Lpa. Clearly M* = PA* and Def (M*) =
Defp(M*) = X. Consider some minimal type p(x) over Th(M*), which is also to
be fixed for the remainder of this section. Throughout this section we will be taking
canonical iterated extensions tacity understood to be relative to this minimal type.

Lemmad4.l Supposethat (I, <) isalinearly ordered set and that n < w, and let
lo<li<--<lpp < |.Let JC | besuchthatifweset Jy = JN I fori < n, then
<< < Jdho1<J. Then

M*(J), M*(Jo), M*(Jy), ..., M*(In-1))
< (M*(D), M*(lo), M*(l1), ..., M*(In-1)).

Proof: It will be convenienttolet I, = | and J, = J. We introduce the following
notation: if F C |, then M’'(F) = (M*(F), M*(FN lg), M*(FN ly),..., M*(FN
In)). With this notation, our objectiveisto provethat M’(J) < M’(I).

Observe that it suffices to prove the lemma just for finite I. For, suppose that
we have done so, and then let Fy € J befinite such that Fo N (1;,1\1i) # @ for each
i < n. Consider the directed system

D) ={M/(F): Fp € F C | and F isfinite},

which isdirected by extension. Let D beits directed subsystem consisting of those
M’(F) in D, for which F C J. Using that the lemma has been proved for finite |, we
seethat Dy and D are directed by elementary extension and their unions are respec-
tively M’(1) and M’ (J). Then, for any M’(F) in D, weseethat M'(FN J) € D;
andthat M’ (FNJ) <M'(F) <M’(I)andM’(FN J) < M’ (J), fromwhichit easily
followsthat M’ (J) < M’(1).
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Furthermore, it clearly suffices to prove the lemma just for finite | and J for
which|l|=|J|+1=n+1>2 Soletl ={ag, a1, ..., an},Whereag < a; < ---an,
andlet m < nbesuchthat J = I\{an}. Foreachi < nlet

I._ {aO, al, e ey al—]_} |f| <m,
' (a0, ar, ..., &) ifi>m,

and for i = m there are two possibilities: either I, = {ag, a1, ..., an_1} Of Iy =
{ag, a1, ..., am}. Then Jj = lj\{am} foreachi <n. Leth:n+1— n+ 2 besuch
that I; = {ag, &1, ..., ang)—1} foreachi <n.

Let £’ bethelanguage appropriatefor M’(1); specificaly, let L' = LU {Ug, Uy,
.., Un}, where M*(l;j) isthe interpretation of U; in M’(1), and M*(J,) isitsinter-
pretationin M’ (J).

In order to prove that M’(J) < M’(l), we consider an arbitrary £/-formula

¢(vo, v1, ..., vp), With free variables vg, v1, ..., vy, intending to prove: if M’(1)
E ¢(d), thenthereisb € M*(J) suchthat M’ (J) = ¢(ag, a1, ..., 8m-1, b, 8ms1,
..., an).

Without loss of generality, we can assume that ¢(v) has the form (QgXg €
Us,)(Q1X1 € Us)) ... (Qix € Ug) ¥ (X, v), where for each j < t, Qj is one of the
quantifiers3 or ¥V and s; < n, and (v) isan L-formula.

We are about to define asecond-order formulao (v) for whichwewill need some
second-order variables. For each j < w, we will use the second-order variable X;
to range over functions. First, obtain the formula v/ (X, ©) by replacing each free
occurrence of x;j in ¢ (X, v) by

X] ((UO, U1, ..., vh(Sj)*l))‘

Then let o(v) bethe formula (QpXo) (Q1X1) ... (QeX) Y/ (X, ¥)

Let Xo = Defo(M*(1)). Think of each X € Xy asafunction; that is, X(a) = b
iff either b isthe unique element for which (a, b) € X or elsethereisno such unique
element and b = 0. Notice that for any b € M*(I), b € M*(l;) iff thereis X € Xy
such that

b= X((ap, a1, ..., anes;)-1))-

Therefore, it isclear that M’ (1) = ¢(@) iff (M*(1), Xp) = o(d).

Since (M, X) = CA, thereisB € X suchthat (M, X) =VYv({vg, v1, ..., vn) €
B <> o(v)). Then, since p(x) isaminimal type over Th(M*), thereisaformulaé(x)
in p(x) such that either

M* = Vo= (v) — (vo, v1, ..., vp) € B),

or
M* = Vu(0= (v) —> (vo, v1, ..., Un) €B),

wherewe havelet 6= (v) bean abbreviationfor vg < v1 < --- < va AB(vg) A O(v1) A
-+ AB(vp).

We will show that if M’(l) &= ¢(a), then the first alternative holds. Suppose,
to the contrary, that M'(1) = (@) and M* = V(0= (v) —> (vg, v1, ..., vn) €B).
Then (M, X) &= VYu(6=(v) — —o(v)). Now construct a sentence y asfollows: first,
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obtain ¥ (X, v) from v/ (X, ©) by replacing each occurrence of Xj, where Qj isV,
by (Xj);. Then define y to be the sentence

y = (QoX0)(Q1X1) ... (QX)[FB(O= (1) A Y (X, 1))].
Itis easy to see that
AC* = VYu(0= () —> —0o (D)) <— —y

and
F =y — V(0= (v) — —o(D)).

It followsfrom (M*(1), Xp) = o (@) that (M*(l), Xp) = v, fromwhichit easily fol-
lowsthat (M*, X) = y. Then, since (M*, X) = AC*, it followsthat (M*, X) &=
30(6<(v) A o(v)), which is a contradiction. This proves M* = Vu(0<(v) —
(vo, v1, ..., vp) € B).

To complete the proof of the lemma, assume M’ (1) = ¢(a), intending to prove
M'(J) E ¢(ag, &, ..., 8n-1, b, 8ms1, ..., an) for someb e M’(J).

Let t1(v) be the Skolem term which is “the largest element x for which x <
v A O(X)" and let to(v) be the Skolem term which is “the smallest element x for
which x > v A 0(x).” We will use t;(v) if Iy = {ag, a1, ..., an_1}, and to(v) if
Im={ap, a1, ..., am}. Sincethe two cases are so similar, we will consider only the
second one. So, assumethat |, = {ag, a1, ..., am}.

Let 0'(X) € p(X) be such that M* = Vx(0'(X) — 0(X)) A Yxydz(0'(X) A
O(Y)AX<Y— X<Z<YABO(2). Clearly thereis such a formula ¢'(x); ei-
ther the formula asserting that x is the kth element for which 6(x) for some even
k, or the formula asserting the same thing for odd k, will work. Let b € M*(I)
be such that M*(1) = b = tx(am—1). (If m = 0, then let b be the smallest such
that M*(1) = 6(b).) Noticethat b € M*(Jyn) € M*(J). We claim that M*(J) &
¢(ag, a1, ..., 8m-1, b, @my1, ..., A).

First, observethat M*(l) Eag <a; < --- <apn A0 (ag) A--- A0 (an). There-
foree M*(I) EFag<ag < <ami<b<ami<--<aAb@A--A
0(@m-1) AO(b) Ab(ame1) A--- Ab(an). Next, let o’ (vo, v1, ..., Um_1, Umit, - - -
vn) be the formula obtained from o(v) by replacing each free occurrence of the
variable vy with to(vym—1). Then, as we saw before, M* &= Yo (0’ (vg) A -+ A
' (V1) A (Ump1) A=A () Avg < V1 < -+ < Umq < Umpl < -+ < Up —>
o’ (vg, V1, -+, Um—1, Umsl, ---» Un)). Thus, it easily followsthat M*(J) & ¢(ag,

cy@m-1, b, ami1, ..., an). O

Corollary 4.2 If (I, <) isw1-like, then M* (1) isfinitely determinate.

Proof: Since (I, <) isws-like, it hasafiltration (I, : a < w1) suchthat I, < Ig <
whenever @ < B < wy. Then (M*(l,) : @ < wy) isafiltration for M*(1). We will
show that thisfiltration satisfies the Eklof-Mekler Criterion.
Letk, n, r, a0, a1, ..., an, Bo, B, --.PBn,Co,C1, ..., C beasin that criterion.

Pick some

aj € laj,\lg;
and

bJ (S Iﬂj+1\|ﬁj
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for j=k k+1,...,n—1and pick

ane I\Iﬂln
and
bne |\|/3n
Let
‘J=(Iakm|ﬁk)u{aka ak—‘,—la ---’an}
and

K= (Iak N Iﬁk) U {bk’ bk—‘,—ly e bn}

Then Lemmal4.Zlimplies that M’ (J) < M’(1) and M’(K) < M’(1). On the other
hand, there is an isomorphism f : M*(J) — M*(K) which isthe identity on

M*(Iak Nlg)
and which maps
M*(J) N Iy,
onto
M*(K) N 1
for i < n. Therefore (M’(J),Co, C1, ..., C) = (M'(K), g, Cq, ..., C), SO the
Eklof-Mekler Criterion is verified. O

Remark 4.3 Insomesituationsit is much easier to provethat M* (1) isfinitely de-
terminate. For example, if (I, <) has order type n - w; (where n is the order type of
the rationals (2, <)), then in the Eklof-Mekler Criterion we can easily get an iso-
morphism, not just elementary equivalence, thereby getting the stronger property of
M* (1) which might be referred to as “fully determinate.” For this conclusion we do
not even need that (M*, Def (M*)) = CA+AC, but only that M* = PA*. However,
Lemmal4.1] its proof, and the ideas contained therein will be useful in the proof of
the next lemma.

Lemmad4.4 Supposethat (I, <) isalinearly ordered set and that n < w, and let
lo<li<--<Ily=1 Lt M (1) = (M*(l), M*(lg), M*(l1), ..., M*(1p)). Sup-
pose D € Def (M/(1)). Then DN M*(lg) € Def (M*(lp)).

Proof: By LemmalZIlwe can assumethat | = {ay, ay, ..., a,}, wherea; < ap <
- <apandlj={a, ap, ..., aj}for j<n. Letp(vg, vy, ..., vn) bean L-formula
and supposethat D = {b e M'(1) : M’(l) = ¢(b, &)} and, without loss of generality,
that D € M* = M*(lp). Asinthe proof of Lemmal£.T]we can assumethat ¢ (v) has
the form

(QoXo € Ury) (Qux1 € Ur)) ... (Qux € Ur) ¥ (X)),

wherefor each j <t, Qj isoneof the quantifiers3 or V and s; < n, and y(X, v) isan
L-formula. Similar to what was done in the proof of Lemmal4.1] obtain the formula
V' (X, ¥) by replacing each free occurrence of Xjiny (X, v) by Xj((v1, va, ..., vj)).
Then define

o(v) = (QoX0) (Q1X1) - .. (QXD)Y (X, v).
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Thenforeachb € M*
M'(1) &= ¢(b, @) iff (M*(l), Defo(M*(1)) = o(b, a).
Thereis B € X such that
M, X) =VYo({vg, v1, ..., Vn) € B<«— a(v)).
Since p(x) isaminimal type over Th(M*), thereisaformulad(x) in p(x) such that

M* = VvgIw[Vvivy...vn(w < vg AO<(v1, ..., vn) —> (vg, V1, ..., V) € B)
Vo Yovo...op(w < v1 AO<(vy,...,vn) —> (vo, V1, ..., vn) €B)].
Obtain v (X, ©) from y/(X, ©) by replacing each occurrence of X;j,where Qj isV,

by
(Xi) w102, 0m) -

Then define
y(vo) = (QoX0) (Q1X1) ... (QX)[Tva, ..., vn(@= (V1. ..., vn) AP (X, D)].
It is easy to seethat
AC* F Vug[Vu1...vn(0=(v1, ..., vn) —> =0 (0)) <> =y (vo)]

and
F VYuo[—y(vg) —> Yv1...vn(0~ (ve, ..., vn) — —0o(D))].

Thus, if b € D, then
M* &= JwYvr...vn(w < v1 A0 (vy,...,vn) —> (b, v) € B)
and if b e M*\ D, then
M* = JwVYvi...vn(w < v A0 (ve,...,vn) —> (b, v) ZB)
Therefore, the formula
JwYvi...vn(w < v1 A0S (v1,...,vn) —> (X, V) € B)

defines D in M*, O
The following theorem compl etes the proof of Theorem[1.1]

Theorem 4.5 Suppose (M, X) = CA+AC iscountable, (1, <) isw1-like,and N =
M*(1) | Lpa. Then N = PA(aa)+ (Det).

Proof: By Corollary 2] M*(1) is finitely determinate, so clearly N aso is. We
now prove that N = PA(aa). Suppose a € N and ¢(Xx,Yy) is an Lpa(aa) for-
mula in which the only free variables are the first-order variables x and y. Sup-
pose D={be N:NkE ¢, a)}issuchthat 0 € D and that x+ 1 € D when-
ever x € D. Since N is finitely determinate, we can assume that ¢(X, y) has the
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form aaspaas; ...aas,_1¥(S, X, y), where (S, X, y) has no second-order quan-
tifiers. By Lemmald4] whenever Ig < |1 < --- < I, = |, there is a formula in
the language of M* with parameters from M*(lp) defining {b € M*(lp) : N E
Y(M*(lg), ..., M*(l,_1), b, a@)}. Itisclear from Lemmal£I]that this defining for-
mula depends only on ly. By Fodor’s Lemma, there is a single formula 6(x) such
that for a stationary set of lg, whenever g < I < -+ < I = |, then 8(X) defines
{be M*(lg) : N = ¥(M*(lg), ..., M*(I,_1), b, @)} in M*(lp). Thenit easily fol-
lowsthat 6(x) defines D inM*(1). ButM*(1) = PA*,so D = M*(l) = N. O
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