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Finite Sets and Natural Numbers
in Intuitionistic TT

DANIEL DZIERZGOWSKI

Abstract We show how to interpret Heyting’s arithmetic in an intuitionistic
version of TT, Russell’s Simple Theory of Types. We also exhibit properties of
finite sets in this theory and compare them with the corresponding properties in
classical TT. Finally, we prove that arithmetic can be interpreted in intuitionistic
TT3, the subsystem of intuitionistic TT involving only three types. The defini-
tions of intuitionistic TT and its finite sets and natural numbers are obtained in
a straightforward way from the classical definitions. This is very natural and
seems to make intuitionistic TT an interesting intuitionistic set theory to study,
beside intuitionistic ZF.

1 Introduction In this paper, we want to investigate how natural numbers can be
defined in intuitionistic TT, Russell’s Simple Theory of Types, in such a way that they
satisfy the axioms of HA, Heyting’s arithmetic.

Webelieve it is worth undertaking a study of intuitionistic versions of intuition-
istic TT and derived theories such as NF, Quine’s New Foundations [10] (see Forster
[5]). Indeed, on the one hand, intuitionistic TT can be axiomatized with the same
proper axioms as the usual axioms of classical TT (see Dziergowski [4]); this is more
natural than for intuitionistic ZF (see for example Myhill [9]), and so, we find intu-
itionistic TT more elegant, from a philosophical point of view.

And on the other hand, we shall show that Heyting’s arithmetic can be inter-
preted in those intuitionistic theories in a very natural way, which furthermore is very
close to the usual interpretation defined in the corresponding classical theories.

2 The axioms of intuitionistic TT We recall (see Boffa [2] or Chapter 3 of Fraenkel,
Bar-Hillel, and Levy [6]) that the languageLTT contains countably many variables
of type i, for eachi ∈ ω. So each variable is indexed with a superscript indicating its
type: for example,x0, y0, z′0, t024 are type 0 variables; variables of distinct types are
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distinct (for example,x0 andx1 are distinct variables). The atomic formulas are of
the form

xi ∈ yi+1 or xi = yi ,

for eachi ∈ ω. Inparticular,xi ∈ xi is never a well-formed formula. So Russell’s para-
dox involving the set{x : x �∈ x} disappears because it simply cannot be expressed
in the language! The proper axioms of intuitionistic and classical TT are:

1. extensionality:(∀xi+1, yi+1)((∀zi )(zi ∈ xi+1 ↔ zi ∈ yi+1) → xi+1 = yi+1),
for eachi ∈ ω;

2. comprehension schema:(∃xi+1)(∀zi )(zi ∈ xi+1 ↔ ϕ(zi )), for each formulaϕ
wherexi+1 does not occur free.

For example, we can easily derive from these axioms the existence,for each type i,
of an empty set∅i+1 = {xi : xi �= xi}, of a universal setVi+1 = {xi : xi = xi}, of
the power setP xi+1 of any setxi+1, of USC(Xi+1) = {{xi} : xi ∈ Xi+1}, etc. Notice,
for example, thatP xi+1 is a set of typei + 2. In particular, the paradox inferred by
Cantor fromV = P V cannot be reproduced in TT becauseVi+1 = P Vi+1 is not a wff
(Vi+2 = P Vi+1 is a wff, but it is harmless).

Almost everywhere in this paper we shall not indicate the type of variables in
formulas. This will be more readable. Of course, the formulas will be ambiguous,
because they can be typed in many different ways: there are infinitely many sets of
natural numbers, in the same way that there are infinitely many empty sets. Most
often, this ambiguity will not matter: finite sets and natural numbers are defined in
the same way at each type, and most properties we shall derive from the definitions
do not depend on the types chosen to state them. The only sections where the choice
of types matters are

1. Section8, where we shall study the relations between finite sets of any type
i ≥ 1 and finite sets of typei + 1;

2. Sections9 and10where we shall see how natural numbers can be defined with
only three types.

Finally, let us make precise some notations. A Kripke model of intuitionistic TT
will be of the form

M =
〈
(Mk)k∈K , 〈K,≤, 0〉

〉

where〈K,≤, 0〉 is a partial order with0 as its minimal element, and eachMk is a
structure of the form〈M0

k , M1
k , . . . ;∈M

k ,=M
k 〉, where eachMi

k is the domain of typei
variables (so∈M

k ⊆ ⋃
i∈ω Mi

k × Mi+1
k ).

3 Three notions of finiteness Classically, the set of finite sets is the smallest in-
ductive set. In an intuitionistic framework, we introduce three notions of inductive
set, which are all classically equivalent. A setE is

K-inductive iff ∅ ∈ E ∧ (∀x)(x ∈ E → (∀z)(x∪ {z} ∈ E));
S-inductive iff ∅ ∈ E ∧ (∀x)(x ∈ E → (∀z)(∀y ⊆ {z})(x∪ y ∈ E));
N-inductive iff ∅ ∈ E ∧ (∀x)(x ∈ E → (∀z �∈ x)(x∪ {z} ∈ E)).

This gives us three notions of finiteness; in each case, the set of finite sets is the small-
est inductive set.
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KFin = ⋂{E : E is K-inductive}.
SFin = ⋂{E : E is S-inductive}.
NFin = ⋂{E : E is N-inductive}.

As expected, there is an induction principle corresponding to each notion of finite-
ness.

Proposition 3.1 Letϕ(x) be a formula ofLTT. Then

1. [ϕ(∅) ∧ (∀x ∈ KFin)(ϕ(x) → (∀z)ϕ(x∪ {z}))] → (∀x ∈ KFin)ϕ(x);

2. [ϕ(∅) ∧ (∀x ∈ SFin)(ϕ(x) → (∀z)(∀y ⊆ {z})ϕ(x∪ y))]
→ (∀x ∈ SFin)ϕ(x);

3. [ϕ(∅) ∧ (∀x ∈ NFin)(ϕ(x) → (∀z �∈ x)ϕ(x∪ {z}))] → (∀x ∈ NFin)ϕ(x).

Proof: ConsiderE = {x : x ∈ KFin ∧ ϕ(x)}. It is easily seen that∅ ∈ KFin and
that x ∪ {z} ∈ KFin wheneverx ∈ KFin. Then it is clear thatE is K-inductive. So
KFin ⊆ E. Inother words,(∀x ∈ KFin)ϕ(x). The proofs of (2) and (3) are analogous.

�
In classical TT, one proves by induction that NFin= KFin = SFin. In intuitionistic
TT, one can also prove by induction that NFin⊂ KFin ⊂ SFin. Anyway, one cannot
prove that those sets are equal. Indeed, using the technique described in [4], it is easy
to find a Kripke model of intuitionistic TT where each singleton{a} has a nontrivial
subset (i.e., a subsety which is not equal to∅ nor to{a}). Any such subset is in SFin
but not in KFin. Also, we can find a Kripke model containing two elementsa andb
such that neithera = b nora �= b is true. Then{a, b} is K-finite, but it is not N-finite.

KFin is the original (classical) definition of the set of finite sets given inPrin-
cipia Mathematica. SFin is the closure of KFin under subsets: it can be proved that
(∀x)(x ∈ SFin↔ (∃k ∈ KFin)(x ⊆ k)). And we shall define Nn, the set of natural
numbers, as the set of cardinals of N-finite sets. KFin would not have been adequate
to define Nn: indeed, the cardinal of a nontrivial subset of a singleton is in some sense
strictly between 0 and 1.

It should be worth studying the precise relationship between our three notions
of finiteness and notions of finiteness of topos theory (e.g., Kuratowski finiteness or
finite cardinals; see Johnstone [8]).

4 Some properties of N-finite sets Recall that HA proves that(∀n, m)(n = m∨
n �= m). So if Nn models HA, we can expect NFin to satisfy some “classical” prop-
erties. Such properties will be given below. Their proofs, which are easy but lengthy
inductions, will not appear here; they can be found in an internal report of the author.

These proofs make clear a nontrivial fact: the “z �∈ x” making the difference
between the definitions of N-inductive and K-inductive is sufficient to obtain all the
properties we need.

Proposition 4.1 Let x∈ NFin and x′ ⊆ x. Then

(P1) (∀z, z′ ∈ x)(z= z′ ∨ z �= z′);
(P2) ¬¬x′ ∈ NFin;
(P3) x′ ∈ NFin ↔ (∀z∈ x)(z∈ x′ ∨ z �∈ x′);
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(P4) x′ ∈ NFin → (∀z∈ x)(¬¬z∈ x′ → z∈ x′);
(P5) (∀z∈ x)(x \ {z} ∈ NFin);
(P6) if x′ ∈ NFin, thenx = x′ ∨ x �= x′, andx = x′ iff x \ x′ = ∅;
(P7) x = ∅ ∨ x �= ∅.

Remark 4.2 N-finite setscannotbe defined as the S-finite setsx such that(∀z, z′ ∈
x)(z= z′ ∨ z �= z′) (for example, takex to be a nontrivial subset of a singleton). But
on the other hand, it is an open question to know whether N-finite sets can be defined
as the K-finite setsx such that(∀z, z′ ∈ x)(z= z′ ∨ z �= z′).

Remark 4.3 (P2) implies that(∀x ∈ SFin)(¬¬x ∈ NFin). So SFin \ NFin = ∅

(but¬¬(SFin= NFin) cannot be proved).

Remark 4.4 The converse of (P4) isnot true. Indeed, using the technique of [4], it
is possible to find a Kripke modelM of intuitionistic TT consisting in three nodesM0,
Mα andMβ (0 ≤ α, β; α �≤ β �≤ α), and containing somex′ such thatM �α x′ = {a}
andM �β x′ = ∅. Clearly,M �0 (a ∈ x′ ∨ a �∈ x′), so, by (P3), x′ is not N-finite in
M . Nevertheless,M �0 (¬¬a ∈ x′ → a ∈ x′).

Remark 4.5 (P5) isnot true ifz is not assumed to be a member ofx. Indeed, con-
sider the modelM of the preceding remark.M can be defined so that it contains
somea andb such thatM �α a = b andM �β a �= b. Let x = {a}. It is easy to see
thatM � (x \ {b} ∈ NFin), using (P3).

4.1 Mutually detachable N-finite sets We define two setsx andy to bemutually
detachableiff

(∀z∈ x)(z∈ y∨ z �∈ y) ∧ (∀z∈ y)(z∈ x∨ z �∈ x).

So (P3) could be restated: Ifx ∈ NFin andx′ ⊆ x, thenx′ ∈ NFin iff x andx′ are
mutually detachable.

The following proposition gives some equivalent definitions. Its proof uses
mainly (P3) and induction.

Proposition 4.6 Let x, y ∈ NFin. The following formulas are equivalent.

1. x and y are mutually detachable.
2. x∩ y ∈ NFin.
3. x∪ y ∈ NFin.
4. (∃u ∈ NFin)(x ⊆ u ∧ y ⊆ u).

The second definition and (P2) imply that

(P8) if x, y ∈ NFin, then¬¬(x andy are mutually detachable).

Alternatively, (P8) can be proved using the fact that, for any formulaϕ, and anyx ∈
NFin, (∀z ∈ x)¬¬ϕ ↔ ¬¬(∀z ∈ x)ϕ, which can be proved by induction onϕ.1 If
x, y ∈ NFin are mutually detachable, then

(P9) x \ y ∈ NFin,
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and

(P10) x �⊆ y iff (∃t ∈ x)(t �∈ y).

To prove (P9), first prove, using mainly (P3) and(P4), that if x, x′ ∈ NFin andx′ ⊆ x,
thenx \ x′ ∈ NFin. Then, ifx, y ∈ NFin are mutually detachable, Proposition4.6
allows us to conclude becausex \ y = x \ (x ∩ y). On the other hand, the nontrivial
direction of (P10) is proved by induction onx.

5 Relations on cardinality of N-finite sets We first define the relations�, � and
≺:

x � y iff there is a 1–1 function mappingx onto y;
x � y iff there is a 1–1 function mappingx into y;
x ≺ y iff x � y andx �� y.

It is then routine to prove by induction onx that

(P11) if x ∈ NFin andy � x, theny ∈ NFin.

The following lemma, which is also needed below, proves that N-finiteness implies
Dedekind-finiteness. The problem of comparing Dedekind-finiteness with the three
notions of finiteness introduced in this paper remains to be studied.

Lemma 5.1 Suppose that x⊆ x′ and, for some y∈ NFin, x � y and x′ � y. Then
x = x′. In particular, if x ⊆ x′ ∈ NFin and x� x′, then x= x′.

Proof: By induction onx (using mainly (P1), in the same style as Lemma5.2
below). �

The following lemma is the hard part when proving that� is an order relation.

Lemma 5.2 Let x, y ∈ NFin. Then (x � y ∧ y � x) → x � y. Sox ≺ y iff x � y
and x �� y.

Proof: Weprove that(x � y ∧ y � x) → x � y by induction onx. This time, as
an example, we give the details of the proof. Ifx = ∅, theny = ∅ becausey � x,
and thusx � y.

Suppose thatx = x1 ∪ {z1}, wherez1 �∈ x1. Let i be a 1–1 function mappingx
into y, and j be a 1–1 function mappingy into x.

x \ {z1} � y \ {i(z1)},andy \ {i(z1)} � x \ { j(i(z1))}.

If j(i(z1)) = z1, it is easy. In that case, indeed, (P5) and the induction hypothesis
implies thatx\ {z1} � y\ {i(z1)}. Sox = (x\ {z1})∪ {z1} � (y\ {i(z1)})∪ {i(z1)} =
y (both equalities can be proved using (P3)). Furthermore, we can always assume that
j(i(z1)) = z1. More precisely, we are going to prove thatj can be transformed intoj ′

such thatj ′(i(z1)) = z1. Indeed, letj ��y = { j(u) : u ∈ y}. Then by (P11) and (P3),
there are two cases.

Case 1: z1 ∈ j ��y. So there existst ∈ y such thatz1 = j(t) and we can definej ′ as
follows:

j ′(i(z1)) = z1;
j ′(t) = j(i(z1));
j ′(u) = j(u) if u �= t andu �= i(z1).
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Case 2: z1 �∈ j ��y. This is easier. Just definej ′ as follows:

j ′(i(z1)) = z1;
j ′(u) = j(u) if u �= i(z1).

In both cases, we leave it to the reader to check thatj ′ : y → x is 1–1. (Notice that
(P1) has been implicitly used throughout the definition ofj ′.) Finally, it is then easy
to check thatx ≺ y ⇔ x � y∧ x �� y. �

Now, by induction onx, one proves the following expected trichotomy.

Proposition 5.3 If x, y ∈ NFin, then x≺ y or x� y or x� y.

This of course implies the decidability of�:

(P12) If x, y ∈ NFin, then(x � y∨ x �� y) and(¬¬x � y → x � y).

6 The natural numbers

6.1 Basic definitions Now we are in position to define Nn, the set of natural num-
bers:

Nn = {n : (∃x ∈ NFin)(∀z)(z∈ n ↔ z� x)}.
In particular, the natural number 0 is{∅}, and 1 is the set of all singletons, that is,
USC(V). The order on Nn, is defined from the order≺ on NFin: if n, m∈ Nn, then

n < m iff (∃x ∈ n)(∃x′ ∈ m)(x ≺ x′)

(one or both of the∃s above may be equivalently replaced with a∀). And

n ≤ m iff n < m∨ n = m iff (∃x ∈ n)(∃x′ ∈ m)(x � x′).

Let us now defineS, thesuccessor functionon Nn.

S= {〈n, m〉 : (∃x ∈ n)(∃z)(z �∈ x∧ x∪ {z} ∈ m))}.

Ssatisfies the expected properties, as stated in the following lemma.

Lemma 6.1

1. S is a 1–1 function whose domain and range are subsets ofNn.

2. If m∈ domSand n≤ m, then n∈ domS.

3. (∀n ∈ domS)(S(n) �= 0).

4. (∀n ∈ Nn)(n �= 0 → (∃m∈ Nn)(m= S(n))).

Notice that(∀n ∈ Nn)(n ∈ domS∨ n �∈ domS) cannot be proved in intuitionistic TT.
Indeed, by the technique described in [4], it is easy to obtain a Kripke modelM of
intuitionistic TT satisfying the following properties.M consists of three nodes:M0,
Mα andMβ (0 ≤ α, β; α �≤ β �≤ α). And M0

0 = {a} = M0
α, while M0

β = {a, b}. Then
M �α 1 �∈ domS, butM �β 1 ∈ domS.
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6.2 Induction To write properties in a simpler form, we introduce some notation.
If F denotes a function, then we shall write

m= F(n) for 〈n, m〉 ∈ F, and

F(n)↓ for n ∈ domF.

Of course, all the formulas appearing in the sequel and using these notations can be
translated into wff ofLTT. In particular, an expression such as(F(n)↓ ∧ H(F(n))↓)

denotes the formula(∃k)(〈n, k〉 ∈ F ∧ (∃k′)(〈k, k′〉 ∈ H)).
Here now is aninduction principleon Nn.

Proposition 6.2 Letϕ(x) be a formula. Then[ϕ(0) ∧ (∀n ∈ Nn)((S(n)↓ ∧ ϕ(n))

→ ϕ(S(n)))] → (∀n ∈ Nn)ϕ(n).

Proof: The idea is to replace induction in Nn by induction in NFin. Letψ(x) ≡
(∀n ∈ Nn)(x ∈ n → ϕ(n)). Thenϕ(0) impliesψ(∅). On the other hand, suppose
(∀n ∈ Nn)((S(n)↓ ∧ ϕ(n)) → ϕ(S(n))). This translates into(∀x ∈ NFin)(ψ(x) →
(∀z �∈ x)ψ(x∪{z}). By induction on NFin, we conclude that(∀x∈ NFin)ψ(x), which
implies(∀n ∈ Nn)ϕ(n). �

The next proposition guarantees the existence of functions Nn→ Nn defined induc-
tively.

Proposition 6.3 Let a∈ Nnand H : DH → Nn, where DH ⊆ Nn. Then there exists
a unique function F such that

(R1) the domain and the range ofF are subsets of Nn;

(R2) F(0)↓ andF(0) = a;

(R3) if S(n)↓, thenF(S(n))↓ iff F(n)↓ andH(F(n))↓;

(R4) if S(n)↓ andF(S(n))↓, thenF(S(n)) = H(F(n)).

Proof (Uniqueness): Suppose thatF andF′ both satisfy (R1) – (R4). By induction
on n, it can be proved that, for alln ∈ Nn, F(n)↓ iff F′(n)↓, and that ifF(n)↓, then
F(n) = F′(n).

Proof (Existence): First, we are going to prove that, for allk ∈ Nn, there exists a
unique functionFk such that

(R1k) the domain ofFk is a subset of{0, . . . , k} and its range a subset of Nn;

(R2k) Fk(0)↓ andFk(0) = a;

(R3k) if S(n)↓ andS(n) ≤ k, thenFk(S(n))↓ iff Fk(n)↓ andH(Fk(n))↓;

(R4k) if S(n)↓, S(n) ≤ k andFk(S(n))↓, thenFk(S(n)) = H(Fk(n)).

The uniqueness of eachFk is proved exactly as the uniqueness ofF above. Now, let us
prove the existence ofFk, by induction onk. If k = 0, we defineF0 = {〈0, a〉} (con-
ditions (R30) and(R40) are empty). On the other hand, suppose thatS(k)↓. Then,
using the induction hypothesis, we define

FS(k) = Fk ∪ {〈S(k), m〉 : Fk(k)↓ ∧ H(Fk(k))↓ ∧ m= H(Fk(k))}.
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Clearly,FS(k) satisfies (R1S(k)) – (R4S(k)). Now we can define

F = {〈n, m〉 : Fn(n)↓ ∧ m= Fn(n)}.

Clearly,F satisfies (R1) – (R4). �

6.3 Addition and multiplication Now we can use Proposition6.3 to define addi-
tion and multiplication on Nn. First, for eachm∈ Nn, Am is the unique function such
that

1. the domain and the range ofAm are subsets of Nn;

2. Am(0)↓ andAm(0) = m;

3. if S(n)↓, thenAm(S(n))↓ iff Am(n)↓ andS(Am(n))↓;

4. if S(n)↓ andAm(S(n))↓, thenAm(S(n)) = S(Am(n)).

Thenm+ n = k denotes the formulaAm(n)↓ ∧ k = Am(n). On the other hand, for
eachm∈ Nn, we definePm to be the unique function such that

1. the domain and the range ofPm are subsets of Nn;

2. Pm(0)↓ andPm(0) = 0;

3. if S(n)↓, thenPm(S(n))↓ iff Pm(n)↓ andAm(Pm(n))↓;

4. if S(n)↓ andPm(S(n))↓, thenPm(S(n)) = Am(Pm(n)).

Naturally,m.n = k denotes the formulaPm(n)↓ ∧ k = Pm(n).
Weleave it to the reader to check all the usual properties such asn+ m= m+ n,

n + (m+ k) = (n + m) + k, (m+ n).k = m.k + n.k, etc. This task is rather tedious
and boring, due to the fact that theAm’s andPm’s are not defined everywhere on Nn.
Alternative definitions of addition and multiplication will be given in Section10.

7 The axiom of infinity

7.1 The axiom Our goal is to prove in intuitionistic TT that Nn is a model of HA.
To achieve this goal, we needAm(n)↓ andPm(n)↓ to be true for allm, n ∈ Nn. And
this is true ifS(n)↓ for all n ∈ Nn, which in turn is equivalent to ouraxiom of infinity:

(AxInf ) (∀x ∈ NFin)(∃y ∈ NFin)(y � x).

7.2 Intuitionistic and classical equivalent forms Here are four equivalent ways to
state this axiom of infinity. The equivalences which are not trivial can be proved by
induction.

Proposition 7.1 The following four formulas are equivalent to(AxInf ).

(AI1) (∀n ∈ Nn)(∃m∈ Nn)(m > n).

(AI2) (∀x, y ∈ NFin)(∃x′, y′ ∈ NFin)(x � x′ ∧ y � y′ ∧ x′ ∩ y′ = ∅).

(AI3) (∀x ∈ NFin)(∃x′ ∈ NFin)(x � x′ ∧ (∃z)(z �∈ x′)).

(AI4) (∀n ∈ Nn)(S(n)↓).
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Classically,(AxInf ) is equivalent to(∀x ∈ NFin)(∃y)(y �∈ x) and also to(V �∈ NFin).
Weare going to prove that, in an intuitionistic framework, only one direction of each
equivalence still holds.

Lemma 7.2 (∀x ∈ NFin)(∃y)(y �∈ x) implies(AxInf ), but the converse does not
hold. Notice that(∀x ∈ NFin)(∃y)(y �∈ x) is equivalent to

(∀x, y ∈ NFin)(∃x′, y′ ∈ NFin)(x∩ x′ = ∅ ∧ y∩ y′ = ∅ ∧
x � x′ ∧ y � y′ ∧ x′ ∩ y′ = ∅). (1)

Compare with (AI2) and (AI3).

Proof: It trivial to check that(∀x ∈ NFin)(∃y)(y �∈ x) implies (AxInf ). But it is
more tricky to see why the converse does not hold. Here is a counterexample. Us-
ing the technique of [4], as in all counterexamples, we can prove the existence of
a Kripke modelM of intuitionistic TT satisfying the following conditions.M =
〈(Mi )i∈K , 〈K,≤, k0〉〉, whereK = {k0, k1, k2, . . .} and for alli, k0 ≤ ki , while ki �≤ kj

if 0 �= i �= j. For eachki ∈ K, the domain of type 0 objects ofMki is {x0, x1, x2, . . .}.
And equality inM is defined as follows.

M �ki x0 = xi , for all i ∈ ω

and

M �ki x j �= xl , if { j, l} �= {0, i} and j �= l .

Clearly,M � ({x0} ∈ NFin) but M � (∃y)(y �∈ {x0}). But one can prove thatM �
AxInf (Hint: if M � x ∈ NFin, then there existsx′ such thatM � x′ � x andM �

x0 ∈ x′).
Also, (∀x ∈ NFin)(∃y)(y �∈ x) is equivalent to (1); one direction is trivial, the

other one can be proved by induction onx. We remark that (1) is not satisfied inM
whenx = {x0}. �

Lemma 7.3 (AxInf ) implies(V �∈ NFin), but the converse does not hold.

Proof: Suppose(AxInf ) andV ∈ NFin. Then there exists somev ∈ NFin such that
v � V. This is absurd becausev � V becausev ⊆ V. SoV �∈ NFin. See [4] for a
counterexample showing that the converse does not hold. �

7.3 Infinity and arithmetic Now, it is routine to define an interpretation ofLHA

in LTT and to prove the following theorem, using the results presented above, on Nn
and(AxInf ).

Theorem 7.4 (AxInf ) implies that〈Nn, S,+, ·,0〉 satisfiesHA.

According to (AI4), this implication is in fact an equivalence. So (AxInf ) is exactly
strong enough for arithmetic to be interpreted.
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7.4 A relation between N-finiteness and K-finiteness

Proposition 7.5 Assuming(AxInf ), the following characterization holds:

(∀x)((x ∈ KFin) ↔
(∃t ∈ NFin)(∃ f )( f is afunction∧ t ⊆ domf ∧ f ��t = x)).2 (2)

Proof: First, assuming(AxInf ), we prove that(∀x ∈ KFin)(∃t ∈ NFin)(∃ f )( f is
a function ∧ f ��t = x), by induction onx (using mainly (AI3)). As NFin ⊂ KFin,
the other direction is a particular case of a more general fact: ifx ∈ KFin and f is a
function whose domain containsx, then f ��x ∈ KFin. �
Notice that (2) does not imply(AxInf ). In fact, (2) does not even imply(AxInf ) in
classical TT. Indeed (2) is atheorem of classical TT because KFin= NFin, but it is
well-known that(AxInf ) is not a theorem of classical TT.

8 Shifting the axiom of infinity When we defined NFin, we did not write the type
of this set. In fact, there exists a set NFin at each typei ≥ 2. In this section, we want
to study how each NFini is related to NFini+1. This relation does not depend oni. So
in what follows, we shall write NFin instead of NFini , and NFin+ instead NFini+1,
for some fixedi. And in the same way, we shall call(AxInf ) the axiom of infinity
about NFini , and(AxInf +) the axiom of infinity about NFini+1. As in the previous
sections, we shall not give more indication about the types of variables; they should
be clear from the context.

8.1 Infinity, USCand T The usual way to compare objects of a given type with
objects of the next type is to use USC (defined in Section2). So the following lemma
should not be surprising. At this point, it is worth remembering that

⋃
is in some

sense theinverseof USC:
⋃

USC(x) = x.

Lemma 8.1

1. For all x,USC(x) ∈ NFin+ iff x ∈ NFin.
2. For all x, y ∈ NFin, USC(x) � USC(y) iff x � y,USC(x) � USC(y) iff x � y

andUSC(x) ≺ USC(y) iff x ≺ y.

Proof: The first part is proved by induction. Then, ifR ⊆ x × y, define R+ =
{〈{t}, {u}〉 : 〈t, u〉 ∈ R}. It iseasy to prove thatR is a function (resp. 1–1, resp. onto)
iff R+ is a function (resp. 1–1, resp. onto). Conversely, ifR ⊆ USC(x) × USC(y),
defineR− = {〈⋃ t,

⋃
u〉 : 〈t, u〉 ∈ R}. And we can also prove thatR is a function

(resp. 1–1, resp. onto) iffR− is a function (resp. 1–1, resp. onto). Knowing this, it is
routine to prove the second part of the lemma. �
So if x ∈ NFin, then USC(x) ∈ NFin+. But ∅ �∈ USC(x). Thus USC(x) ∪ {∅} ∈
NFin+. Furthermore, USC(x) ≺ USC(x) ∪ {∅}. This entails two consequences. On
the one hand, we obtain, for allx ∈ NFin, an easy proof of USC(x) ≺ P x, because
USC(x) ∪ {∅} ⊆ P x.

On the other hand, if we could find somey ∈ NFin such that USC(y) �
USC(x) ∪ {∅}, then we would have ay � x. With this remark it is easy to prove
the following proposition.



FINITE SETS IN INTUITIONISTIC TT 595

Proposition 8.2 (AxInf ) is equivalent to(∀x ∈ NFin+)(∃y ∈ NFin)(x � USC(y)).

Classically, theoperationUSC, mapping NFin into NFin+, can be transformed into
anotheroperation, T, mapping Nn into Nn+: if n ∈ Nn andm∈ Nn+, then

Tn= m iff (∃x ∈ n)(USC(x) ∈ m).

(Since Nn and Nn+ do not have the same type, the axiom of comprehension cannot
be used to defineT as a real function; the same remark applies to USC.)

Corollary 8.3 The operation T is a 1–1 monomorphism mappingNn into Nn+.
Furthermore,(AxInf ) is equivalent to “ T is onto.”

Proof: Using Lemma8.1, one can prove that, ifn, m∈ Nn, thenTn= Tm↔ n= m,
Tn < Tm↔ n < m. It is also easy to prove thatT(n+ m) = Tn+ Tm, T(n · m) =
Tn · TmandT0 = 0. Finally, Proposition8.2 implies that(AxInf ) is equivalent to
“ T is onto,” that is,(∀m∈ Nn+)(∃n ∈ Nn)(m= Tn). �
Also, notice that ifx ∈ NFin, thenP x ∩ NFin ∈ NFin+ (this can be proved by in-
duction). But(∃a)(P {a} ∈ NFin+) implies the excluded middle. Indeed, consider
z ⊆ {a}. As {a}, z ∈ P {a}, thenz = {a} or z �= {a}, by (P1). In particular, ifϕ is any
formula, considerz = {t : t = a ∧ ϕ} (we assume thata andt do not occur free in
ϕ). Then it is easy to check that(z= {a} ∨ z �= {a}) implies(ϕ ∨ ¬ϕ).

8.2 N-Infinity shifts up but does not shift down Classically, (AxInf ) is ambigu-
ous, i.e., (AxInf ) is equivalent to (AxInf+). In an intuitionistic framework, this is no
longer valid, as proved by the following proposition.

Proposition 8.4 (AxInf ) implies(AxInf +), but the converse does not hold.

Proof: Considerx ∈ NFin+. Wewant to findy ∈ NFin+ such thaty � x. By Propo-
sition8.2, wecan findy′ ∈ NFin such thatx � USC(y′). But then(AxInf ) allows us
to find y′′ ∈ NFin such thaty′′ � y′. We can lety = USC(y′′).

To prove that(AxInf +) does not imply(AxInf ), we consider the following
counterexample. We can construct (using, as always, the technique described in [4])
the following Kripke modelM = 〈(Mk)k∈K , 〈K,≤,0〉〉, whereK = {0} ∪ {{i, j} :
i, j ∈ ω ∧ i �= j} and≤ = {〈0,0〉} ∪ {〈0, {i, j}〉 : {i, j} ∈ K}.

Assume the domain of objects of type 0 of eachMk is equal to{x0, x1, x2, . . .}.
The equality relation on these objects is defined as follows.

M �{i, j} xi = xj .

M �{i, j} xk = xk, for all k.

M �{i, j} xk �= xl , if {k, l} �= {i, j} andk �= l .

So, if i �= j, M � (xi = xj ) ∨ (xi �= xj ). This implies that the only N-finite sets of
type 1 are∅ and the singletons.

M � NFin2 = {∅} ∪ USC(V).

This clearly implies thatM � AxInf 2.
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But M � AxInf 3. Indeed, consider a set of the form{x0, x1, . . . , xk}. In each
M{i, j}, this set has exactlyk or k + 1 distinct members. So, inM , {x0, . . . , xk} is
always distinct from{x0, . . . , xk+2}. Thus, inM , the following sets of type 2 are N-
finite:

{∅},
{∅ , {x0, x1} },
{∅ , {x0, x1} , {x0, . . . , x3} },
{∅ , {x0, x1} , {x0, . . . , x3} , {x0, . . . , x5}},
etc.

But, outsideM (i.e., in the model of set theory within whichM has been de-
fined), one can prove by induction that ifM � (∅ �= x ∈ NFin3), thenM � (x �
{∅, {x0, x1}, {x0, . . . , x2k+1}}), for somek. So M � (x ≺ {∅, {x0, x1}, {x0, . . . ,

x2(k+1)+1}}). In other wordsM � (∀x ∈ NFin3)(∃y ∈ NFin3)(y � x). �
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9 Defining N-finite cardinals with three types

9.1 The need for a new definition of equinumerosity Consider a setx1 of type 1.
Then|x1|, the cardinal ofx, is defined by:|x1| = {y1 : y1 � x1}. So|x1| is a set of
type 2.

Nevertheless, ifx0 ∈ x1 andy0 ∈ y1, then〈x0, y0〉 = {{x0}, {x0, y0}} is a set of
type 2. So a functionf : x1 → y1, being a set of ordered pairs, is a set of type 3. Thus
y1 � x1 denotes a formula where some variables of type 3 occur. This entails that|x1|
is a type 2 object, whose definition requires type 3. In other words, the definition we
gave of|x1| cannot be written in TT3, the fragment of TT, whose langage is restricted
to types 0, 1 and 2.

This is not a minor detail. Indeed, intuitionistic NF is finitely axiomatizable with
4-stratified sentences (see Dzierzgowski [3], an intuitionistic adaptation of Hailperin
[7]). In other words, NF is identical with NF4, where the comprehension axioms are
4-stratified. The consistency of intuitionistic NF is still an open problem. Neverthe-
less, being identical with NF4, NF iscloseto NF3, which is known to be consistent,
even if a suitable axiom of infinity is added. So it would be nice to define cardinals
of N-finite sets without using type 3, in order to be able to interpret arithmetic into a
consistent subtheory of intuitionistic NF.

To achieve this, notice that ifx1 ∩ y1 = ∅, then a functionf : x1 → y1 can be
coded by a set ofpairs {x0, y0}, instead of a set ofordered pairs〈x0, y0〉. In such a
way, a function becomes a set of type 2.

For N-finite sets, the trick is to replacex � y with x �� y, wherex �� y iff
there exists a set of pairs coding a 1–1 function mappingx \ y onto y \ x (it is clear
that(x \ y) ∩ (y \ x) = ∅).

Classically, ifx andy are finite, thenx � y is equivalent tox �� y (see Boffa
[1], where this was used in order to interpret second order arithmetic in classical TT
with only three types). Intuitionistically, we are going to prove that, ifx andy are N-
finite, thenx� y is equivalent to¬¬x�� y. The double negation cannot be removed.
Indeed, by the technique presented in [4], we can devise the following Kripke model
M of intuitionistic TT. M = 〈(Mk)k∈K , 〈K,≤ 0〉〉, whereK = {0, k, l}, with 0 ≤ k, l
andk �≤ l �≤ k, and such that the domains of type 0 objects contain four elements
a, b, α, β satisfying

M �k a �= b∧ α �= β ∧ α �= a∧ α = b, and
M �l a �= b∧ α �= β ∧ α = a∧ α �= b.

Let M � x = {a, b} andM � y = {α, β}. SoM �k x \ y = {a}, M �k x \ y = {b}
andM � y \ x = {β}. ThusM � ¬¬x �� y, while M � x �� y.

9.2 Equivalence with the previous definition in intuitionistic TT

Proposition 9.1 Suppose x, y ∈ NFin are mutually detachable. Then x� y iff
x �� y.

Proof: As x andy are mutually detachable,x∩ y ∈ NFin by Proposition4.6. Then,
using (P3), we can see thatx = (x \ y) ∪ (x ∩ y) and y = (y \ x) ∪ (x ∩ y). From
this, it is easy to infer thatx �� y impliesx � y.
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The other direction is more tedious. We are going to prove it by induction on
x. As it is trivial if x = ∅, suppose thatx = x1 ∪ {z1}, with z1 �∈ x1. Let f be a 1–1
function mappingx onto y.

By (P9) and (P3) then, there are two cases.

Case 1: z1 ∈ x \ y. If y ⊆ x, then, by Lemma5.1, y = x, which is absurd because
z1 �∈ y. So by (P10), there exists somet ∈ y\ x. Now it is easy to transformf so that
f (z1) = t and the conclusion easily follows from the induction hypothesis.

Case 2: z1 �∈ x\ y, i.e.,z1 ∈ x∩ y. We can transformf so that f (z1) = z1, and then
it is easy to conclude. �

Corollary 9.2 If x, y ∈ NFin, then x� y iff ¬¬x �� y.

Proof: If x, y ∈ NFin, then (P8) implies that¬¬ (x andy are mutually detachable).
So, by Proposition9.1, ¬¬ (x � y) iff ¬¬ (x �� y). We can then conclude by (P12).

�
Notice that the above corollary is not true ifx andy are not assumed to be in NFin.
Indeed, using as usual the technique of [4], we find a modelM of intuitionistic TT
wherex is some singleton, andy anontrivial part ofx such thatM � (y = ∅ ∨ y =
x) andM � ¬¬x = y. As M � ¬¬x = y then, a fortiori,M � ¬¬x �� y. But
M � x � y (otherwise,x = y). Furthermore, this counterexample proves thatx ∈
NFin and¬¬(y �� x) does not imply thaty ∈ NFin. So (P11) doesnot generalize
to ¬¬(· �� ·).

9.3 Correctness of the definition in intuitionistic TT3 In the previous section, we
have proved, in intuitionistic TT, that¬¬(· �� ·) is the same relation on Nn as(· �
·). But this does not prove,in intuitionistic TT3, that¬¬(· �� ·) is an equivalence
relation on Nn. The proof in intuitionistic TT3 will be given in Proposition9.4, which
needs the following lemma, whose proof is a very long and tedious induction onx, in
the same style as the second part of the proof of Proposition9.1, but with more than
two cases.

Lemma 9.3 Let x, y, z ∈ NFin. Assume that x∩ y, x ∩ z, y ∩ z, x ∩ y ∩ z ∈ NFin.
Then, in intuitionisticTT3, (x �� y ∧ y �� z) → x �� z.

Proposition 9.4 In intuitionisticTT3, ¬¬(· �� ·) is an equivalence relation.

Proof: The only nontrivial part consists in proving that¬¬(· �� ·) is transitive.
Considerx, y, z ∈ NFin. By (P2), ¬¬ (x ∩ y, x ∩ z, y ∩ z, x ∩ y ∩ z ∈ NFin). Then
Lemma9.3can be used to prove that(¬¬x �� y ∧ ¬¬y �� z) → ¬¬x �� z. �

9.4 Trichotomy If x, y ∈ NFin, we define

x �3 y iff ¬¬(x �� y),

x �3 y iff (∃y′ ∈ NFin)(y′ ⊆ y∧ x �3 y′),
x ≺3 y iff (∃y′ ∈ NFin)(y′ � y∧ x �3 y′).

With these definitions, we shall be able to reproduce Lemma5.2and Proposition5.3.
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Lemma 9.5 Let x, y ∈ NFin. Then, in intuitionisticTT3, (x �3 y ∧ y �3 x) →
x �3 y. Sox ≺3 y iff x �3 y and x ��3 y.

Proof: Let us prove that(x �3 y ∧ y �3 x) → x �3 y. If x �3 y, then there
existsy′ ⊆ y such thatx �3 y′. Also, if y �3 x, then there existsx′ ⊆ x such that
y �3 x′. So¬¬(x �� y′ ∧ y �� x′). Wewant to prove that this impliesx �3 y, i.e.,
¬¬(x �� y).

On the one hand, suppose thaty �� x′ and consider a 1–1 functionf , coded as
a set of pairs, mappingy \ x′ onto x′ \ y. Let x′′ = f ��(y′ \ x′) ∪ (x′ ∩ y′). Clearly,
x′′ \ y′ = f ��(y′ \ x′), andy′ \ x′′ = y′ \ x′. Sox′′ �� y′, which implies¬¬(x′′ �� y′).
On the other hand, suppose thatx �� y′. This implies¬¬(x �� y′). As ¬¬(x′′ ∈
NFin), by (P2), then¬¬(x �� x′′), by Proposition9.4. But asx′′ \ x = ∅ because
x′′ ⊆ x, this implies that¬¬(x\ x′′ = ∅). So¬¬(x = x′′) by (P6). But x′′ ⊆ x′ ⊆ x.
Thus¬¬(x′ = x). As wesupposed thaty �� x′, we get¬¬(x �� y).

Let us summarize. We want to provex �3 y, i.e.,¬¬(x �� y). To that aim, we
first proved that¬¬(x �� y′ ∧ x′ �� y). Then, we proved that((x′ �� y ∧ x ��

y′) → ¬¬(x �� y)), which is equivalent to(¬¬(x′ �� y∧ x �� y′) → ¬¬(x ��

y)). We then conclude by modus ponens.
Finally, by the definitions of≺3 and�3, it is trivial to prove thatx ≺3 y ⇔ (x �3

y∧ x ��3 y). �
The following lemma is used in the proof of Proposition9.7. It will also play an

important role in the definition of addition in Section10.

Lemma 9.6 Let x, x′, y, y′ ∈ NFin such that x∩ y = ∅, x �3 x′, y �3 y′, x′ ∩ y′ =
∅. Then x∪ y �3 x′ ∪ y′.

Proof: First prove by induction onx that if x, x′, y, y′ ∈ NFin are such thatx∩ y =
∅, x �� x′, y �� y′, x′ ∩ y′ = ∅ andx∪ y andx′ ∪ y′ are mutually detachable, then
x ∪ y �� x′ ∪ y′. By taking the double negation of this, we infer that ifx ∩ y = ∅,
x �3 x′, y �3 y′, x′ ∩ y′ = ∅ and¬¬ (x∪ y andx′ ∪ y′ are mutually detachable), then
x∪ y �3 x′ ∪ y′. Wemay then conclude by using (P8), becausex∪ y, x′ ∪ y′ ∈ NFin
by Proposition4.6, which is provable in intuitionistic TT3. �

Proposition 9.7 If x, y ∈ NFin, then, in intuitionisticTT3, x ≺3 y or x �3 y or
x �3 y.

Proof: The proof is by induction onx, using the previous lemma (in a simplified
form: if x, y ∈ NFin, z �∈ x andz′ �∈ y, thenx �3 y impliesx∪ {z} �3 y∪ {z′}). �

10 Defining natural numbers with three types Finite sets of type 0 objects are of
type 1. So a natural number is of type 2, and we proved in the preceding section that
it can be defined in intuitionistic TT3, that is, without sets of type 3. Now Nn, the set
of natural numbers does not exist in TT3, because it should be of type 3.

Anyway, we shall use the notation Nn below (in the same way thatON is used
in ZF). More precisely, a formula such asn ∈ Nn should be considered as an abbre-
viation for (∃x ∈ NFin)(∀y)(y ∈ n ↔ (y ∈ NFin∧ y �3 x)).
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10.1 Successor, addition and multiplication The main point of this section is to
define addition and multiplication. As we have insufficient types to define functions
from Nn to Nn, we cannot use definitions by induction (Proposition6.3). So we shall
use the alternative definitions of [1], which of course remain valid in intuitionistic TT.

If s, m, n ∈ Nn, we defines= m+ n as an abbreviation for

(∃x ∈ m)(∃y ∈ n)(x∩ y = ∅ ∧ x∪ y ∈ s).

By Lemma9.6, the above definition makes sense.
Defining multiplication on Nn is less trivial. Ifm, n, p ∈ Nn, we would like to

define p = m · n as (∃x ∈ m)(∃y ∈ n)(∃z ∈ p)(z �3 x × y). The problem is that
the type ofp would then be higher than the type ofm andn. If i t existed, a function
mappingzontox× y would be a set of pairs of the form〈c, 〈a, b〉〉, with a ∈ x, b ∈ y
andc ∈ z. Nevertheless, ifx∩ y = ∅, x∩ z= ∅ andy∩ z= ∅, then such a function
can be coded as a set of triples of the form{c, a, b}, with a ∈ x, b ∈ y andc ∈ z. Let
us writez ≈ x × y to denote the existence of such a coded bijection mappingz onto
x× y. Then if m, n, p ∈ Nn, we definep = m · n as an abbreviation for

(∃x ∈ m)(∃y ∈ n)(∃z∈ p)(x∩ y = ∅ ∧ x∩ z= ∅ ∧ y∩ z= ∅ ∧ z≈ x× y).

The following lemma ensures thatp = m · n is independent of the choice ofx, y, z.
To prove it, one should first prove that ifx, y, z∈ NFin, a �∈ y andz≈ x× (y∪ {a}),
then there existz1, z2 ∈ NFin such thatz1 ≈ x × y, z2 ≈ x × {a}, z1 ∩ z2 = ∅ and
z1 ∪ z2 = z.

Lemma 10.1 Let x, x′, y, y′, z, z′ ∈ NFin such that x∩ y = ∅, x∩ z= ∅, y∩ z=
∅, z≈ x× y, x�3 x′, y �3 y′, x′ ∩ y′ = ∅, x′ ∩ z′ = ∅, y′ ∩ z′ = ∅, z′ ≈ x′ × y′.
Then z�3 z′.

Now, in intuitionistic TT, the definitions given in this section can be proved to be
equivalent to those given in Section6. Also, the induction principle given by Propo-
sition6.2remains valid in intuitionistic TT3 if we consider(m= S(n)) as an abbre-
viation for (m = n + 1), where 1= USC(V) (the sets of all singletons), andS(n)↓
as an abbreviation for(∃m∈ Nn)(m= S(n)).

10.2 Infinity in intuitionistic TT3 As in intuitionistic TT, Nn will be a model of
HA if (∀n ∈ Nn)(S(n)↓). This will be the case if we suppose the axiom of infinity.
Precisely, in intuitionistic TT3, wedefine the axiom of infinity to be the formula

(AxInf3) (∀x ∈ NFin)(∃y ∈ NFin)(y �3 x)

In intuitionistic TT, (AxInf3) is of course equivalent to(AxInf ).
Proposition10.3is an adaptation of Proposition7.1. In its proof, we shall need

the following lemma.

Lemma 10.2 Let x, y, u ∈ NFin such that x∩ y = ∅ and x∪ y �3 u.
Then there exist x′, y′ ∈ NFin such that x′ ∩ y′ = ∅, x′ ∪ y′ = u, x�3 x′ and y�3 y′.

Proof: The proof is by induction onx. It is of course trivial if x = ∅. Solet x =
x1 ∪ {z1}, wherez1 �∈ x1. As x ∪ y �= ∅, thenu �= ∅, andwe can findu1 ∈ NFin
andt1 �∈ u1 such thatu = u1 ∪ {t1}. x1 ∪ y andu1 are in NFin. Ifx1 ∪ y ≺3 u1, then
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it is easy to prove thatx ∪ y ≺3 u, which contradictsx ∪ y �3 u. In the same way,
x1 ∪ y ��3 u1. So, by Proposition9.7, x1 ∪ y �3 u1. By the induction hypothesis, we
can findx′

1 andy′ in NFin such thatx′
1 ∩ y′ = ∅, x′

1 ∪ y′ = u1, x1 �3 x′
1 andy �3 y′.

But then, we can conclude becausex �3 x′
1 ∪ {t1}, by Lemma9.6. �

Proposition 10.3 In intuitionisticTT3, the following four formulas are equivalent
to (AxInf3).

1. (∀n ∈ Nn)(∃m∈ Nn)(m > n) .
2. (∀x, y ∈ NFin)(∃x′, y′ ∈ NFin)(x �3 x′ ∧ y �3 y′ ∧ x′ ∩ y′ = ∅) .
3. (∀x ∈ NFin)(∃x′ ∈ NFin)(x �3 x′ ∧ (∃z)(z �∈ x′)) .
4. (∀n ∈ Nn)(S(n)↓).

Proof: It is easy to prove that(AxInf3) is equivalent to (1), that (2) implies (3), that
(3) implies(AxInf3), and that (4) is equivalent to (3). Now we prove that(AxInf3)

implies (2), by induction onx. If x = ∅, then, clearly, we can takex′ = x andy′ = y.
Suppose thatx = x1 ∪ {z1}, wherez1 �∈ x1. By the induction hypothesis, there

exist x′′
1 andy′′ such thatx′′

1 �3 x1, y′′ �3 y andx′′
1 ∩ y′′ = ∅. As x′′

1 ∩ y′′ ∈ NFin,
we know by Proposition4.6thatx′′

1 ∪ y′′ ∈ NFin. Using(AxInf3), we can find some
u ∈ NFin such thatx′′

1 ∪ y′′ ≺3 u. So there is someu′ � u such thatx′′
1 ∪ y′′ �3 u′.

By Lemma10.2, we can findx′
1 andy′ such thatx′

1 ∩ y′ = ∅, x′
1 ∪ y′ = u′, x1 �3 x′

1
andy′ �3 y′′.

Finally, asu′ �= u, wecan find somez′
1 ∈ u\ u′ (by (P6)). We can now conclude

by lettingx′ = x′
1 ∪ {z′

1}. �

10.3 Infinity and arithmetic in intuitionistic TT3 If (AxInf3) is assumed, then HA
can be interpreted in intuitionistic TT3. As in Section7, we leave it to the reader to
state the following theorem formally (recalling that Nn does not exist).

Theorem 10.4 In intuitionistic TT3, (AxInf 3) is equivalent to “〈Nn, S,+, ·,0〉
satisfiesHA.”

The proof of this theorem easily follows from the properties stated in this section.
Wehave now completed the presentation of definitions and basic properties re-

lated to finite sets and natural numbers in intuitionistic TT and TT3. This is the start-
ing point of a study of these notions. Interesting problems include, among others,
finding a model of intuitionistic TT showing that the excluded middle cannot be de-
rived for arithmetic formulas, and studying the axiom of infinity in the intuitionistic
version of Quine’s New Foundations and related systems.
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NOTES

1. This remark was inspired by Holmes.

2. This proposition arose from a discussion with T. Forster.
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