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Abstract We show how to interpret Heyting’s arithmetic in an intuitionistic
version of TT, Russell's Simple Theory of Types. We also exhibit properties of
finite sets in this theory and compare them with the corresponding properties in
classical TT. Finally, we prove that arithmetic can be interpreted in intuitionistic
TTs3, the subsystem of intuitionistic TT involving only three types. The defini-
tions of intuitionistic TT and its finite sets and natural numbers are obtained in
a straightforward way from the classical definitions. This is very natural and
seems to make intuitionistic TT an interesting intuitionistic set theory to study,
beside intuitionistic ZF.

1 Introduction In this paper, we want to investigate how natural numbers can be
defined in intuitionistic TT, Russell's Simple Theory of Types, in such a way that they
satisfy the axioms of HA, Heyting's arithmetic.

We believe it is worth undertaking a study of intuitionistic versions of intuition-
istic TT and derived theories such as NF, Quine’s New Foundafidij§gee Forster
[B)). Indeed, on the one hand, intuitionistic TT can be axiomatized with the same
proper axioms as the usual axioms of classical TT (see Dziergd#$kitjis is more
natural than for intuitionistic ZF (see for example Myhi], and so, we find intu-
itionistic TT more elegant, from a philosophical point of view.

And on the other hand, we shall show that Heyting’s arithmetic can be inter-
preted in those intuitionistic theories in a very natural way, which furthermore is very
close to the usual interpretation defined in the corresponding classical theories.

2 Theaxiomsof intuitionistic TT We recall (see Boffdd] or Chapter 3 of Fraenkel,
Bar-Hillel, and Levy [B]) that the languageirt contains countably many variables
of typei, for eachi € w. So each variable is indexed with a superscript indicating its
type: for examplex?, y°, 22, t3, are type 0 variables; variables of distinct types are
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distinct (for examplex? andx! are distinct variables). The atomic formulas are of
the form

Xeytt o X=y,
foreachi € w. Inparticularx' e X' is never awell-formed formula. So Russell’s para-
dox involving the sefx : x ¢ x} disappears because it simply cannot be expressed
in the language! The proper axioms of intuitionistic and classical TT are:

1. extensionality:(VX+1, yt1) ((VZ)(Z € Xt & Z € yt1) - X+l = yit1),
for eachi € w;

2. comprehension schem@xit1)(VZ)(Z € X1 < ¢(Z)), for each formulap
wherexit1 does not occur free.

For example, we can easily derive from these axioms the existirazach type i
of an empty ser’*! = {x : X = x}, of a universal seV'*! = {x : X = x}, of
the power sePx ™1 of any setxt1, of USC(X't1) = {{x} : X' € X'*1}, etc. Notice,
for example, thaPx'+1 is a set of type + 2. In particular, the paradox inferred by
Cantor fromV = PV cannot be reproduced in TT becasge! = PVi+lis not a wif
(VI+2 = pVitlis a wif, but it is harmless).

Almost everywhere in this paper we shall not indicate the type of variables in
formulas. This will be more readable. Of course, the formulas will be ambiguous,
because they can be typed in many different ways: there are infinitely many sets of
natural numbers, in the same way that there are infinitely many empty sets. Most
often, this ambiguity will not matter: finite sets and natural numbers are defined in
the same way at each type, and most properties we shall derive from the definitions
do not depend on the types chosen to state them. The only sections where the choice
of types matters are

1. Sectior8] where we shall study the relations between finite sets of any type
i > 1 and finite sets of typé+ 1;

2. Section®landI0where we shall see how natural numbers can be defined with
only three types.

Finally, let us make precise some notations. A Kripke model of intuitionistic TT

will be of the form
M = (Mower . (K, =,0)

where (K, <, 0) is a partial order witlD as its minimal element, and eaf is a
structure of the formiM?, MY, ...; e, =M), where eactM; is the domain of typé
variables (sa&)! < Usc, My x M),

3 Threenotions of finiteness  Classically, the set of finite sets is the smallest in-
ductive set. In an intuitionistic framework, we introduce three notions of inductive
set, which are all classically equivalent. A geis

K-inductive iff @eE A (VX)(XxeE — (V2)y(xU{z} e E));
S-inductive iff @eE A (VX)(XeE — V2)(VyC{z))(xUye E));
N-inductive iff @eE A (VX)(XeE — (Vzgx)(xU{z} € E)).

This gives us three notions of finiteness; in each case, the set of finite sets is the small-
est inductive set.
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KFin = ({E : Eis K-inductive.
SFin = ({E : Eis S-inductive.
NFin = ({E : Eis N-inductive.

As expected, there is an induction principle corresponding to each notion of finite-
ness.

Proposition 3.1  Letp(x) be a formula ofZrr. Then

1. [p(@) A (YXe KFinN)(p(X) > (V2)p(xU{z}))] — (¥YXxe KFin)p(x);
2. [p(@) A (YXxe SFiN(p(x) — (Y2) (VY C {ZDp(xU Y))]
— (VX € SFine(x);
3. [p(@) A (VXe NFin)(p(X) > (VZ&€ X)p(xU{z}))] — (¥Vxe NFin)p(x).

Proof: ConsiderE = {x : x € KFin A ¢(X)}. Itis easily seen thapy € KFin and

thatx U {z} € KFin wheneverx € KFin. Then it is clear thaE is K-inductive. So

KFin € E. Inotherwords(Vx € KFin)¢(x). The proofs of (2) and (3) are analogous.
O

In classical TT, one proves by induction that NErKFin = SFin. In intuitionistic
TT, one can also prove by induction that NEirKFin C SFin. Anyway, one cannot
prove that those sets are equal. Indeed, using the technique descrigd is fasy
to find a Kripke model of intuitionistic TT where each singlet@h has a nontrivial
subset (i.e., a subsgtwhich is not equal t@ nor to{a}). Any such subsetis in SFin
but not in KFin. Also, we can find a Kripke model containing two elemarasdb
such that neithem = b nora # bis true. Ther{a, b} is K-finite, but it is not N-finite.

KFin is the original (classical) definition of the set of finite sets giveRiim-
cipia Mathematica SFin is the closure of KFin under subsets: it can be proved that
(VX)(x € SFin< (3k € KFin)(x C k)). And we shall define Nn, the set of natural
numbers, as the set of cardinals of N-finite sets. KFin would not have been adequate
to define Nn: indeed, the cardinal of a nontrivial subset of a singleton is in some sense
strictly between 0 and 1.

It should be worth studying the precise relationship between our three notions
of finiteness and notions of finiteness of topos theory (e.g., Kuratowski finiteness or
finite cardinals; see Johnstorf@)[

4 Some properties of N-finite sets  Recall that HA proves thatvn, m)(n = mv

n # m). So if Nn models HA, we can expect NFin to satisfy some “classical” prop-

erties. Such properties will be given below. Their proofs, which are easy but lengthy

inductions, will not appear here; they can be found in an internal report of the author.
These proofs make clear a nontrivial fact: thed' X" making the difference

between the definitions of N-inductive and K-inductive is sufficient to obtain all the

properties we need.

Proposition 4.1 Let xe NFinand X C x. Then
(P1) Vz,Z e X)(z=Z Vv z# 2);
(P2) ——x" € NFin;
(P3) X e NFin< (Vze xX)(ze X vzgX);
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(P4) X € NFin— (Vze X)(——ze X — ze X);
(P5) (Vz e x)(x\ {z} € NFin);
(P6) if X' € NFin, thenx = X' v x # X/, andx = X' iff x\ X' = &;

(P7) X=DVX#J.

Remark 4.2 N-finite setscannotbe defined as the S-finite setsuch thaivz, Z €
X)(z=17Z v z# Z) (for example, takex to be a nontrivial subset of a singleton). But

on the other hand, it is an open question to know whether N-finite sets can be defined
as the K-finite setg such thatvz, zZ e X)(z=2Z v z# 7).

Remark 4.3 (F2J implies that(vVx € SFin)(——x € NFin). So $in\ NFin = @
(but =—(SFin= NFin) cannot be proved).

Remark 4.4 The converse of [ isnot true. Indeed, using the techniquelg ft
is possible to find a Kripke modéf of intuitionistic TT consisting in three nodéd,,
M, andMp (0 < «, B; @ £ B £ ), and containing some such thatM |-, X' = {a}
andM kg X' = @. Clearly, M o (ae X' vagXx),so, by (B, X is not N-finite in
M. NeverthelessM kg (——a e X' — ae X).

Remark 45 (F5) isnot true ifzis not assumed to be a memberxoindeed, con-
sider the modelM of the preceding remark can be defined so that it contains
somea andb such thatM |+, a=bandM |- a+# b. Letx = {a}. Itis easy b see
that M ¢ (x\ {b} € NFin), usng (F#3).

4.1 Mutually detachable N-finite sets  We define two setx andy to bemutually
detachableff

(Vzex)(zeyvzey) A (VzZey)(zeXxVzgX).

So (i8] could be restated: Ik € NFin andx’ C x, thenx’ e NFin iff x andx’ are
mutually detachable.

The following proposition gives some equivalent definitions. Its proof uses
mainly (2) and induction.

Proposition 46 Let x y € NFin. The following formulas are equivalent.

1. x and y are mutually detachable.
2. xNy e NFin.

3. XUy e NFin.

4. (Jue NFin)(XCu A yCu.

The second definition and[@Pimply that
(P8) if X, y € NFin, then——(x andy are mutually detachable).

Alternatively, (88) can be proved using the fact that, for any formyland anyx €
NFin, (Vz € X)=—¢ < —=—(Yz € X)¢, Which can be proved by induction gn! If
X, ¥ € NFin are mutually detachable, then

(P9) x\ 'y € NFin,
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and

(P10) xgyiff Atex)(tgy).
To prove (i), first prove, using mainly (B and(H4), that ifx, X € NFin andx’ C x,
thenx \ X' € NFin. Then, ifx, y € NFin are mutually detachable, Proposit{drl
allows us to conclude becaug& y = x\ (XN y). Onthe other hand, the nontrivial
direction of (BLOJ is proved by induction orx.

5 Relations on cardinality of N-finite sets  We first define the relations, < and
<:

x>~y iff thereisa 1-1 function mappingontoy;

x <y iff thereisa 1-1 function mappinginto y;

X<y iff x<yandx#y.

It is then routine to prove by induction otthat
(P11) if x € NFin andy >~ x, theny € NFin.

The following lemma, which is also needed below, proves that N-finiteness implies
Dedekind-finiteness. The problem of comparing Dedekind-finiteness with the three
notions of finiteness introduced in this paper remains to be studied.

Lemmab.l Suppose that £ X’ and, for some ¥ NFin, x>~ yand X >~ y. Then
x = X. Inparticular, if x € X' € NFinand x>~ X/, then x= x'.

Proof: By induction onx (using mainly (&), in the same style as LemniaZ]
below). O

The following lemma is the hard part when proving tkais an order relation.

Lemmab5.2 LetxyeNFin. Then(xgy A y<X) — X>Vy. Sox<Yyiffx<y
and X2 y.

Proof: Weprovethat(x <y A y<X) — X2 yby induction onx. This time, as
an example, we give the details of the proofx & @, theny = & becausey < X,
and thusx >~ .

Suppose that = x; U {7}, wherez; & x;. Leti be a 1-1 function mapping
into y, and j be a 1-1 function mappinginto x.

X\ {z} < y\{i(zo}, andy\ {i(z0)} < x\ {j(i(z)}.

If j(i(ze)) = z, itiseasy. In that case, indeed@?and the induction hypothesis
implies thatx\ {z;} >~ y\ {i(z)}. Sox= (x\ {zs) U{z} = (y\ {i(z)}) U{i(z)} =

y (both equalities can be proved usin§)P Furthermore, we can always assume that
j(i(z1)) = zz. More precisely, we are going to prove thatan be transformed intp
such thatj’(i(z1)) = z. Indeed, leiy = {j(u) : u e y}. Then by (B.L) and (),
there are two cases.

Casel: zc j"y. Sothere exists € y such thatz; = j(t) and we can defing’ as
follows:
j'i(z) = z;
J'® 1((z));
juwy = ju fufAtanduz#i(zy).
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Case2: z¢ j"y. Thisis easier. Just defirnjéas follows:

J'(i(z0))
j’(u)

;

j(uy ifu#i(zy).

In both cases, we leave it to the reader to check thay — xis 1-1. (Notice that
(FL) has been implicitly used throughout the definitionjof Finally, it is then easy
tocheckthak < y & X YA X2 Y. O

Now, by induction orx, one proves the following expected trichotomy.
Proposition 5.3 If X, y € NFin, then x< y or x>~ y or x> .

This of course implies the decidability of:
(P12) Ifx, y € NFin, then(x >~ yv X2 y) and(——=X>~y — X~ V).

6 Thenatural numbers

6.1 Basicdefinitions Now we are in position to define Nn, the set of natural num-
bers:

Nn={n : (3xe NFin)(V2)(ze n < 2>~ x)}.
In particular, the natural number 0 {g}, and 1 is the set of all singletons, that is,
USC(V). The order on Nn, is defined from the ordeion NFin: if n, me Nn, then
n<m iff @xen@x em)(x=<x)

(one or both of théls above may be equivalently replaced witia And

n<m iff n<mvn=m iff @Axen@x em)(x=<Xx).
Let us now defines, the successor functioan Nn.

S={{n,m) : Axen)(Fz2)(zg XA XU{z} e m))}.

Ssatisfies the expected properties, as stated in the following lemma.
Lemma6.1

1. Sisa 1-1 function whose domain and range are subs&ts.of
2. If me domSand n< m, then ne domS.

3. (Vne domS)(S(n) # 0).

4. (YneNn)(n#0— (Ame Nn)(m= S(n))).

Notice that(¥n € Nn)(n € domSv n ¢ domS) cannot be proved in intuitionistic TT.
Indeed, by the technique described[d [it is easy to obtain a Kripke modé¥ of
intuitionistic TT satisfying the following properties\ consists of three nodesi,
M, andMp (0 < &, B; « £ B £ «). And Mg = {a} = M, while M = {a, b}. Then
M ko 1 ¢ domS, but M IkFg 1 € domS.
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6.2 Induction To write properties in a simpler form, we introduce some notation.
If F denotes a function, then we shall write

m=F(n) for (n,m)eF,and
F(n)y for nedomF.

Of course, all the formulas appearing in the sequel and using these notations can be
translated into wif ofZrr. In particular, an expression such@s(n)| A H(F(n)){)
denotes the formulédk) ((n, k) € F A (3K)((k, k') € H)).

Here now is aninduction principleon Nn.

Proposition 6.2 Letg(x) be a formula. Thefiw(0) A (Yn € Nn)((S(n)| A ¢(n))
= ¢(S(M))] — (¥ne Nnp(n).

Proof: The idea is to replace induction in Nn by induction in NFin. bgix) =
(Vn e Nn)(x € n — ¢(n)). Theng(0) implies ¥ (). On the other hand, suppose
(Yn e Nn)((S(n)y A ¢(n)) — ¢(S(n))). This translates intgvx € NFin) (y(X) —
(Vz¢g x)y¥(xU{z}). Byinduction on NFin, we conclude thétx € NFin)y(x), which
implies (Vn € Nn)p(n). O

The next proposition guarantees the existence of functions>Nwn defined induc-
tively.

Proposition 6.3 Letae Nnand H: Dy — Nn, where Dy € Nn. Then there exists
a unique function F such that

(RD) the domain and the range Bfare subsets of Nn;
(R2) F0)] andF(0) = a;
(R3) if S(n)|, thenF(S(n))J iff F(n)] andH(F(n))J;
(R4) if S(n)| andF(S(n))|, thenF(S(n)) = H(F(n)).
Proof (Uniqueness): Suppose thaf andF’ both satisfy (R1) —(R4). By induction

onn, it can be proved that, for afl e Nn, F(n)| iff F'(n){, and that ifF(n), then
F(n) = F'(n).

Proof (Existence): First, we are going to prove that, for &le Nn, there exists a
unigue functionF, such that

(RL) the domain of is a subset of0, . . ., k} and its range a subset of Nn;
(RZ) KO andFR(0) = &
(R3)  if S(n)| andS(n) <k, thenF(S(n))| iff F(n)| andH(F(n))J;

(R4)  if S(n){, S(n) < kandF(S(n){, thenF(S(n)) = H(F(n)).
The uniqueness of eath is proved exactly as the uniquenes$-above. Now, letus
prove the existence d¥, by induction onk. If k = 0, we definely = {(0, a)} (con-
ditions (R3) and(R4y) are empty). On the other hand, suppose @), . Then,
using the induction hypothesis, we define

Fsio = RcU{(S(k), m) = Rkl A H(R(k) I Am=H(R(k)}.
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Clearly, Fs, satisfies (Rgx)) — (R4sk)). Now we can define
F={{nm @ Fn(mi Am=Fy(n)}.

Clearly, F satisfies (R1) —(R4). O

6.3 Addition and multiplication Now we can use Propositif3lto define addi-
tion and multiplication on Nn. First, for eache Nn, Ay, is the unique function such
that

1. the domain and the range Af, are subsets of Nn;

2. An(0)] andAn(0) = m;

3. if S(n)|, thenAn(S(n)) | iff Am(n){ and S(Am(n))J;

4. if S(n)] and An(S(n))J, then An(S(n)) = S(Am(Nn)).
Thenm+ n = k denotes the formulén(n)| A k= An(n). Onthe other hand, for
eachm € Nn, we defineP, to be the unique function such that

1. the domain and the range Bf, are subsets of Nn;

2. Pn(0)] andPn(0) = 0;

3. if S(n){, thenPmn(S(n))| iff Pm(n)| and Am(Pm(n)){;

4. if S(n)] andPn(S(n))|, thenPyn(S(n)) = Am(Pm(n)).
Naturally,m.n = k denotes the formul&y,(n)| A k= Pn(n).

Weleave it to the reader to check all the usual properties suohasa = m-+n,

n+ (m+k) = (n+m) +k, (m+ n).k =m.k+ n.k, etc. This task is rather tedious

and boring, due to the fact that tlg,’s and Py’'s are not defined everywhere on Nn.
Alternative definitions of addition and multiplication will be given in Sectiidn

7 The axiom of infinity

7.1 Theaxiom Our goalis to prove in intuitionistic TT that Nn is a model of HA.
To achieve this goal, we neefl(n)| and Py (n){ to be true for alim, n € Nn. And
this is true ifS(n){, for all n € Nn, which in turn is equivalent to oaxiom of infinity

(AxInf)  (¥Yx e NFin)(3y € NFin)(y > X).

7.2 Intuitionisticand classical equivalentforms Here are four equivalent ways to
state this axiom of infinity. The equivalences which are not trivial can be proved by
induction.

Proposition 7.1 The following four formulas are equivalent ¢dxInf ).
(Al1) (Vn e Nn)(3m e Nn)(m > n).

(Al) VX, ye NFIN)@X, Y e NFINN(Xx>~X A y>~y A XNY = 2).
(Al3) (Yx € NFin)(3x € NFin)(x ~ X' A (32)(z & X)).
(Alg)  (YneNn)(S(n)).
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Classically(AxInf ) is equivalent tqvVx € NFin) (3y) (y € X) and also taV ¢ NFin).
We are going to prove that, in an intuitionistic framework, only one direction of each
equivalence still holds.

Lemma7.2 (¥Yxe NFin)(3y)(y ¢ X) implies (AxInf ), but the converse does not
hold. Notice thaiVx € NFin)(3y)(y € x) is equivalent to

(VX,ye NFin) 33X,y e NFiIn)(xNX' =@ A yNY =T A
XX Ay~y AXnNny =2). @1

Compare with (A$) and (Ak).

Proof: It trivial to check that(vx € NFin)(3y)(y & x) implies (AxInf). But it is

more tricky to see why the converse does not hold. Here is a counterexample. Us-
ing the technique of4], as in all counterexamples, we can prove the existence of
a Kripke model M of intuitionistic TT satisfying the following conditionsM =
(M)iek, (K, <, ko)), whereK = {ko, ky, ko, ...} and for alli, ko < ki, while ki £ k;

if 0 #i # j. For eachk; € K, the domain of type 0 objects 6, is {Xo, X1, X2, . . .}.

And equality inf is defined as follows.

Ml X0 =X, foralli €

and
M Ik xj # %, if {j, 1} #{0,i}andj # 1.

Clearly, M I ({Xo} € NFin) but M ¥ (Qy)(y € {Xo}). But one can prove that/ I-
AxInf (Hint: if M IF x € NFin, then there existg such thatM IF X' ~ x and M ¥
Xo € X).

Also, (Vx e NFin)(3y)(y ¢ X) is equivalent to[[); one direction is trivial, the
other one can be proved by inductionxanWe remark that[{) is not satisfied it/
whenx = {Xg}. O

Lemma7.3 (AxInf)implies(V ¢ NFin), but the converse does not hold.

Proof: Supposd&AxInf ) andV € NFin. Then there exists somes NFin such that
v > V. This is absurd because< V because C V. SoV ¢ NFin. Seelf] for a
counterexample showing that the converse does not hold. O

7.3 Infinity and arithmetic  Now, it is routine to define an interpretation 8fa
in Lrt and to prove the following theorem, using the results presented above, on Nn
and (AxInf).

Theorem 7.4  (AxInf) implies that{Nn, S, +, -, 0) satisfiedHA.

According to (Al), this implication is in fact an equivalence. So (AxInf) is exactly
strong enough for arithmetic to be interpreted.
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7.4 A relation between N-finiteness and K-finiteness

Proposition 7.5 AssumingAxInf ), the following characterization holds:

(¥X)((x € KFin) <
(3t e NFin)(3f)(f is afunctionAa t € domf A 't =x)).2 (2)

Proof: First, assumingAxInf ), we prove that(vx € KFin)(3t e NFin)(3f)(f is
afunction A f't = x), by induction onx (using mainly (Ak)). As NFin C KFin,
the other direction is a particular case of a more general fagtziKFin and f is a
function whose domain contaixsthen f “'x e KFin. O

Notice that 2] does not imply(AxInf ). In fact, ) does not even implyAxInf ) in
classical TT. Indeeﬂ is atheorem of classical TT because KENNFin, but it is
well-known that(AxInf ) is not a theorem of classical TT.

8 Shifting the axiom of infinity When we defined NFin, we did not write the type

of this set. In fact, there exists a set NFin at each type?. In this section, we want

to study how each NFiris related to NFiftL. This relation does not depend brSo

in what follows, we shall write NFin instead of NEjrand NFin™ instead NFiht?,

for some fixed. And in the same way, we shall cal\xInf ) the axiom of infinity
about NFih, and (AxInf +) the axiom of infinity about NFitt1. As in the previous
sections, we shall not give more indication about the types of variables; they should
be clear from the context.

8.1 Infinity, USCand T The usual way to compare objects of a given type with
objects of the next type is to use USC (defined in Se@oiso the following lemma
should not be surprising. At this point, it is worth remembering thaits in some
sense thénverseof USC: | JUSC(x) = x.

Lemma8.1

1. For all x, USC(x) € NFin™ iff x € NFin.
2. Forall x, y € NFin, USC(x) >~ USC(y) iff x >~ y,USC(x) < USC(y) iff x < ¥
andUSC(x) < USC(y) iff x < y.

Proof: The first part is proved by induction. Then, K C x x y, ddine R" =
{{{t}, {u}) : (t,u) € R}. Itiseasy to prove thaRis a function (resp. 1-1, resp. onto)
iff R™ is a function (resp. 1-1, resp. onto). ConverselfR i€ USC(x) x USC(y),
defineR™ = {(Jt,Ju) : (t,u) € R}. And we can also prove tha& is a function
(resp. 1-1, resp. onto) iR~ is a function (resp. 1-1, resp. onto). Knowing this, it is
routine to prove the second part of the lemma. O

So if x € NFin, then USGx) € NFin"T. But @ ¢ USC(x). Thus USGx) U {@} €
NFint. Furthermore, USCx) < USC(x) U {@}. This entails two consequences. On
the one hand, we obtain, for alle NFin, an easy proof of USX) < Px, because
USC(x) U {@} C Px.

On the other hand, if we could find somee NFin such that USCy) ~
USC(x) U {&}, then we would have § > x. With this remark it is easy to prove
the following proposition.
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Proposition 8.2 (AxInf ) is equivalent tavx € NFint)(3y € NFin)(x ~ USC(y)).

Classically, theoperationUSC, mapping NFin into NFih, can be transformed into
anothermperation T, mapping Nn into Nf: if n € Nn andm € Nn™, then

Tn=m iff (@Axen)(USC(x) e m).

(Since Nn and Nh do not have the same type, the axiom of comprehension cannot
be used to defin& as a real function; the same remark applies to YSC

Corollary 8.3 The operation T is a 1-1 monomorphism mapphginto Nn*.
Furthermore,(AxInf ) is equivalent to “ T is onto.”

Proof: Using Lemmd&_1]one can prove that, if, me Nn, thenTn=Tm<« n=m,
Tn<Tm< n<m ltisalso easy to prove th@tin+m)=Tn+Tm T(n-m) =
Tn- TmandT0 = 0. Finally, Propositiof8_2limplies that(AxInf ) is equivalent to
“Tis onto,” that is,(Ym € Nn™)(3n € Nn)(m= Tn). O

Also, notice that ifx € NFin, then®x N NFin € NFin* (this can be proved by in-
duction). But(3a)(P{a} € NFint) implies the excluded middle. Indeed, consider
zC {a}. As{a}, ze P{a}, thenz= {a} or z # {a}, by (Fﬂ In particular, ifg is any
formula, considez = {t : t = a A ¢} (we assume tha andt do not occur free in
¢). Then itis easy to check thét = {a} v z # {a}) implies (¢ vV —@).

8.2 N-Infinity shifts up but does not shift down  Classically, (AxInf) is ambigu-
ous, i.e., (AxInf) is equivalent to (AxInf). In an intuitionistic framework, this is no
longer valid, as proved by the following proposition.

Proposition 8.4  (AxInf ) implies(AxInf 1), but the converse does not hold.

Proof: Considex e NFin*t. Wewant to findy € NFin* such thaty > x. By Propo-
sition[8.2]wecan findy’ € NFin such thak ~ USC(y’). But then(AxInf ) allows us
to findy” € NFin such thaty” >~ y'. We an lety = USC(y").

To prove that(AxInf ) does not imply(AxInf ), we consider the following
counterexample. We can construct (using, as always, the technique descrid in [
the following Kripke modelM = ((M)kek, (K, <, 0)), whereK = {0} U {{i, j} :

I, jewni# jland<={(0,0)}U{(0,{i, j}) : {i, J} € K}.

Assume the domain of objects of type 0 of edldhis equal to{Xg, X1, Xo, . ..}.

The equality relation on these objects is defined as follows.

M”_{i,j} Xi = Xj.
M by gy X=X, forallk.
MH—{U} X Z X, IfF{k 1} #{i, j} andk # 1.

So, ifi # j, M ¥ (% = Xj) V (X # ;). This implies that the only N-finite sets of
type 1 are and the singletons.

M I+ NFin® = {@} UUSC(V).

This clearly implies thaf/ ¢ AxInf 2.
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But M I AxInf 3. Indeed, consider a set of the oy, Xy, . .., X<}. In each
M;i j), this set has exactli or k + 1 distinct members. So, i, {Xo, ..., X} is
always distinct fron{xo, . .., Xks2}. Thus, in/, the following sets of type 2 are N-
finite:

{2},
{2, {X0, X},
{Q’{X07Xl}a{xo""ax3}}9

{@, {XO’Xl}’ {XO""’X3}’ {XO""?XS}}’
etc.

But, outside M (i.e., in the model of set theory within whiciM has been de-
fined), one can prove by induction that# I- (@ # x € NFin®), then M IF (x ~

(D, {Xo0, X1}, {X, . . ., Xok41}}), for somek. So M I- (x < {@, {Xo, X1}, {Xo. - . .,
Xoke1)+1}})- Inother wordsM I (Vx € NFin®)(Qy € NFin®)(y > x). O
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9 Defining N-finite cardinals with three types

9.1 The need for a new definition of equinumerosity  Consider a set? of type 1.
Then|x!|, the cardinal ok, is defined by:|x}| = {y* : y! ~ x!}. So|x}| is a set of
type 2.

Nevertheless, ik € x! andy® € y!, then(x?, y°) = {{x°}, {x°, y°}} is a set of
type 2. So afunctiorf : x* — y!, being a set of ordered pairs, is a set of type 3. Thus
y! ~ x! denotes a formula where some variables of type 3 occur. This entai|gthat
is a type 2 object, whose definition requires type 3. In other words, the definition we
gave of|x'| cannot be written in T3, the fragment of TT, whose langage is restricted
to types 0, 1 and 2.

This is not a minor detail. Indeed, intuitionistic NF is finitely axiomatizable with
4-stratified sentences (see Dzierzgow@i &n intuitionistic adaptation of Hailperin
). In other words, NF is identical with Nff where the comprehension axioms are
4-stratified. The consistency of intuitionistic NF is still an open problem. Neverthe-
less, being identical with Nf; NF is closeto NF;, which is known to be consistent,
even if a suitable axiom of infinity is added. So it would be nice to define cardinals
of N-finite sets without using type 3, in order to be able to interpret arithmetic into a
consistent subtheory of intuitionistic NF.

To achieve this, notice that ' N y! = @, then a functionf : xt — y* can be
coded by a set gbairs {x°, y°}, instead of a set adrdered pairs(x®, y°). In such a
way, a function becomes a set of type 2.

For N-finite sets, the trick is to replace~ y with x >~ y, wherex ~, vy iff
there exists a set of pairs coding a 1-1 function mapgiRy ontoy \ x (it is clear
that (x\ y) N (y\ X) = 2).

Classically, ifx andy are finite, therx >~ y is equivalent tax ~, y (see Boffa
[, where this was used in order to interpret second order arithmetic in classical TT
with only three types). Intuitionistically, we are going to prove thak,dndy are N-
finite, thenx >~ yis equivalentte~—x ~, y. The double negation cannot be removed.
Indeed, by the technique presentedd} jve can devise the following Kripke model
M of intuitionistic TT. M = ((My)kek. (K, < 0)), whereK = {0, k, |}, with0 <k, |
andk £ | £ k, and such that the domains of type 0 objects contain four elements
a, b, o, B satisfying

Mira#bAra#BAra#ana=Dh, and
MiHa#bAra#BAra=anra#Db.

Let M IF x={a,b}andM IF y = {a, B}. SOM Iy x\ y={a}, M I x\ y={b}
andM IF y\ x={B}). ThusM IF ==x =, Yy, while M ¥ x>, .

9.2 Equivalence with the previous definition in intuitionistic TT

Proposition 9.1  Suppose xy € NFin are mutually detachable. Thenx vy iff
XZ=AY.
Proof: Asxandy are mutually detachabl&N y € NFin by PropositioBL&] Then,

using (), we can see that= (x\ y) U (xNy) andy = (y\ X) U (xNy). From
this, it is easy to infer that ~, yimpliesx >~ y.
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The other direction is more tedious. We are going to prove it by induction on
X. As itistrivial if x = @, suppose that = x; U {z1}, with z; & X;. Let f bea 1-1
function mapping ontoy.

By (FB) and (i8] then, there are two cases.

Casel. zex\Yy.IfycCxthen, by Lemmﬂl y = X, which is absurd because
7, ¢ y. So by (L0}, there exists somiec y\ x. Now it is easy to transforni so that
f(zy) = t and the conclusion easily follows from the induction hypothesis.

Case2: z¢x\yie.,z; e xny. We an transformf so thatf (z;) = z, and then
it is easy to conclude. O

Corollary 9.2 If X, y € NFin, then x>~ y iff =—x >, .

Proof: If x, y € NFin, then (B) implies that=— (x andy are mutually detachable).
So, by Propositiofd.1] —— (x ~ y) iff == (x>~ Yy). We can then conclude by [B).
O

Notice that the above corollary is not truexifandy are not assumed to be in NFin.
Indeed, using as usual the techniqueldf ve find a modekV of intuitionistic TT
wherex is some singleton, angla nontrivial part ofx such thatl ¥ (y=2ovy=

X) and M I ——=x =y. As M |F ==x = y then, a fortiori, M |F ==x ~, y. But
M ¥ x ~ y (otherwise x = y). Furthermore, this counterexample proves that
NFin and——(y ~, x) does not imply thay € NFin. So (1) doesnot generalize
to == (- >p -).

9.3 Correctnessof thedefinition in intuitionistic TTs  In the previous section, we
have proved, in intuitionistic TT, that—(- ~, -) is the same relation on Nn &s>~
-). But this does not proven intuitionistic TTz, that——(- ~, -) is an equivalence
relation on Nn. The proof in intuitionistic T3will be given in Propositiof®.4] which
needs the following lemma, whose proof is a very long and tedious inductignion
the same style as the second part of the proof of Propoitidfout with more than
two cases.

Lemma9.3 Letxy,ze NFin. Assumethatxy xNz ynz xNynze NFin.
Then, in intuitionisticT Tz, (XA Y A YA 2) = X, Z.

Proposition 9.4 In intuitionistic TT3, =—(- 24 -) iS an equivalence relation.

Proof: The only nontrivial part consists in proving that-(- ~, -) is transitive.
Considerx, y, z € NFin. By (2}, —— (xNy,xNz yNz xNynze NFin). Then
Lemma@3lcan be used to prove that—X =~ y A ==y ~p 2) = ==X =p 20 [

9.4 Trichotomy If X, y € NFin, we define

X~gy iff ==X~ y),
x<3y iff QY eNFin)(y CyAx=>3Y),
x=<3zy iff @Ay eNFin)(y CyAx>~3Y).

With these definitions, we shall be able to reproduce Lefarland Propositiok.3]
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Lemma9.5 Letx ye NFin. Then, in intuitionisticTTz, (X <3y A y<3X) —
X~3Y. SoXx <3 Yiff X 3 yand X3 .

Proof: Letus prove thatx <3y A Yy<3X) — X2~3V. If X <3, then there
existsy C y such thatx ~3 y'. Also, if y <3 X, then there existg’ C x such that
y3X. So—— (X~ Y AYy>a X). Wewant to prove that this implies~3 vy, i.e.,
(XA Y).

On the one hand, suppose tlyat:, X' and consider a 1-1 functiof, coded as
a %t of pairs, mapping \ X ontox'\ y. Letx” = f“(y' \ X) U (X' Ny’). Clearly,
X'\y = Ny \X),andy \ X" =y \ X. Sox” ~, Y, whichimplies—=—(x" ~, Y).
On the other hand, suppose thxat, y'. This implies——(x >~ y'). As == (X" €
NFin), by (F2), then——(x ~, x"), by Propositiol2.4 But asx” \ x = @ because
X" C x, this implies that~—(x\ X’ = @). So——(x = x") by (H6). Butx”’ C X’ C x.
Thus—— (X' = x). As we supposed that >~ X, we get=—(X =4 Y).

Let us summarize. We want to proxe~3 vy, i.e.,m— (X ~, Yy). Tothat aim, we
first proved that-—(X >~ Y A X' >~ y). Then, we proved that(X’ >~ YA X >
y) — == (XA Y)), Which is equivalent tgq—— (X ~p YAX A V) — == (X2
y)). Wethen conclude by modus ponens.

Finally, by the definitions ok3 and=<s, itis trivial to prove thatx <3 y < (X X3
YAXZ3Y). 0

The following lemma is used in the proof of Propositiaal It will also play an
important role in the definition of addition in SectiGn]

Lemma9.6 LetxX,y, ¥ eNFinsuchthatxX\y=2,x>3X,y>~y, XNy =
. ThenxJy~3 X' Uy

Proof: First prove by induction om that if X, X', y, y € NFin are such thatny =
T, XA X,y Y, X Ny =@ andxU yandx Uy are mutually detachable, then
XUy~ X Uy. By taking the double negation of this, we infer thakifi y = &,
x>~3X,y>3Y,X Ny = @ and—— (xU yandx Uy are mutually detachable), then
XUy >~z X Uy. Wemay then conclude by usindg]? becausexU y, X' Uy € NFin
by Propositiofid.6] which is provable in intuitionistic T4 O

Proposition 9.7  If X, y € NFin, then, in intuitionisticTTs, X <3 y Or X >~3 y Or
X>3Y.

Proof: The proof is by induction orx, using the previous lemma (in a simplified
form: if x, y e NFin,z¢ xandZ ¢y, thenx >~3 yimpliesxU {z} ~3 yu {Z}). O

10 Defining natural numberswith threetypes Finite sets of type 0 objects are of
type 1. So a natural number is of type 2, and we proved in the preceding section that
it can be defined in intuitionistic T3l that is, without sets of type 3. Now Nn, the set
of natural numbers does not exist in g, because it should be of type 3.

Anyway, we shall use the notation Nn below (in the same way@is used
in ZF). More precisely, a formula such as= Nn should be considered as an abbre-
viation for (3x € NFin)(Vy)(y € n <> (y € NFin A y ~3 X)).
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10.1 Successor, addition and multiplication ~ The main point of this section is to
define addition and multiplication. As we have insufficient types to define functions
from Nn to Nn, we cannot use definitions by induction (Proposifid. So we shall
use the alternative definitions @[ which of course remain valid in intuitionistic TT.

If s, m, ne Nn, we defines= m+ n as an abbreviation for

AXem@Eyen(XNYy=TAXUYES).

By Lemmd9.6] the above definition makes sense.

Defining multiplication on Nn is less trivial. Ifn, n, p € Nn, we would like to
definep=m-nas@x e m@Ay € n)(3z € p)(z=>~3 X x y). The problem is that
the type ofp would then be higher than the typemfandn. If it existed, a function
mappingz ontox x y would be a set of pairs of the for(g, (a, b)), withae x,bey
andc € z. Nevertheless, kNy =@, xNz= @ andyNz= &, then such a function
can be coded as a set of triples of the fdna, b}, witha e x, b € yandc € z Let
us writez ~ x x y to denote the existence of such a coded bijection mapporgo
X x y. Thenif m, n, p € Nn, we definep = m- n as an abbreviation for

AXem@yen@ze pP(XNY=TAXNZ=TAYNZ=T AZX XX Y).

The following lemma ensures that= m- n is independent of the choice gfy, z
To prove it, one should first prove thatif y, ze NFin,a ¢ yandz~ x x (yU{a}),
then there existy, zo € NFin such thatz; ~ xx y, z ~ x x {a}, zNz = @ and
71Uz =2

Lemmal0.l LetxX,y,¥,zZ eNFinsuchthat\y=@,xNz=@,yNz=
D, 2 XX Y, X3 X,y Y, XNy =, XNZ=a,YyNZ=3,Z~X xV.
Then z~3 Z.

Now, in intuitionistic TT, the definitions given in this section can be proved to be
equivalent to those given in SectiBhAlso, the induction principle given by Propo-
sitionl6.2remains valid in intuitionistic T7Tif we consider(m = S(n)) as an abbre-
viation for (m= n+ 1), where 1= USC(V) (the sets of all singletons), ar&in)|

as an abbreviation fal@m € Nn)(m = S(n)).

10.2 Infinity in intuitionistic TTz  As in intuitionistic TT, Nn will be a model of
HA if (vYn e Nn)(S(n)]). This will be the case if we suppose the axiom of infinity.
Precisely, in intuitionistic T3, we define the axiom of infinity to be the formula

(AxInf3)  (¥Yx e NFin)(3y € NFin)(y >3 X)

In intuitionistic TT, (AxInf3) is of course equivalent tEAXInf ).
PropositioriL0.3lis an adaptation of Propositiéidl In its proof, we shall need
the following lemma.

Lemmal0.2 Letx y,ueNFinsuchthatxX)y= @ and xUy~3u.
Then there exist'’xy’ e NFinsuchthat XNy = &, X Uy =u, x>~gx and y>~3 Y.

Proof: The proof is by induction ox. It is o course trivial ifx = @. Solet x =
X1 U {z1}, wherez; & x;. AsxU Yy # @, thenu # @, andwe can findu; € NFin
andt; € u; such thauu = uy U {t1}. X1 U y anduy are in NFin. Ifx; Uy <3 uq, then
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it is easy to prove that U y <3 u, which contradictx U y ~3 u. In the same way,
X1 Uy ¥#3 Ur. So, by Propositiof2.7] x; U y ~3 uy. By the induction hypothesis, we
can findxj andy’ in NFin such thak; Ny = @, x; Uy = ug, X >3 X; andy ~3 y'.
But then, we can conclude because;s X; U {t;}, by Lemmd9.6] O

Proposition 10.3  In intuitionistic TT3, the following four formulas are equivalent
to (AxInf3).

1. (Yne Nn)@me Nn)(m > n) .
2. (VX,ye NFInN)@X,y e NFinN)(x>3 X A y3y A XNY =92).
3. (Vxe NFin)(AX e NFin)(x ~3 X' A (32)(z¢ X)) .

4. (Yne Nn)(S(n)J).

Proof: Itis easy to prove thatAxInf3) is equivalent to (1), that (2) implies (3), that
(3) implies (AxInf3), and that (4) is equivalent to (3). Now we prove tiakinfs)
implies (2), by induction omx. If x = &, then, clearly, we can také = xandy’ =y.

Suppose that = x; U {1}, wherez; ¢ x;. By the induction hypothesis, there
existx; andy” such thatx] ~3 x1, y" ~3 yandx; Ny’ = @. Asx{ Ny” e NFin,
we know by Propositiod.Blthatx] U y” € NFin. Using(AxInf3), we can find some
u e NFin such thaiy U y” <3 u. So there is somel' C u such thax] U y” ~3 U’
By Lemmd10.2 we @n findx; andy such tha; Ny = &, X, Uy = U, x; >3 X]
andy ~3vy".

Finally, asu’ # u, we can find some; € u\ u’ (by (FB)). We can now conclude
by lettingx’ = x; U {z}. O

10.3 InfinityandarithmeticinintuitionisticTTs  If (AxInf3) is assumed, then HA
can be interpreted in intuitionistic ET As in SectiorZ] we leave it to the reader to
state the following theorem formally (recalling that Nn does not exist).

Theorem 10.4 In intuitionistic TTs, (AxInf3) is equivalent to {Nn, S, +, -, 0)
satisfiesHA.”

The proof of this theorem easily follows from the properties stated in this section.
We have now completed the presentation of definitions and basic properties re-

lated to finite sets and natural numbers in intuitionistic TT ang. This is the start-

ing point of a study of these notions. Interesting problems include, among others,

finding a model of intuitionistic TT showing that the excluded middle cannot be de-

rived for arithmetic formulas, and studying the axiom of infinity in the intuitionistic

version of Quine’s New Foundations and related systems.
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NOTES

1. This remark was inspired by Holmes.

2. This proposition arose from a discussion with T. Forster.
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