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Dynamic Bracketing and
Discourse Representation

ALBERT VISSER and KEES VERMEULEN

Abstract In this paper we describe a framework for the construction of enti-
ties that can serve as interpretations of arbitrary contiguous chunks of text. An
important part of the paper is devoted to describing stacking cells, or the pro-
posed meanings for bracket-structures.

1 Introduction
Motto: Sentence structure and text structure are different, but not in kind.

1.1 Dynamic brackets in action Let’s start with an example. Consider the sen-
tence,

A dog sees a cat.

To give a logical semantics for this sentence, we have to produce a meaning for the
sentence. Such a meaning could be (given by) the following sentence of predicate
logic.

∃x(DOG(x) ∧ ∃y(SEES(x, y) ∧ CAT(y)))

Even if this result were a satisfactory meaning representation, we should not be con-
tent. We do not just want correct meanings to be produced in an oracular way. We
want theprocess of producing a meaning from a sentence to be systematic. Being
systematic involves precise specification of the interpretation process and satisfac-
tion of certain constraints. One such constraint is compositionality. Another such
constraint is maximizing the number of meaningful components. Yet another one—
subordinate to, but not a consequence of compositionality—is uniformity in the way
the meanings interact. In its usual formulation Montague grammar does not meet the
uniformity constraint, but we could try to set it up uniformly with function application
as the fundamental mode of meaning interaction.

Traditionally the process of interpretation has two stages. The first stage, pars-
ing, is still at the syntactical level. It consists of enriching the input sentence with
syntactical structure. We analyze what the appropriatecomponents are and the way
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in which these components depend on each other. For example our sentence could be
parsed as one of,

(i) ((a dog) (sees (a cat))) (ii) ((a dog)\ sees / (a cat))
(iii) (a(dog,sees(a cat))) (iv) (sees(a dog, a cat))

The second stage is semantical interpretation proper. Grammatical structure steers
this process. It is what makes the compositionality constraint meaningful. We in-
terpret componentwise, and the meaning of the whole is obtained from the meaning
of the parts, by applying the appropriate function to the meanings of the parts in the
way prescribed by the grammar. E.g., the meaning ofsees in our example(ii) above
could be a binary function which is applied to the meanings ofa dog anda cat, where
the slashes are indicative of argument location. Grammar issyncategorematic in this
approach to semantics, i.e., no semantical objects are ascribed to the symbols fixing
grammatical structure. In our examples: the brackets and the slashes get no mean-
ings.

Why do we arrange the interpretation as we do? A number of the ideas—like
compositionality—that go into it can be viewed as general design constraints. They
do not reflect anything out there, but just fix a format for describing things. Other
things could be dictated by the idea that we want to model something. Dynamic se-
mantics as we view it is shaped by one such idea. We want the way the logical seman-
tics is produced to model the interpretation process in humans and machines. This
programmatic idea will cause us to diverge from the received idea of the role of gram-
mar as syncategorematic steering. (Note that “modeling the interpretation process”
is not among the classical aims of model theory; those aims are rather to gain under-
standing of validity and definability. Thus nothing we say should be constructed as
criticism of model theory.)

Does the interpretation process as programmed by the grammatical analysis of,
say, example(i) reflect the actual temporal interpretation process? This analysis pre-
scribes that we first interpret(a dog) and(a cat). Then we process(sees (a cat)) and
finally ((a dog) (sees (a cat))). Suppose we are hearing someone saying very slowly:
a ...dog ...sees .. .a .. .cat. Our “theory” predicts that after hearingsees we cannot
combine the meaning ofsees with the meaning ofa dog. But, surely, we can. The
point can be strengthened by looking at very long sentences.

If we accept this argument, there are two ways to go. First we may search for a
grammar that reflects the process of interpretation over time more adequately. But in
our example, what else could such a grammar yield than,

((((a dog) sees) a) cat)

Is this really convincing? We also would understand something, if we missed the
speakers first words and just heard:. . .sees .. .a .. .cat. Surely, interpretation satis-
fies theBreak-in Principle: we can break into a piece of ongoing text at any place
and still gain a measure of understanding. The second possibility is to drop the treat-
ment of grammar as syncategorematic. Grammar is not what steers the interpretation
process. It does something else, which is reflected at the semantical level. For, where
else could it be reflected?



DYNAMIC BRACKETING 323

In this paper we will consider the idea that grammar is there forcategorematical
steering. In other words,yes, grammar plays the role of guiding the way we process
information, but,no, grammar’s role is not well placed at the transition from syntax
to semantics.

The semantics that we want to develop is a version of Heim’s file change seman-
tics for indefinites (see [3],[4]).1 In our version, the meaning of( is going to beintro-
duce a new file for storing the subsequent information. The action that( means will
be modeled by an appropriate mathematical object, in the style of program-semantics.
Analogously, a right bracket is going to meaneliminate the current file.

To understand the idea of brackets as actions or program-instructions better, it
helps to consider an analogy:existential quantification. In dynamic semantics the
existential quantifier∃x is usually interpreted as the instructionintroduce a new file
labeled x (see e.g., Groenendijk and Stokhof [2]). Vermeulen [19] modified this to:
push a new file onto the stack labeled x.2 The stacking way of viewing the existential
quantifier opens the way for introducing a companion ofexists x, viz., exit x, meaning:
pop the current file from the stack labeled x. Vermeulen’s alternative predicate logic is
calledDPLE. By way of example, we produce a sentence inDPLE-language, written
with four different notational conventions, each suggestive in its own way.

(a) ∃x.P(x).∃y.Q(x, y).Ex.R(y).Ey
(b) push x.P(x).push y.Q(x, y).popx.R(y).pop y

(c) \begin{x}.P(x).\begin{y}.Q(x, y).\end{x}.R(y).\end{y}
(d) [x.P(x).[ y.Q(x, y).x].R(y).y]

In contrast to predicate logic, where the existential quantifier is standardly associated
with scoping brackets,exists andexit are their own brackets. As suggested by (d), [x

andx] are brackets enclosing a stretch of text in which the information stored underx
goes to a certain fixed file. But if we can viewexists andexit as brackets, where these
brackets are given instructions as meanings, why should we not seriously consider
giving the usual brackets a similar semantics?

Our first programmatic point was the idea of modeling the interpretation pro-
cess. With the example of the existential quantifier a second theme has been tacitly
introduced. The aim of the dynamic interpretation of the existential quantifier was to
provide a better simulation of the way anaphoric phenomena are handled in natural
language. Anaphoricity is typically a text phenomenon, which exceeds the scope of
individual sentences. Thus dynamic semantics aims at describing not just interpre-
tation of sentences, but primarily interpretation of texts. Sentence interpretation just
appears as a subproblem. Note that, because texts can be arbitrarily long, there is no
temptation to interpret “text-brackets” likea man or suppose syncategorematically.3

If we treat grammar categorematically, and if the syntax-to-semantics interpretation
process is not guided by grammatical structure, what is the syntax-to-semantics in-
terpretation process going to look like? Setting apart all kinds of hybrid approaches,
let’s look at just the most radical one. The radical answer is simply that we can inter-
pret any stretch or chunk of text, and that the interpretation of the concatenation of
chunks is a function of the interpretation of the chunks. We will call this function the
merger. We will use “•” to designate the merger.
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Let’s look at an example. We are going to parsea dog sees a cat as:

(.(.sub.ax.dog.).sees.(.ob.ay.cat.).)

This formula is a formula of the fragment of predicate logic we are going to de-
velop. sub and ob are markers for the argument places. We can both interpret
(.(.sub.ax.dog.).sees, getting as meaning, roughly,a dog sees something, and
sees.(.ob.ay.cat.).), getting as meaning, roughly,something sees a cat. Obviously, to
make this all work out well, we should demand that the result of merging the mean-
ing of (.(.sub.ax.dog.).sees with the meaning of(.ob.ay.cat.).) is the same as the result
of merging the meaning of(.(.sub.ax.dog.) with the meaning ofsees.(.ob.ay.cat.).).
Thus we demand that• is associative. We will conveniently add an empty meaning or
tabula rasa. This tabula rasa will act as the identity for•. So our meanings will form
a monoid withtabula rasa as the identity. We call the interpretation process, as de-
scribed,monoidal processing. Note that monoidal processing includes the possibility
of incremental processing, i.e., processing strictly from left to right.

In the most radical case, where we interpret all syntax categorematically, there
will be no syncategorematic syntax at all. Thus our approach has as consequence
a radical unburdening of the specification language. All sentences of this language
are grammatical and can be assigned meanings. Of course, some meanings are more
equal than the others....

In this paper we will address the problem of interpretation from parsed sentence
to semantical object. We will not consider the problem of run-time parsing. We
will, however, in designing our specification language, pause to consider variants that
would make the parsing easier. (See e.g.,§2.4on the use of lazy brackets.) Some of
the work on incremental grammars (see e.g., Milward [12],[13]) is close in spirit to
what we are aiming at.

1.2 Context and content In the previous subsection we introduced the first design
feature of our approach: grammatical structure is treated as meaningful. In this sub-
section, we describe the second feature: theDRT-style representation of meanings as
context/content pairs.

In Groenendijk and Stokhof’sDPL (see [2]), dynamic meanings are actions,
which are in their turn mathematically represented as input-output relations. This ap-
proach has the advantage of mathematical simplicity. It has as disadvantages that one
cannot associate a good notion of information growth to it and that one cannot easily
separate the statical and the dynamical aspects. We follow another dynamic tradition,
DRT or File-change Semantics, in taking our meanings to be static objects (relational
databases, sets of assignments), enriched by dynamic contexts (see e.g., Zeevat [22]
and Kamp [9]). We claim the following advantages.

� There is a good separation between the static and the dynamic. We keep the
classical ideas of a meaning as a database and of a meaning as a set of assign-
ments.

� Our approach supports a good notion of information growth.
� We do not throw away the relational approach. From aDRT-style meaning

a DPL-style relational meaning can be ‘extracted’. The ‘extraction’-function
will be morphism of monoids, mapping• to relational composition,◦.
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� In a way similar to that of the previous item, we can associateupdate functions
with our meanings.4

The main novelty of this paper is the machinery we develop to build the dynamic
contexts. We will begin the development of our tool-kit in§3.

1.3 The local and the global In §1.1, wealready mentioned the structure of larger-
than-sentence discourses. Evidently, anaphoric phenomena belong to this structure.
In the present paper we will give a treatment of anaphoric phenomena, which can be
viewed, very roughly, as aDRT-version of Vermeulen’sDPLE. We will, on the other
hand, treat local sentential structure in a new way. The most salient property is that
our specification language embodies a different, more natural-language like, strategy
to handle argument places than Predicate Logic. In Predicate Logic terms get into the
correct argument place by occurring at rigidly prescribed places after atomic predi-
cate symbols. In our approach terms get into place by carrying the appropriate place
markers (argument handlers). These place markers are analogous to prepositions in,
say, Dutch or to thecasi in, say, Latin. In our language, the following items will be
essentially equivalent.

� (.(.hex.sub.).cut.(.they.bread.ob.).(.with.az.knife.).)

� (.(.with.az.knife.).(.they.bread.ob.).(.(.hex.sub.).cut.)

The role ofsub andob is the same as the role ofwith. E.g.,sub is like thecasus nom-
inativus in Latin.

By a mechanism to be explained in§4.2, wewill see thathex functions as alink
between the global discourse structure (which involves a discourse referent labeledx)
and the local sentential structure (which involves a discourse referent that fuses with
the discourse referent associated to the argument handlersub). We submit that in this
way our semantics for the first time correctly describes one major aspect of anaphors:
that they function as places where a local and a global machinery link up. Standard
DRT andDPL could not do this since their specification language uses the mechanism
of Predicate Logic for handling arguments. In Predicate Logic there is nothing like
therole of bringing an argument to its proper place. There an argument simply is in
place by being written in the proper place.

1.4 On the use of categories One likely obstacle to reading the paper for the reader
whose roots are in linguistics is our use of Category Theory. We feel that the use of
this machinery was forced on us by the material. The categorical framework seems
tailor-made for the description of the flow of files. To be more precise, we do not want
just descriptions, we want descriptions such that objects described that way have cer-
tain desirable properties, the most important one being that our objects interact as the
elements of a monoid. Moreover, our monoids will be monoids onlymodulo isomor-
phism. Again, Category Theory is the appropriate medium to describe these isomor-
phisms in a systematic way. So there is no way to escape Categories. Let’s stress,
however, that Category Theory in our paper functions just as a definitional format.
We do not really use any deep or hard theory. We have added a brief introduction
to categories (§3) to ease the pain. We have tried to keep the paper readable by sup-
pressing certain essentially trivial but lengthy computations.



326 ALBERT VISSER and KEES VERMEULEN

2 Monoids and structure: simple stacking cells
Motto: Don’t be afraid of flatness!

2.1 Introduction One of the problems that one might expect for our setup is
the representation of (hierarchical/constituent/component/recursive/bracket) struc-
ture: since we have set out to describe the whole interpretation process in terms of
monoids, there seems to be little room to account for the hierarchical structure that
is so abundantly present in most syntactic and semantic phenomena. After all, the
monoidal operation isassociative, which means that the elements of a monoid are
insensitive to structure.

However, it turns out that the notion of astacking cell comes to rescue the here.5

Wewill see that stacking cells form a monoid, as required. But at the same time they
allow us to encode the structural properties of objects. This means that we can intro-
duce structure in the monoidal setup by using stacking cells as contexts.

As an example we will consider the following sentence:

The quick brown fox that jumped over the lazy dog wanted the rabbit that ran.

Before we can start to interpret this sentence, it will be necessary to make some of the
information about its syntactic structure explicit. Here we focus on theconstituent
structure of the sentence, which we make explicit by adding brackets, as follows:

((the quick brown fox ((that) jumped (over the lazy dog))) wanted (the rabbit
((that) ran)))

This is not the representation of constituent structure as it will be produced by the
ultimately correct theory of syntax. But that is not the point here. The point is that
even the ultimately correct representation will encode information about constituent
structure in some way or other. And we will use stacking cells in the processing of that
ultimately correct representation. As we do not wish to wait for that ultimately correct
representation, we illustrate the use of stacking cells using the naive representation,
with brackets.

Now we find ourselves confronted with a bracketed string in which different
items convey different kinds of information. We have isolated the structural infor-
mation in the brackets, ) and (. The other elements of the string convey other kinds
of information that, for now, we will group under a common heading: (truth con-
ditional) content. In our (left-to-right) interpretation of this string we keep score of
the different kinds of contribution of the string components at the same time. The
content-like contributions will be ‘added up’ according to their location in the con-
texts: this corresponds to our view of the role of grammar in categorematic steering.
Therefore we work with objects which consist of a context component, which serves
to keep score of the structural information that we meet, and a content component, in
which we add up the content-like information according to its place in the context.
These context-content pairs have to form a monoid.

It fits into our program (as explained above) to try to construct this monoid of
complex objects from simple(r) monoids: the monoid of contexts and the monoids
of contents. Here we first discuss the monoid of contexts, i.e. the monoid which we
will use to represent the structural, constituent-like information. In§4 we show how
simple monoids can be combined into complex ones. Then, in§6, wewill discuss the
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content components in some detail, so that we will have all the ingredients required
for the interpretation of our example.

Wehave used brackets to mark the boundaries of the constituents in the sentence.
Thus the brackets are the elements in the example that give the information about
the structure of the expression. The other elements give other kinds of information
altogether. Therefore we may first concentrate on the string:

(.(.1.1.1.1.(.(.1.).1.(.1.1.1.1.).).).1.(.1.1.(.(.1.).1.).).)

instead of the complete example above. This string is obtained from the example
by replacing everything but the brackets with 1, sometabula rasa element that is
structurally neutral. This way we can concentrate on the structural information in our
example.6

2.2 Pair representation of simple stacking cells We now have to develop a suit-
able monoidal representation for the kind of strings that we saw above (cf. page327).
For each substring its representation has to encode the impact of the substring on the
structure in which it occurs. As a first attempt we consider the following method of
representation.

Weimagine ourselves working on astack of constituents in each stage of the in-
terpretation. The stack shows how deeply the constituent that we are currently work-
ing on is nested in the overall structure. For example, if our string starts with (((, we
will obtain a stack consisting of three constituents. It is clear that a left bracket, (,
indicates the beginning of a new constituent. Each left bracket causes an increase in
the depth of nesting of constituents by one: it is a push action. So it seems that the
contribution of each left bracket can be described by the integer +1, to indicate that
it adds one new constituent to the current stack of constituents.

For the right bracket ) the situation is dual: the right bracket indicates a decrease
in the nesting depth by one: it is a pop action. So it seems that the contribution of the
left bracket can be indicated by the integer−1. Also the stacks themselves can be
represented as integers: we can map each stack to the number of levels on the stack.
So the monoid of integers + addition seems a suitable candidate for the representa-
tion of bracket strings: stacks get represented by the number of push levels that they
contain and strings get represented as the sum of the contributions of the brackets in
the string: ((()) corresponds to 1+ 1+ 1+ (−1) + (−1) = 1, () to 1+ (−1) = 0 etc.
But this representation of bracket strings will not work. Let’s compare the following
two strings: () and )(. If we apply the method of representation indicated above, we
find that both strings correspond to 0. Thus this method of representation suggests
that both strings are structurally neutral. It will be clear that this is not true: although
both strings leave theamount of constituents intact, they do not have the same effect
on the structure at all. The string () really does have a neutral contribution to the over-
all structure: if we add () to some strings, then we will first start a new constituent
with ( and then finish this constituent with ). As a result we end up in the same con-
stituent where we were afters. But if we add )( to a strings, things are different. Now
we will first finish a constituent (ofs) with ) and then start anew one with (. So )( will
cause us toswitch from one constituent to the next.
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Clearly such switches will be important for the interpretation of our example.
Therefore the representation of the structural contribution of bracket strings by in-
tegers is too naive: it is not only the number of brackets that matters, but also their
order.

Fortunately it is possible to get away with an almost equally natural repre-
sentation: we will not represent bracket strings by one integer, but by two natural
numbers.7 One number will be used to indicate the number of constituents that are
closed off by the string, the other number gives the number of new, nested constituents
that the string introduces. By keeping these two effects separate, we will be able to
distinguish the effect of () and )(:

� ( cannow be represented as〈0,1〉,
� ) as〈1,0〉,
� () as〈0,0〉 and
� )( as〈1,1〉.

Wecan go on and interpret arbitrary strings built up from )’s, (’s and 1’s as such pairs
〈n, m〉. To get a ‘monoidal’ picture of this interpretation of strings we have to supply
an operation of adding up—or merging—the pairs. This is achieved by the following
definition:8

〈n1, n2〉 • 〈m1, m2〉 = 〈n1 + (m1
·− n2), m2 + (n2

.− m1)〉.
Some examples:

� (((( · )) � ((, since〈0,4〉 • 〈2,0〉 = 〈0,2〉
� )) · (((( � ))((((, since〈2,0〉 • 〈0,4〉 = 〈2,4〉
� (( · )))) � )), since〈0,2〉 • 〈4,0〉 = 〈2,0〉

The examples show how the second string will first pop all the constituents that the
first string has introduced. Then, if the second string still has some )-brackets left,
these are simply added to those of the first string: this is why we haven1 + (m1

·− n2)

in the definition. Dually, if any (-brackets are left of the first string, then these are
simply added to the second string:m2 + (n2

·− m1). This turns out to be the suitable
view of the role of the brackets in our set up: we will represent each bracket string
by two natural numbers which can be added/merged as indicated above. The first
number represents the negative effect of the string, the second number its positive
contribution.

It is not hard to check that this gives us a monoid. We find that the operation•,
as defined above, is associative and the tuple〈0,0〉 is a unit element of the• operation
(and hence we can use it as the 1 that we needed in our example).

Proposition 2.1 〈ω × ω,•, 〈0,0〉〉 is a monoid.

We call such tuples〈n1, n2〉 simple stacking cells (SSCs) and we will use them to
encode the structural properties of expressions.9 This monoid is calledSSC pair, the
simple stacking cells represented as pairs.

2.3 Stacking cells as partial functions There is a slightly different way of looking
at SSCs that will turn out to be quite convenient later on: we can look at SSCs as
partial injections on the natural numbers.
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Definition 2.2

1. A simple stacking cell represented as a partial injection (SSCinj) a is a partial
functiona : ω −→◦ ω such that:

dom(a) = {na, na + 1, . . .} for somena ∈ ω

a(na + k) = a(na) + k for all k ∈ ω

2. The monoid of simple stacking cells as partial injections,SSC inj, is defined as
SSC inj = 〈SSCinj,◦, id〉, where ◦ stands for composition of (partial)
functions10 andid is the identity function onω.
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ω:

ω

Figure 1: Simple stacking cell

Note that such a partial functiona is completely fixed by the choice ofna and
a(na) (which are equal to 3 and 5 resp. in Figure 1). In this way we get a correspon-
dence between the partial injections as defined here and the pairs of natural numbers
as introduced above.

Fact 2.3 The mapping ρ : SSCinj → ω × ω, defined by ρ(a) = 〈na, a(na)〉 induces
an isomorphism of monoids ρ : SSC inj → SSC pair.

Once this isomorphism has been established it is no longer necessary to distinguish
carefully betweenSSC inj andSSC pair. In what follows we simply talk aboutSSC ,
“the” monoid of simple stacking cells.

One clear advantage of the functional representation of simple stacking cells is
the elegant definition of the monoidal operation: it is simply composition of partial
functions. This is not only an advantage because it is an extremely familiar operation,
but also because it is immediately clear that it is associative.

We see in Figure2, for example, that the first cell maps 6 to 4, the second cell
maps 4 to 3. Therefore in the resulting cell 6 is mapped to 3. We can also read off
that the first number in the domain of the resulting cell is 5 and that 5 will be sent to
2 (via 3).

2.4 Excursion: L-monoids Above we have constructed several representations of
simple stacking cells. In the constructions involved we have used the natural numbers
with the usual notions of addition and cut-off substraction as a starting point. But it
turns out that the constructions can already be carried out in a slightly more general
situation: they work for any L-monoid.

Definition 2.4 An L-monoid is a structureM = 〈M,•,←, id〉 such that〈M,•, id〉
is a monoid and the following additional requirements are met.
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Figure 2: Merging simple stacking cells

Define: x ≤ y ⇐⇒ for someu : u • y = x.

L1 x • z = y • z ⇒ x = y
L2 x • y = id ⇒ y = id

L3 x • y ≤ z ⇐⇒ x ≤ z ← y

An L-monoid is a monoid with an additional operation←. Condition L3 says that
← is a left-implication, whence the L in L-monoid. In the literature (see Pratt [15],
Moortgat and Oehrle [14]) the operation is also known as left residuation. It is closely
related to the notion of an adjoint in category theory (cf. MacLane [10]). The analogy
with implication becomes clear as soon as we consider L3 for a Boolean (or Heyting)
algebraB = 〈B,∧,
〉: now L3 reads asx ∧ y ≤ z ⇐⇒ x ≤ z ← y, so← is the
Boolean implication.11

If we regard the•-operation in the monoid as an operation for the addition of
information, then the operation← can also be seen as a sort of directedsubstraction
operation: if we take the monoidω = 〈ω,+, 0〉, then the left-implication is cut-off
substraction. So in general one can try to think of(m ← n) asm minus n.

One important example of an L-monoid is〈ω,+,
.−,0〉. And the next example

is not far away: we obtain an L-monoidM λ = 〈M,•,←, id〉 for any limit ordinalλ
if we set:12

� M = {α| α < λ}
� α • β = β + α

� id = 0.

Wethen find thatα ≤M β iff β ≤ord α. This results in the following definition for the
left implication, which we will write as.−, ageneralization of cut-off substraction for
arbitrary ordinals:

� 0 ·− γ = 0
� (α + 1) ·− γ = (α ·− γ) + 1 if γ ≤ord α

� (α + 1) ·− γ = (α ·− γ) = 0 if α <ord γ

� µ ·− γ = supord{α ·− γ | α <ord µ} for limit ordinalsµ.

Wecan see our pair representation of simple stacking cells introduced above as a spe-
cial case of the construction of stacking cells over an arbitrary L-monoid.

Definition 2.5 (SSC M ) For any L-monoidM we define the simple stacking cells
overM , SSC M , as follows:

SSC M = 〈M × M,•, 〈id, id〉〉
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where〈x′, x〉 • 〈y′, y〉 = 〈(y′ ← x) • x′, (x ← y′) • y〉.
The definition of• can be understood by direct analogy with the example of the
bracket strings (substitute+ for • and .− for ←), but we can also try to get a more
general feeling for what is going on in terms of substraction and addition of informa-
tion. Recall our remark above that• can be seen as addition of information and← as
substraction of information. The pairs〈x′, x〉 tell us to first substract informationx′

from the context and then add informationx to it. In 〈x′, x〉 • 〈y′, y〉 we perform such
an operation twice: first for〈x′, x〉 and then for〈y′, y〉. This has the overall effect that
we will substract at leastx′ from the context. Then we will provisionally add infor-
mationx, but immediately after that we will substracty′. Finally we add information
y.

In case theM we start out with is a linear order (as in the examples above), we
know that either(x ← y′) = id or (y′ ← x) = id. Then we can compute the overall
effect of these actions by distinguishing two situations:

� (y′ ← x) = id. Now x provides all the information thaty′ wants to substract.
In that case some information will remain after substractingy′ from x and the
remaining information(x ← y′) can be added to the informationy. Weend up
with 〈x′, (x ← y′) • y〉.

� (x ← y′) = id. Now x does not provide everything thaty′ asks for. In that case
there is an additional request for(y′ ← x) from the context. Then we get the
overall effect of〈(y′ ← x) • x, y〉.

If M is not a linear order, a third case remains in which neither(x ← y′) = id nor
(y′ ← x) = id. The definition above simply summarizes all situations.

It is left to the industrious reader to check thatSSC M is in fact a monoid. Thus
we obtain a pairing construction which makes monoids out of L-monoids. It is easy
to check that the simple stacking cells are indeed what we get if we takeM = Mω as
astarting point.

So we see that the pairing construction generalizes to arbitrary L-monoids. Also
the representation of stacking cells as partial functions can be generalized to arbitrary
L-monoids. Each SSC〈x, y〉 in SSC M gives rise to a partial mappingϕx,y : M → M
as follows:

dom(ϕx,y) = {z| z ≤ x} = {z| ∃u : u • x = z} and

ϕx,y(u • x) = u • y.

(Here it has to be checked that theu such thatu • x = z is unique, which follows
immediately from L1.)

We leave it to the reader to verify the following proposition.

Proposition 2.6 The mapping ϕ : SSCM → {ϕx,y| x, y ∈ M} defined by:

ϕ(〈x, y〉) = ϕx,y

induces an isomorphism between SSC M and 〈{ϕx,y| x, y ∈ M},◦, ϕid,id〉
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2.5 Lazy vs. tiresome bracketing All this may seem an example of generalizing
for the sake of generality, but it turns out that there are some nice ideas about the
management of (linguistic) structure that can be captured in this way. As an example
we discuss the idea of lazy bracketing, which will amount to the use ofSSC ω2 instead
of SSC ω. Let’s reconsider our example:

The quick brown fox that jumped over the lazy dog wanted the rabbit that ran.

Above we have explained that we have to add some information about the manage-
ment of constituents if we want to interpret this sentence, and we have used brackets
to make the constituent information explicit. The brackets correspond to very explicit
operations on constituent structures: each bracket corresponds to pushing or popping
exactly one constituent. Thus the use of brackets as indicated above gives the follow-
ing tiresome picture of the left-to-right interpretation of a sentence: first we decide
(or guess) at run-time exactly how many levels we have to push. (In the example this
turns out to be three.) We push these levels one by one. Then we go on to interpret
the sentence. Finally we pop the remaining levels one by one.

But we can also give a more easy-going picture of how things work.13 At the
beginning of each sentence, indicated by the use of a capital letter, we know that we
are at a new starting point. At such a point we do not have to count the exact number
of constituents required: we simply introduce “sufficiently many” constituents. Then
we go on to interpret the sentence. At the end of the sentence, indicated by the use
of a full stop, we know that we have reached an end point. So there is no need to be
very careful in popping the remaining constituents one by one: we can simply throw
awayall remaining constituents in one sweep.

To represent this picture of the lazy management of constituents we do not
bracket the example as before, but instead use the following bracketing.

[the quick brown fox ((that) jumped (over the lazy dog))) wanted (the rabbit
((that) ran]

Here [ indicates the introduction of “sufficiently many” constituents and ] stands for
throwing away whatever remains. We call [ and ]lazy brackets. In the monoid con-
taining lazy brackets we would expect equalities such as [) = [, [ )) = [, [ ))) = [, etc.
to hold, indicating that [ does indeed introduce sufficiently many constituents. Dually
we would like to have(] =], ((] =], (((] =], etc. Of course we also want []= () = 1.

It turns out that we can adapt our definitions to model these ideas about lazy con-
stituent management quite easily: we simply set up the whole machinery starting with
the L-monoid based onω2 instead ofω. Then it turns out that the following way of
looking at the brackets works:14

� ( � 〈0,1〉
� ) � 〈1,0〉
� [ � 〈0, ω〉
� ] � 〈ω,0〉.
Thus the general construction of stacking cells from L-monoids allows us to look

at constituent management in nonstandard ways. Lazy brackets are just a first exam-
ple of an interesting kind of variation on the operations that we may want to consider
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for linguistic applications: starting from other suitable L-monoids may very well gen-
erate other interesting views on the management of (linguistic) structure. But at this
point there is no time to speculate more in this direction. In what follows we will con-
centrate on the first kind of stacking cells: stacking cells onω. Lazy brackets will not
pop up again until our treatment of the Dutch reflexive ‘zichzelf ’ on page358.

2.6 Levels of stacking cells The stacking cells will be our way of coding up struc-
tural information in a monoidal setting. Our overall goal is to use this structural infor-
mation in the interpretation of (structured) expressions. These expressions not only
contain information about their structure, but typically also contain other sorts of in-
formation, which we have called (truth) content above. It is important that we are
able to locate this content in the correct way in the (structural) context: the content
information has to be stored in the constituents of the stacking cell.

As a first step, we show how we can associate with each simple stacking cell a
set oflevels (or constituents) in such a way that we keep control over their location in
the simple stacking cell. Then we can store the content items in the stacking cell by
linking them to the appropriate level of the simple stacking cell. We will be able to
complete this task properly only after§4, when we will have seen the Grothendieck
construction, but already at this point we can go some way towards explaining the
idea and showing what the problems are.

First we present a mappingL that associates to each SSC its set of levels.

Definition 2.7 For each SSCa we define the setL(a), the levels ofa, as follows:

L(a) = a ∪ {〈n, �〉| n < na} ∪ {〈�, n〉| n < a(na)} ∪ {〈�, �〉}

(here� is some fixed new entity).

Among the levels ofa we distinguish the following types:

� 〈0, �〉, 〈1, �〉, 〈2, �〉, . . . 〈na − 1, �〉: thepop levels (in chronological order)

� 〈�, a(na)− 1〉, 〈�, a(na)− 2〉, . . . , 〈�,0〉: thepush levels (in chronological or-
der)

� a: thestem levels

� 〈�, �〉: a garbage level

Wewill store the content information that we find in the constituents on these levels.
The pop levels correspond to the constituents that our stacking cell will close off. The
push levels correspond to the constituents that the stacking cell introduces. Note that
the location of a level〈n, m〉 is fixed byn andm. For example in the representation
of the string:

lazy dog ))) wanted (the rabbit ((that

we will find the SSC〈3,3〉. We will attach the information ‘lazy dog’ to the level
〈0, �〉, the first pop level. The information ‘the rabbit’ will end up at level〈�,2〉, a
push level, and the information ‘that’ will go to〈�,0〉, another push level.15

The stem levels are levels that are structurally neutral. In this example the infor-
mation ‘wanted’ will be stored on such a level: the example tells us ‘wanted’, and we
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lazy dog

wanted

the rabbit

that

Figure 3: An inhabited stacking cell

know that this information lives in the constituent in which all the pop and push lev-
els are nested. But the string does not give this level any structural status: it may be-
come a push or pop level depending on the context in which the whole string occurs.
Therefore we store the information that ‘wanted’ conveys on a structurally neutral
stem level:〈3,3〉.

In our setup we have provided a rather large number of stem levels. The example
above does not make clear why we would ever need more than one such level, but
we will see that there are cases where several stem levels are required. Although in
practice we will always only use finitely many stem levels, we have chosen to add
ω-many such levels, mainly for technical convenience.

So far all levels correspond directly to one of the constituents of an expression.
In addition we will allow ourselves to have some extra levels, where we can store in-
formation that is not located in any of the constituents, but still belongs to the stacking
cell. We will call these extra levels:garbage levels. Here we have just one such level,
〈�, �〉, but later finite sets of garbage levels will occur. At this point it is hard to be
precise about the exact use of garbage levels. The real reason for introducing them
is that it will considerably smooth the definitions later on: when we want to merge
two simple stacking cellsa andb in which we have stored information, some of the
push levels ofa may be popped byb. This means that these levels will not show up
in the mergera • b. But if we are not careful this will also mean that all the informa-
tion that we stored on those levels is lost. It will be easy to prevent such disasters by
(temporarily) storing the information of these levels in a garbage level.

In fact the use of garbage levels is just one example of a general issue in the defi-
nition of the merger of stacking cells once they are enriched with additional informa-
tion. As we pointed out above, we want to add information content to the context that
a simple stacking cell provides by attaching this information content to the levels of
asimple stacking cell. So, as a first step, we will have to be able to work with tuples
〈a, Xa〉 whereL(a) gives us the constituent levels ofa andXa stands for the garbage
levels ofa. Wewant to define the monoidal operation• in this situation. This means
that, apart from producing the right SSCa • b, we also have to make sure that the
information that we have stored on some level ofa or b ends up on the right level of
a • b. In slogan:

we have to keep track ofhow levels travel.

Todo this correctly we will borrow some techniques from category theory, which will
be presented in§3 and§4.
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3 Categories for monoidal updating For the development of our tool-kit for build-
ing meanings, we need categories. How nice it would have been if monoids were
sufficient. The reason they are not is as follows. Consider simple stacking cells or
SSCs. SSCs interact with reassuring monoidal simplicity. But how can we use SSCs
to describe more complicated objects? We need some way to talk about the individ-
ual “levels” of an SSC, andwe need some way to describe what happens to the levels
when two SSCs interact! In such interactions, levels merge with other levels, are sent
into the garbage limbo, etc. To describe theflow of the levels, the category-theoretical
machinery is tailor-made.

3.1 Basics This section introduces the basic concepts of category theory. The
reader is referred to MacLane [10], Manes and Arbib [11], and Barr and Wells [1]
for more information.

A categoryA is a structure〈Ob,Ar , id ,dom, cod ,◦〉, where:

� Ob is a nonempty class, the class of objects
� Ar is a class, the class of arrows or homomorphisms
� id is a function fromOb to Ar. We will write ida for id (a)

� dom andcod are functions fromAr to Ob
� dom(ida) = cod (ida) = a
� ◦ is a partial function fromAr × Ar to Ar
� f ◦ g is defined iffcod ( f ) = dom(g)

� If f ◦ g is defined, thendom( f ◦ g) = dom( f ) andcod ( f ◦ g) = cod (g)

� iddom( f ) ◦ f = f ◦ idcod ( f ) = f
� If ( f ◦ g) ◦ h is defined, then( f ◦ g) ◦ h = f ◦ (g ◦ h)

In what follows, identity between partial terms means: either both sides are defined
and equal, or both are undefined. Thus we have, quite generally:( f ◦ g) ◦ h = f ◦
(g ◦ h). We go against the mainstream tradition in category theory by reading◦ in
the order of the depicted arrows. Thus ourf ◦ g “means”first f, then g. The reason
for this deviation is that our morphisms often represent “updates.” For representing
updates, it is most natural to read composition in the order of application. (See below
for more conventions in a similar spirit.) We will call the set of morphisms between
a andb, Hom(a, b), or, if we want to emphasize the dependence on the category,
HomA(a, b). A morphism f : a → b is anisomorphism if there is ag : b → a, such
that f ◦ g = ida andg ◦ f = id b.

A Functor 	 betweenA andB is a morphism of categories betweenA and
B. I.e., 	 a function mappingObA to ObB, andArA to ArB, which preserves
all categorical structure. So, for example,	(idA,a) = idB,	(a) and	( f ◦A g) =
	( f ) ◦B 	(g).

Example 3.1 An important example of a category will be the categorySet, where
we take:

� Ob is the class of all sets16

� Ar is the class of all functions from sets to sets
� id X is the identity function onX
� dom( f ) is the domain off andcod ( f ) is the range off .
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� ◦ is function-composition, read in order of application

In this category the elements of the sets are treated asfeatureless objects. Their inci-
dental features are divided out by the isomorphisms present in the category and iso-
morphism in the category is the intended notion of object identity. So just the “sizes”
of the sets are counted relevant.

Example 3.2 Another important example of a category is given by a partial (weak)
preorder orppo, 〈D,≤〉. HeretheOb = D and the arrows are the “inclusions,”inca,b,
witnessing thata ≤ b. A prominent example of a category based on appo is the cat-
egorySetsub , where theppo is formed by sets with the subsetordering. Note that
Setsub is a subcategory ofSet. The notion of identity inSetsub is, however, com-
pletely different. Isomorphism in this category is ordinary identity of sets. So every
incidental feature of an element counts. Another example is the categoryNat of the
natural numbers{0,1,2, . . .}, with their natural ordering.

At this point we introduce an important convention. We want to think about updat-
ing and interpreting language fragments. Composition will reflect concatenation at
the level of surface syntax. Thus, as already mentioned above, we read composition
in order of application. For the same reason we should use postfix notation to de-
scribe function application. However, as so often, it turns out thatjede Konsequenz
zum Teufel führt. The postfix notations indiscriminately applied look peculiar, cer-
tainly in case of binary functions. Moreover, not all functions that appear need to be
considered as update functions. So a hybrid notation seems best. We will writef (x),
when using prefix notation, andx[ f ], when using postfix notation. So for example if
	 is a functor fromA to Set, if f : a → b is a morphism inA, and if x ∈ 	(a), then:
	( f )(x) = x[	( f )] = x[ f [	]]. In a suitable context, functions from sets to sets
could represent updates, whereas the functor	 does not. So, here we would prefer
the notation:x[	( f )]. Another convention that we will use is:〈x, 〈y, z〉〉 = 〈x, y, z〉.

The objects of our categories are supposed to be informational items. The arrows
fulfill two important roles. The first is that they represent ways in which one piece of
information is part of another. The second is that the isomorphisms that are present
fix what objects and arrows we will count asthe same.17 We also need an operation
merge or • that enables us to glue some pieces of information together. To describe
the operation or•, we again need some extra morphisms. To motivate our choices,
we first look at an example.

Example 3.3 Weconsider what is involved in adding the monoidal operationdis-
joint union to Set. In one sense this example is theur-example of a monoidal oper-
ation on a category. In another sense it is somewhat misleading: disjoint union is a
bifunctor. Moreover it is the direct sum or co-product of the category we are consid-
ering. These features will not be incorporated in the general case. We start by fixing
a representation of disjoint union.

X ⊕ Y = ({0} × X) ∪ ({1} × Y ).

The elements ofX will have descendants inX ⊕ Y . This descendancy relation can
be described by a morphism, sayin1. For x ∈ X, we take: x[in1(X, Y )] := 〈0, x〉.
Similarly y[in2(X, Y )] := 〈1, y〉. The inclusion morphisms keep track of how levels
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travel when objects are fused. Disjoint union does not give us a monoid in the strict
sense. We have, for example:

({x} ⊕ {y}) ⊕ {z} = {〈0,0, x〉, 〈0,1, y〉, 〈1, z〉}
{x} ⊕ ({y} ⊕ {z}) = {〈0, x〉, 〈1,0, y〉, 〈1,1, z〉}.

However, we wish to view the coding machinery we introduced to keep elements out
of each other’s way in taking disjoint unions as “inessential.” The elements of(X ⊕
Y )⊕ Z are the same as those ofX ⊕ (Y ⊕ Z) modulo some coding. To make this idea
explicit we introduce a standard isomorphismα(X, Y, Z) between(X ⊕ Y ) ⊕ Z and
X ⊕ (Y ⊕ Z). In our example we would have:〈0,0, x〉[α({x}, {y}, {z})] = 〈0, x〉. It
is not sufficient that there be some isomorphism: we want the correct isomorphism.
For one thing,α and thein-functions will have to cooperate in appropriate ways. For
example, we expect the following diagram to commute.

{x} in1 � {x} ⊕ {y}

{x} ⊕ ({y} ⊕ {z})

in1

�
� α

({x} ⊕ {y}) ⊕ {z}

in1

�

An easy check shows that the diagram commutes. Our monoid has a unitid. This is
of course the empty set. We see thatin1 is an isomorphism betweenX and X ⊕ ∅

and thatin2 is an isomorphism betweenY and∅ ⊕ Y . The richer structure built on
Set, that we have described is anm-category according to the definition given below.
Wewill call the enrichedSet again:Set.

After this motivating example we turn to the main definition. Our framework is rather
similar to the usual notion of monoidal category, the main differences being the fact
that the monoidal operation is not a functor and the presence of thein-functions.
A structureA = 〈Ob,Ar , id ,dom, cod ,◦,•, id, in1, in2, α〉, is anm-category if (i)
〈Ob,Ar , id ,dom, cod ,◦〉 is a category and (ii) “〈Ob,•, id, in1, in2, α〉 describes a
monoid relative to the category.” Our phrase (ii) means that we have a monoid only
modulo the isomorphisms of our category. We spell (ii) out in some detail:

� • : Ob × Ob → Ob
� id ∈ Ob
� in i : Ob ×Ob → Ar , wherein i(a1, a2) : ai → a1 • a2. Theini tell us in which

way theai are embedded ina1 • a2 by the operation•
� α : Ob × Ob × Ob → Ar , whereα(a, b, c) : (a • b) • c → a • (b • c). Here:

1. in1(a, b) ◦ in1(a • b, c) ◦ α(a, b, c) = in1(a, b • c)

2. in2(a, b) ◦ in1(a • b, c) ◦ α(a, b, c) = in1(a, b) ◦ in2(a, b • c)

3. in2(a • b, c) ◦ α(a, b, c) = in2(b, c) ◦ in2(a, b • c)

� in1(a, id) is an isomorphism betweena anda • id. Similarly, in2(id, a) is an
isomorphism betweena andid • a. Finally in1(id, id) = in2(id, id).18
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How nice it would have been, if these were all the conditions we needed to impose.
However, to guarantee that everything works smoothly we need some conditions of
amore technical nature. For the record, we give them here.

� We need everything to behave well with respect to isomorphisms. If, fori =
1,2,bi is isomorphic tob′

i, thenb1 • b2 is isomorphic tob′
1 • b′

2. The full formu-
lation is as follows. Supposeβi : bi → b′

i is an isomorphism (i = 1,2). Then
there is a unique isomorphismβ1 • β2 : b1 • b2 → b′

1 • b′
2 such that:

in i(b1, b2) ◦ (β1 • β2) = βi ◦ in i(b
′
1, b′

2).

� The conditions onα are not sufficient to ensure that the correct isomorphisms
are generated after repeated applications of associativity. To guarantee correct
behavior (“coherence”), we have to add an extra condition. We ask that thein i

are jointly surjective, i.e., if, fori = 1,2, in i ◦ f = in i ◦ g, then f = g.19

A functor	 between m-categories is anm-functor if it preserves the additional struc-
ture. E.g.	(in1(a, b)) = in1(	(a),	(b)).

Example 3.4

1. We add the monoidal operationplus to Nat. The further details are fixed by
this choice.

2. Consider anupper semilattice U, i.e., a structure〈D,≤,∨,⊥〉. Here D is a
nonempty set and≤ is a partial order, which is closed under taking suprema
of finite sets of elements.∨ is the operation of taking the supremum of two
elements, and⊥ is the bottom.U can be viewed as an m-category, by viewing
〈D,≤〉 as a category as in Example3.2. Wetake∨ as the monoidal operation
and⊥ asid. An important special case of this example isSetsub , with union
and empty set.

Par abus de langage we will call the resulting m-categories againNat, U andSetsub .

Weare now ready to introduce the last ingredient. Our semantics is intended to befile
change semantics in the sense of Heim [4]. The objects of our categories are dynamic
whatshallwecallthems. Using the category we can describe their interactions. We will
need some way to talk about the files and the information stored there. The solution is
to extend our categories with a functorR from the category toSet. For each objecta,
R(a) wil give the set of files “contained in”a. Thus in our example above we could
takeR to be the identity functor in Example3.1, the standard inclusion ofSetsub in
Set in the special case of Example3.3, and we can takeR(n) := {m∈ω | m < n} in
Example3.2. We do not requireR to be an m-functor! In fact, since we want to view
the elements of the category under consideration as coordinating possible unifications
of referents, it is, in general, essential thatR is not an m-functor. The choice ofSet

as category of sets of files reflects that we view a file as a featureless object, but for
its connection viaR with the dynamic machinery.

4 The Grothendieck Construction The Grothendieck Construction can be viewed
as a definitional format. It is a way of constructing objects which carries with it
the guarantee that objects so constructed have such-and-such properties. In a sense
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one could say that the Construction constitutes afunctional role definition of what
it is to be a context’s content and what it is to be a content’s context. The most
salient ingredient here is that contexts transform independently of the content, but
that the transformation of contents is guided by the context.20 A good discussion of
the Grothendieck Construction can be found in [1] and in Jacobs [7].

Consider an m-categoryA and a functor	 from A to the category m-Cat of m-
categories. The Grothendieck construction allows us to make a new category of pairs,
〈a, t〉, wheret is an object of	(a). The intuition is this.A is a category ofcontexts.
	(a) is the category ofcontents abovea. A pair 〈a, t〉 will be a content at a con-
text. A morphismf from a to b, will be viewed as anembedding of contexts. When
we take the “a-object,” t, under our arm, when traveling viaf from a to b, t will be
“transformed” into ab-objectt′ := (	( f ))(t). So(	( f ))(t) is the canonical image
of t via f .

Before giving the definition let us give a kind ofur-example, that well conveys
the flavor of what is going on.

Example 4.1 Consider a model of predicate logic with domainD. Usually the
meanings of formulas are defined as sets of assignments from the set of variables
VAR to D. However we could also wish to work with local assignments acting only
on the (free) variables that are “present.” Meanings now will be pairs of a finite
set of variablesV and a setF of assignments fromV to D. Thus, e.g., the mean-
ing of P(v1, . . . , vn) would be〈V, { f ∈DV | 〈 f (v1), . . . , f (vn)〉 ∈ I(P)}〉 where
V = {v1, . . . , vn} and I is the interpretation function associated with the model. The
first component,V , of such a pair is viewed as the context, the second component,
F, as the content. The m-category of contexts here has as objects finite sets,V , of
variables, and as arrows the inclusion functionsincV,V ′ , signaling thatV ⊆ V ′. The
monoidal operation is union. Above each contextV we have a category	(V ) of con-
tents. The contents aboveV are the sets of assignments fromV to D. The arrows of
this category are the opposites of the inclusion functions, say,cni F,F′ , signaling that
F ⊇ F′. The monoidal operation is intersection.

SupposeV ⊆ V ′ andF is a set of assignments onV . How is F going to appear if
we transport it toV ′? Well, we wantF to decribe the same constraint at the new con-
text. In other words, we wantF’s “successor” to be the least informative object in the
new context, which is constrained in the same way with respect to the old variables.
Thus we take:

F[	(incV,V ′ )] := 〈V ′, { f ∈DV ′ | f �V ′ ∈ F}〉.
How are we going to define the meaning ofA ∧ B, say‖A ∧ B‖? Suppose‖A‖

is 〈V, F〉 and‖B‖ is 〈W, G〉. If the contextsV andW were the same this would be
simple: ‖A ∧ B‖ = 〈V, F ∩ G〉. If V andW are unequal, however,F andG live in
different worlds and cannot be intersected in a sensible way. What we do is take them
under the arm and take them to the nearest world where both can breathe, the world
above contextV ∪ W. In this world wecan intersect. So our new conjunction will be
as follows:

‖A‖ ∧ ‖B‖ := 〈V ∪ W, F[	(incV,V∪W ] ∩ G[	(incW,V∪W )]〉.
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Figure 4: The Grothendieck Construction

Definition 4.2 Let an m-categoryA and a functor	 : A → m-Cat be given. Then
we define a new m-categoryB := ∑

a∈A
	(a) as follows:

� the objects ofB are the pairs〈a, t〉 wheret is an object of	(a)

� the morphisms between〈a, t〉 and〈b, s〉 are the pairs〈 f, u〉 such thatf ∈ ArA

and f : a → b andu ∈ Ar	(b) andu : t[	( f )] → s
� composition of arrows is defined as follows: if〈 f, u〉 : 〈a, t〉 → 〈b, s〉 and

〈g, v〉 : 〈b, s〉 → 〈c, r〉, then 〈 f, u〉 ◦ 〈g, v〉 : 〈a, t〉 → 〈c, r〉 is the pair〈 f ◦
g, u[	(g)] ◦ v〉.

� idB = 〈idA, id	(idA)〉
Weintroduce the new monoidal operator and the newin-functions. We want to define
〈a, t〉 • 〈b, s〉. On the first components, we take the obvious operations, sendinga
andb to a • b. In going froma via in1(a, b), to a • b, the objectt is transformed to
t′ := t[	(in1(a, b))]. Similarly s is transformed tos′ := s[	(in2(a, b))]. Finally—
on the second component—we taket′ • s′. Thus:

� 〈a, t〉 • 〈b, s〉 = 〈a • b, t′ • s′〉
� in i(〈a, t〉, 〈b, s〉) = 〈in i(a, b), in i(t′, s′)〉.

The newα is defined in a similar way.

It requires quite a bit of tedious work to check in detail that the Grothendieck con-
struction really preserves m-categories.

Example 4.3 Consider any two m-categoriesA andB. We confuseB with the
following functor fromA to m-Cat: B(a) := B andB( f ) := IDB, whereIDB is
the identity functor onB. Then

∑
a∈A

B(a) is (isomorphic to)A × B.

A somewhat larger example is worked out in the Appendix. An important point is the
fact that the m-categoryA reoccurs as a sub-m-category of

∑
a∈A

	(a). Consider the
following mapping
:

� 
(a) := 〈a, id	(a)〉
� 
( f ) := 〈 f, id id	(b)

〉.
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Figure 5: m-structure under the Grothendieck Construction

It is not difficult to see that
 is an injective m-functor. Thus we are licensed to iden-
tify objects and morphisms ofA, with their images under
.

Wegive three particularly useful specializations of the Grothendieck Construc-
tion.

4.1 Adding contents to contexts Let an m-categoryA, afunctorR from A to Set,
and a nonempty domainD be given. Remember thatR need not be an m-functor. We
generalize the construction of the meanings of Example4.1. Define the functorAss

as follows.

� Ass(a) is the following m-category.

◦ The objects are sets of functions fromR(a) to D.

◦ The arrows are given by the partial ordering⊇.

◦ The monoidal operation is intersection of sets.

◦ The rest of our category is fixed by the above.

� Let f : a → b be anA-morphism. We define the functorAss( f ) as follows.

◦ G[Ass( f )] := {h∈DR(b) | ∃g ∈ G∀r ∈ R(a) h(r[R( f )]) = g(r)}.
◦ The application ofR( f ) on the morphisms is fixed by the preceding item.

It is easy to verify thatAss is a functor. We put:

� Cont(A,R, D) := ∑
a∈A

Ass(a).

We define a newR on the new category by:R(〈u, v〉) := R(u).21 It is not difficult
to see that our Example4.1can be obtained by takingA the category of finite sets of
variables, with the inclusion functions as morphisms and union as monoidal operator.
The functorR of this m-category is the standard inclusion inSet. Note that via the
standard embedding of the contexts into the context/content pairs we can identify a
finite set of variablesV with 〈V, DV〉.
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One could think of all kinds of variants of our construction. E.g., instead of
working with sets of assignments, we could work with relational databases over the
given set of referents.

4.2 Synchronic identification It will happen often that we want to say of two in-
habitants of different parts of the (linguistic) structure that they are really the same.
A familiar example is formed by re-entrancies in feature structures, where we want
to express that two distinct expressionsshare some feature. We have not included
any feature information in our linguistic examples, but already in our naive example
asimilar phenomenon pops up: in the interpretation of the relative ‘that’. We want to
say that ‘that’shares its denotation with an expression that lives in some other con-
stituent. Consider:

wanted (the rabbit ((that) ran)))

Here ‘that’ points to the same object as ‘the rabbit’. We keep score of information
concerning such identities by working with an equivalence relation on all the objects
that occur somewhere in the relevant stacking cell.

So we will have, in the semantics, as one of the informational items an equiv-
alence relation on a set of objects. The Grothendieck Construction can be used to
describe the dividing out of equivalence relations. LetR be any binary relation on a
setX. We write R∗ for the transitive, reflexive, symmetric closure ofR (in X). Thus
R∗ is theleast, or finest, equivalence relation containingR. Let A be an m-category,
and letR be a functor fromA to Set. Wedescribe the functorE.

� E(a) is the following category.

◦ The objects are the equivalence relations onR(a).

◦ The morphisms are given by the subset ordering on equivalence relations
considered as sets of pairs. So, we have arrows from finer to coarser
equivalence relations.

◦ E • E′ := (E ∪ E′)∗.

◦ The other data on the category are fixed by the preceding items.

� Let f : a → b be anA-morphism. We put:E[E( f )] := (E[R( f )])∗, where
E[R( f )] := {〈r[R( f )], r′[R( f )]〉 | 〈r, r′〉 ∈ E}

We may check thatE is, indeed, an m-functor. Take:Eq(A,R) := ∑
a∈A

E(a). We
may chose the newR as follows.

� R(〈a, E〉) := R(a)/E,
� Let 〈 f, f ′〉:〈a, E〉→〈a′, E′〉, then: (r/E)[R(〈 f, f ′〉)] := (r[R( f )])/E′ .

It is easy to see that this definition is correct.

Example 4.4 Let A andB be m-categories and letRA andRB be the correspond-
ing functors. The Cartesian product ofA andB is defined in the obvious way. E.g.,
〈a, b〉 • 〈a′, b′〉 = 〈a • a′, b • b′〉. Take:RA×B(〈a, b〉) := RA(a) ⊕ RB(b). Here⊕
stands for disjoint union. TheRA×B(〈 f, g〉) are defined in the obvious way. Now
the Cartesian product can be viewed as two forms of dynamic machineryA andB

running in parallel, without any connection. Now we may defineA‖B := Eq(A ×
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B,RA×B). The newR is defined in the obvious way. The result of our construction
enables two different machineries to contribute to the identification of the same files.
Wewill use this construction to link the global anaphoric way of identifying referents
and the local grammatical way.

4.3 Storing dynamic objects on levels We turn to our final subconstruction. The
idea here is to store the elements of an m-categoryin the files of another m-category.
Let A andB be two m-categories, and letR andS be the corresponding functors.
Suppose that for allA-morphisms f , R( f ) is injective. We specify the functorQ.
Let a ∈ ObA.

� Q(a) is the following category.

◦ The objects are functions fromR(a) to the objects ofB. We will use
σ, τ, . . . for the objects.

◦ A morphismϕ : σ → τ is a function fromR(a) to the morphisms ofB,
such that:ϕ(r) : σ(r) → τ(r).

◦ σ • τ(r) := σ(r) • τ(r).

◦ The further definitions are similar.

� Supposef : a → a′. WedefineQ( f ) : Q(a) → Q(a′).

◦ (σ[Q( f )])(r) :=
{

σ(r[(R( f ))−1]) if r is in the range ofR( f )
idB otherwise

◦ (ϕ[Q( f )])(r) :=
{

ϕ(r[(R( f ))−1]) if r is in the range ofR( f )
id idB

otherwise

Note that in these definitions the injectivity ofR is essential.

We define Store(A,R,B,S), or, briefly, B∗A, as
∑

a∈A
Q(a). In the last notation

we takeR andS to be given with the m-categories.22 The construction gives us pairs
〈a, σ〉, whereσ stores an object ofB on each referent inR(a). We define the new
functor, sayT, to Set, as follows.

� T(〈a, σ〉) := {〈r, s〉 | r ∈ R(a) and s ∈ S(σ(r))}
� Suppose〈 f, ϕ〉 : 〈a, σ〉 → 〈a′, σ′〉. Let’s put r′ := r[R( f )]. Then we may de-

fine: 〈r, s〉[T(〈 f, ϕ〉)] := 〈r′, s[S(ϕ(r′))]〉
ThusT(〈a, σ〉) gives the disjoint union of theS(σ(r)) for r ∈ R(a). A variant of this
construction is the finitized version,Storefin (A,R,B,S), where we restrict theσ to
functions that arealmost everywhere, i.e., for all but finitely many arguments, equal
to idB and theϕ to functions that are almost everywhere equal toid idB

.

Example 4.5 We give a useful application of our construction. The referents or
files in our applications sometimes only have an “internal” or “virtual” function. They
function as indicators of places in a structure or whatever, but they are not used for
further storage. It is often pleasant and even necessary to make such files invisible
in the final stage. The following construction,Pres, does just this. We will use the
construction in the next section.
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Consider the m-categoryTrue. This is the m-category based on the upper semi-
lattice〈℘{+},⊆,∪,∅〉, where+ is an arbitrary object.RTrue is the standard inclu-
sion of our m-category inSet. Consider an m-categoryA, with associated functorR.
Define: Pres(A) := True

∗A. The objects of this m-category are pairs〈a, σ〉. Here
σ is a function fromR(a) to {∅, {+}}. Thusσ functions as a characteristic function
onR(a), representing a setXσ ⊆ R(a). HereXσ is the set of elements ofR(a) that
are “present.” We have:T(〈a, σ〉) = {〈x,+〉 | x ∈ Xσ}. We will also write A+ for
Pres(A). If we want the finitized version of our construction we add the subscript
fin in the obvious way.

Example 4.6 Let True be as in Example4.5. ConsiderA∗True. The objects are
of the form〈∅,∅〉 or 〈{+}, σ〉. Since, in the second case,dom(σ) = {+}, we may
identify σ, with σ(+). Hence, the objects can be viewed as pairs〈+, a〉. Thus, the
result of our construction isadding a new unit to A.

Example 4.7 Let A be a finite set of items. We define multisets of the items inA as
follows. We associate an m-categoryA with A. A is the category consisting ofA as its
single object, with as unique morphism the identity witnessing the standard inclusion
of A in itself. For our monoidal operation we cannot but choose “union.” The functor
R is the obvious inclusion ofA in Set. We take as a category of multisets of items
from A: Store(A,Set f in). The objects of our new category are in essence functions
f from A to finite sets. (We may omit the context, since it is fixed.) Moreover, e.g.,
f • g(a) is the disjoint union off (a) andg(a). The new functor, sayT, sendsf to
{〈a, x〉 | a ∈ A, x ∈ f (a)}.
In Table1 we repeat the most important constructions introduced in this section.

5 Category of stacking cells In this section we look at stacking cells once again.
But this time we look at them in a (m-)categorical setting, adding the appropriate no-
tions of morphism and embedding.

Recall that it is necessary and handy to enrich simple stacking cells with garbage
levels. Adding the garbage levels is one of the things we have to do in order to keep
track ofhow levels travel. So, instead of working with SSCs we will have to work
with pairs〈a, X〉 consisting of an SSCa and an appropriate set of garbage levelsX.
The resulting objects will then have as levels the levels of the SSC, as we introduced
them above, as well as the garbage levels that we have added to them.

But before we define the m-category of stacking cells (with garbage), we first
introduce the m-category of simple stacking cells, without garbage.

5.1 The category of simple stacking cells In what follows it will be convenient to
use the following notation:

we writea ≤ b for a ⊆ b (as partial functionsω −→◦ ω) anda∧ for the converse
of a (as a partial function).id is the unit ofSSC .

Wecollect the following useful facts (notation as on page328).

Fact 5.1

� a ≤ b iff na − nb = a(na) − b(nb) ≥ 0
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Cont(A,R, D) This operation was introduced in§4.1. It puts sets of
assignments fromR(a) to D above each contexta.

Eq(A,R) This operation was introduced in§4.2. It adds equiv-
alence relations onR(a) above each contexta. The
new referents assigned toa are equivalence classes
of the old ones.

A‖B This operation was introduced in§4.2, Example4.4.
The new objects are pairs〈a, b〉, wherea, b are from
A, respectivelyB, together with an equivalence rela-
tion E on the disjoint union ofR(a) andR(b). The
new referents are the equivalence classes ofE.

Store(A,R,B,S) This operation was introduced in§4.3. It stores an
element ofB above eachr ∈ R(a).

Store(A,B) The same asStore(A,R,B,S), where we assume
R andS to be given withA andB.

B∗A The same asStore(A,B).
Pres(A) This operation was introduced in§4.3, example4.5.

It stores{+}, for present, or ∅, for absent, on each
r ∈ R(a).

Table 1: Special cases of the Grothendieck Construction

� na∧ = a(na) and a∧(na∧ ) = na

� (.)∧ is monotonic (with respect to ≤) and
• is monotonic in both arguments (with respect to ≤)

� (a • b)∧ = b∧ • a∧

� a∧∧ = a
� a • a∧ ≤ id and a∧ • a ≤ id

Now we are ready to introduceSSC, the category of simple stacking cells. We al-
ready know the objects of this category, the simple stacking cells, and also the merger
has been discussed above. So the crucial thing to add is an appropriate notion of mor-
phism. Here we are led by the following minimal requirement: we want to knowhow
levels travel when simple stacking cells are merged, so we will need to keep track of
the way that stacking cells get merged in between other stacking cells. This means
that whenever a stacking cella gets embedded in some contextb1 • − • b2, then we
want to have a morphism froma to the resulting stacking cellb1 • a • b2 that witnesses
this embedding. Therefore we will at least need a morphism:

ϕa,b1,b2 : a → b1 • a • b2

for any choice ofb1 andb2. We will denote such a morphismϕa,b1,b2 by 〈b∧
1 , b2〉 to

limit the use of subscripts in our notation.23 The morphisms〈b∧
1 , b2〉 will be the only

morphisms in the category of simple stacking cellsSSC.

Definition 5.2 SSC, the m-category of simple stacking cells, has as objects the
simple stacking cells and as morphismsϕ : a → a′ pairs〈b, b′〉 such thatb∧ • a • b′ =
a′. Composition and identities are as follows:
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� for eacha 〈id, id〉 : a → a is the identity ona
� for 〈b, b′〉 : a → a′ and〈c, c′〉 : a′ → a′′, 〈b, b′〉 ◦ 〈c, c′〉 : a → a′′ is given by

〈b • c, b′ • c′〉
� in1(a, a′) = 〈id, a′〉
� in2(a, a′) = 〈a∧, id〉
� α(a, a′, a′′) = 〈id, id〉 : (a • a′) • a′′ → a • (a′ • a′′).

Weleave it to the reader to check in detail that this does indeed define an m-category.
As an example we consider the composition of morphisms: given〈b, b′〉 : a → a′ and
〈c, c′〉 : a′ → a′′, weknow thata′ = b∧ • a • b′ anda′′ = c∧ • a′ • c′. Substitution now
gives:a′′ = c∧ • b∧ • a • b′ • c′. By Fact5.1this can be written as(b • c)∧ • a • b′ • c′

as required.
It may be useful to note thatϕ : a → a′ is an isomorphism ofSSC iff a = a′

andϕ = 〈id, id〉. SoSSC has very few isomorphisms.
In what follows we will useϕ as a variable over morphisms inSSC.

5.2 How some levels travel Before we go on to extend the stacking cells with
garbage levels, we take some time to check how the nongarbage levels travel when
we merge two stacking cells. For each morphism〈b, b′〉 : a → a′ we give a cor-
responding mappingL(〈b, b′〉) : L(a) → L(a′) as follows: for an arbitrary level
〈n, n′〉 ∈ L(a) we set

〈n, n′〉[L(〈b, b′〉)] = 〈b(n), b′(n′)〉,

where we readb(n) = � if n �∈ dom(b) andb′(n′) = � if n′ �∈ dom(b′). Of course
it has to be checked that this does indeed define a mappingL(a) → L(a′). This is a
matter of case-checking.

Intuitively L(〈b, b′〉) has to describe what happens to the levels ofL(a) whena
gets merged withb∧ andb′. In this process many things can happen: for example, a
push-level〈�, n〉 ∈ L(a) could simply become a push-level〈�, b′(n)〉 ∈ L(a • b′) and
then stay a push-level〈�, b′(n)〉 ∈ L(b∧ • a • b′). But it can also happen that a push
level〈�, n〉 ∈ L(a) gets popped ina • b′. Then it will be mapped to the garbage level,
〈�, �〉, of a • b′ and then to the garbage level ofb∧ • a • b′. For stem- and pop-levels
we have to distinguish similar cases. It turns out that the formula〈b(n), b′(n′)〉 (with
the notation convention as indicated) gives a concise presentation of all the cases.24

Note that all the levels that “disappear” in the mergerb∧ • a • b′ are sent to the
garbage level〈�, �〉. If wehad not added this garbage level, we would not know where
to send such “disappearing levels” which would force us to work with partial func-
tions at this point. But by the introduction of〈�, �〉 we can keep all the functions total.
Now it is easy to check the following.

Fact 5.3 L as defined above is a functor from SSC to Set, the category of sets
(with arbitrary mappings as morphisms).

5.3 Traveling with garbage Now we come to the crucial step of adding more
garbage (levels) to the picture. By adding a set of garbage levels we make a real stack-
ing cell out of a simple stacking cell.
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Above we have already smuggled in one garbage level, which enabled us to keep
working with total mappings in the category of sets. The trick was to map all levels
that were in danger of getting lost to the garbage level. This way no information needs
to get lost, since it can all be sent to the garbage level. Soin a sense information
can be preserved, but as all the information ends up on the same level, we will get
confused as to which information belongs together. In order to keep the information
from different “disappearing levels” separate we need more than one garbage level.

So we start using pairs〈a, X〉 wherea is a simple stacking cell, as before, and
X is a finite set of garbage levels. We simply call such pairs (not-so-simple)stacking
cells.

Important examples of such stacking cells will be:

� push = 〈〈0,1〉,∅〉
� pop = 〈〈1,0〉,∅〉
� garb = 〈id, {〈�,0〉}〉.

These three are about the most basic stacking cells one can think of:push consists
of just one push level and no garbage. Similarlypop consists of just one pop level
without any garbage.garb is the stacking cell that just has one garbage level and no
real “structural” contribution. We have called the garbage level ofgarb 〈�,0〉, apair
consisting of the empty string� and the natural number 0. Later on it will become
clear why it is convenient to assume that garbage levels have this kind of shape.

Whenever we merge two stacking cells〈a, X〉 and〈a′, X ′〉, the result is of the
form 〈a • a′, Y〉. HereY contains (i) the garbage levelsX, (ii) the garbage levelsX ′

and (iii) new garbage levels that are produced by the mergera • a′. The new garbage
levels are the levels that “disappear” in the merging process. This happens when a
push level〈�, n〉 of a meets a pop level〈n, �〉 of a′. Each time this happens, we in-
troduce a new garbage level and call it〈�, n〉.

Since it is essential that we keep distinct garbage levels distinct, we will always
have to take thedisjoint union of garbage sets. There are, of course, several imple-
mentations of disjoint union around, each of which would do equally well for our
purposes. But to keep things readable we prefer an implementation that does not in-
troduce a lot of confusing brackets. To achieve this we assume that all garbage levels
are pairs〈σ, x〉, whereσ is some string of 0’s and 1’s. We introduce the two shift
operationsSh0 andSh1 on sets of such elements. These operations are defined by:

Shi(X) = {〈iσ, x〉| 〈σ, x〉 ∈ X}.

The shift operations allow us to discriminate between elements of different origin
without introducing lots of brackets. This is a clear advantage in the examples that
follow later. Now we can implement disjoint union of garbage setsX andY as fol-
lows:

X ⊕ Y = Sh0(X) ∪ Sh1(Y )

This gives us all the (notational) ingredients we need to introduce the garbage levels
properly.
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Definition 5.4 For eacha, a′ we defineG(a, a′), the garbage introduced by merg-
ing a anda′:

G(a, a′) = {〈�, n〉| 〈�, n〉 ∈ L(a) & 〈n, �〉 ∈ L(a′) & n ∈ ω}.
For a morphismϕ = 〈b∧

1 , b2〉 : a → b1 • a • b2 we defineG(ϕ), the garbage intro-
duced byϕ as:

G(ϕ) = G(b1, a • b2) ∪ Sh1(G(a, b2)).

Note that in definingG(ϕ) we have—as it were—chosen a bracketing forb1 • a •
b2. Here we see why we need to worry about the presence of suitable isomorphism:
the existence of a “coherent” isomorphismα implies that such choices do not really
matter in the end.25

Throughout this section it will be helpful to keep Figure6 in mind. There we
see three stacking cells〈a, X〉, 〈a′, X ′〉, and〈a′′, X ′′〉. The setsX, X ′, and X ′′ are
indicated by the little clouds below the simple stacking cells. Now when we merge
〈a′, X ′〉 and〈a′′, X ′′〉, for example, this will produce as new garbage{〈�,0〉}.

<a,X> <a’,X’> <a’’,X’’>

<*,0> <0,*>

<3,2> <2,*><*,3>

<σ, l>

Figure 6: Merging with garbage

Now we can take as morphisms in the category of stacking cells,SC, pairs:

〈ϕ, f 〉 : 〈a, X〉 → 〈a′, X ′〉
such thatϕ : a → a′ is a morphism ofSSC and f : G(ϕ) ⊕ X → X ′. The identity
arrows simply are:

〈ida, ı∅⊕X〉 : 〈a, X〉 → 〈a, X〉
whereı∅⊕X : ∅ ⊕ X → X is defined byı∅⊕X(〈1σ, x〉) = 〈σ, x〉,

and composition of arrows is defined as:

〈ϕ, f 〉 ◦ 〈ψ, g〉 = 〈ϕ ◦ ψ, h〉,
whereh : G(ϕ ◦ ψ) ⊕ X → X ′′ is specified as follows.

We may assume thatϕ = 〈b∧
1 , b2〉 : a → b1 • a • b2 andψ = 〈c∧

1 , c2〉 : b1 • a •
b2 → c1 • b1 • a • b2 • c2. SoG(ϕ ◦ ψ) = G(c1 • b1, a • b2 • c2) ∪ Sh1(G(a, b2 •
c2)). Now we distinguish the following cases:
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� h(〈1σ, x〉) = g(〈1σ′, x′〉)
Here we write:〈σ′, x′〉 = f (〈1σ, x〉)
(in this case〈σ, x〉 ∈ X)

� h(〈0, n〉) = g(〈1σ′, x′〉)
in case〈0, n〉 ∈ dom( f )
Here we write:〈σ′, x′〉 = f (〈0, n〉)
(in this case〈�, n〉 ∈ G(b1, a • b2))

� h(〈0, n〉) = g(〈0, n〉) in case〈0, n〉 �∈ dom( f )
(in this case〈�, n〉 ∈ G(c1 • b1, a • b2 • c2)\G(b1, a • b2))

� h(〈01, n〉) = g(〈1σ′, x′〉)
in case〈01, n〉 ∈ dom( f )
Here we write:〈σ′, x′〉 = f (〈01, n〉)
(in this case〈�, n〉 ∈ G(a, b2))

� h(〈01, n〉) = g(〈01, n〉) in case〈01, n〉 �∈ dom( f )
(in this case〈�, n〉 ∈ G(a, b2 • c2)\G(a, b2))

Here the first case definesh on levels that initiate fromX, and the second and third
clauses consider garbage levels that are produced in the merger ofc1 • b1 anda • b2 •
c2. The fourth and fifth clauses take care of the garbage that originates from merginga
with b2 • c2. Basically what we have to do is to keep in mind what could happen if we
merge the five (!) simple stacking cellsa, bi, andci in two different ways: either we
first mergea with thebi and then later add theci. This is what happens if we doϕ first
and thenψ. Or else we first merge thebi with theci and then merge the result witha.
This is what happens if we computeϕ ◦ψ “right away.” The definition is hard to read,
and perhaps it is good advice to skip it and concentrate on our discussion of Figure6
in §5.5, in which we see a case wherethree stacking cells are merged. However it
can be checked that our definition does indeed produce a category.

Fact 5.5 We have defined a category of stacking cells SC.

It is important to note that the isomorphisms〈ϕ, f 〉 : 〈a, X〉 → 〈a′, X ′〉 of this cat-
egory are of the form:〈ϕ, f 〉 = 〈ida, f 〉, where f is a bijection f : Sh1(X) → X ′.
This shows that isomorphism conditions (‘coherence’) in this category arise only at
the level of the garbage sets: we have only to check that appropriate canonical bijec-
tions of garbage sets can be defined (cf.§5.5for more details).

To extend this category into an m-category we have to specify the merger, the
embeddings and the appropriate isomorphisms. We will not do this in full detail here:
we just specify the merger of stacking cells and leave the other details to§5.5.

〈a, X〉 • 〈a′, X ′〉 = 〈a • a′, G(a, a′) ∪ (X ⊕ X ′)〉

5.4 Levels again Now all that remains to be done is to extend the level functor
L : SSC → Set to a level functorSC → Set. We will use L as notation for both
functors. On objects we simply take:

L(〈a, X〉) = X ⊕ (L(a)\{〈�, �〉}).
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So we collect the “real” levels ofa and the garbage levelsX of 〈a, X〉.
On morphisms〈ϕ, f 〉 : 〈a, X〉 → 〈a′, X ′〉 we take:

L(〈ϕ, f 〉) : L(〈a, X〉) → L(〈a′, X ′〉)
� 〈1n, m〉[L(〈ϕ, f 〉)] = 〈1n′, m′〉

in case〈n, m〉 ∈ L(〈a〉) and〈n, m〉[L(〈ϕ〉)] = 〈n′, m′〉 �= 〈�, �〉
� 〈1n, m〉[L(〈ϕ, f 〉)] = 〈0σ′, k′〉 in case〈n, m〉 ∈ L(〈a〉), 〈n, m〉[L(〈ϕ〉)] = 〈�, �〉

Now 〈n, m〉 gives rise to a tuple〈σ, k〉 ∈ G(ϕ), where〈σ, k〉[ f ] = 〈σ′, k′〉
� 〈0σ, x〉[L(〈ϕ, f 〉)] = 〈0σ′, x′〉

in case〈σ, x〉 ∈ X and〈σ, x〉[ f ] = 〈σ′, x′〉.
It can be checked that this does indeed makeL into a functorSC → Set. In other
words, we can check the following.

Fact 5.6 〈ϕ, f 〉 ◦ 〈ψ, g〉[L] = 〈ϕ, f 〉[L] ◦ 〈ψ, g〉[L] and id〈a,X〉[L] = id〈a,X〉[L] .

Note that both〈a, X〉 and〈ϕ, f 〉 are determined by theirL-images. So we can regard
SC as a subcategory ofSet.

5.5 How levels really travel Finally we look at our example again to see in some
more detail how levels really travel when three stacking cells are merged in the cat-
egorySC. We recall the following observation aboutSC.

Fact 5.7 The isomorphisms 〈ϕ, f 〉 : 〈a, X〉 → 〈a′, X ′〉 of SC are of the form:
〈ϕ, f 〉 = 〈ida, f 〉, where f is a bijection f : Sh1(X) → X ′.

So to check that suitable isomorphisms are present, we have only to look at the map-
pings of the garbage levels. This can be illustrated with our example Figure6.

There are two different ways of merging these three stacking cells. We can either
first merge the two leftmost stacking cells and then merge the result with〈a′′, X ′′〉, or
we can first merge the two rightmost stacking cells and merge the result with〈a, X〉.
In the stacking cell component we will not notice any difference between the two ap-
proaches, sincea • (a′ • a′′) = (a • a′) • a′′. But there will be a difference in terms of
the garbage sets produced. To ensure the presence of suitable isomorphisms (“coher-
ence”), we need a canonical bijection between the two garbage sets that the two differ-
ent bracketings produce. (Recall that〈b, Y〉 • 〈b′, Y ′〉 = 〈b • b′, G(b, b′)∪ (Y ⊕ Y ′)〉.)
Let’s say thatXl is the garbage set obtained by left association of the brackets andXr

the set obtained by right association. We need a bijectionα : Xl → Xr.
Here it helps to distinguish the following four cases:

1. x ∈ Xl originates from one of the garbage setsX, X ′ or X ′′

2. x ∈ Xl originates from a push level ofa′ that becomes garbage whena′ anda′′

are merged
3. x ∈ Xl originates from a pop level ofa′ that becomes garbage whena anda′

are merged
4. x ∈ Xl originates from a stem level ofa′ that does not become garbage popped

until the second merge step.

An example of Case 1 is given in the picture by the element〈σ, l〉 ∈ X. This will end
up as〈00σ, l〉 ∈ Xl, but as〈0σ, l〉 ∈ Xr. So the bijectionα will have to map〈00σ, l〉
to 〈0σ, l〉. The general prescription for levels of type 1 is:
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〈00σ, l〉 �α 〈0σ, l〉
〈01σ, l〉 �α 〈10σ, l〉
〈1σ, l〉 �α 〈11σ, l〉.

An example of an element of type 2 is given in the picture by〈�,0〉. This will end
up in Xl as〈�,0〉, but in Xr it will appear as〈1,0〉. Soα will have to map〈�, n〉 to
〈1, n〉 in such a case.

By duality we need not consider 3 as a separate case.
The fourth case arises for the level〈3,2〉 in the picture. This will end up as

〈�,2〉 ∈ Xl, but as〈�,3〉 ∈ Xr. Soα will have to map elements of the form〈�, n〉
to 〈�, a′(n)〉 in these cases.

This gives a complete description ofα : Xl → Xr. Wewill not go into the busi-
ness of proving that this does indeed induce all the isomorphisms that are required.

6 Constructing meaningful monoids In this section we will put the machinery
to work to construct some useful monoids. Remember that theStore-construction
works only if theR-images of the morphisms of the context category are injective.
Let’s say that such categories have the injectivity property. We will start our con-
structions withSc and with categories of sets where the morphisms correspond to
the subset ordering. The images of the morphisms of these categories are surely in-
jective. It is not difficult to check thatCont, andStore preserve the property. On the
other handEq does not preserve the injectivity property. Thus, we have to take care
not to applyStore afterEq!

6.1 Managing variables In this subsection we study a semantics for toy languages
corresponding to the∧∃-fragment of Predicate Logic. In particular, we indicate how
to use this semantics both to simulate the∧∃-fragment of Vermeulen’s Sequence Se-
mantics and of Vermeulen’s Referent Systems (see Vermeulen [19],[18], and Hollen-
berg and Vermeulen [6]). We start by introducing some auxiliary objects and some
useful notational conventions. Consider the m-categoryScfin,+ of stacking cells
where only finitely many levels are present. Remember that, via the standard embed-
ding, we consider the objects ofSc as occurring inScfin,+. Note that fora ∈ Sc, we
have thatRSc(a) is an infinite set, but thatRScfin,+ (a) = ∅. Wedefine (suppressing
the obvious subscripts):id+ := 〈id, σ〉, whereσ(〈0,0〉) := {+} andσ(〈n, n〉) := ∅

for n �= 0.
In the definitional format we use, the foregoing definition looks like this:

id
+ := 〈

s
id, {〈0,0〉 : {+}}

s
〉.

The salient points are these. First we indexed our brackets to indicate the relevant
instance of the Grothendieck Construction. We usec for Cont, e for Eq, ands for
Store. Secondly we use an alternative notation for pairing in the description of the
functionσ. Finally we suppress both the constructions that add a unit of the relevant
category and the function assignments of units: they are the default. Define further:

� push
+ := push • id

+

� pop+ := id
+ • pop

� garb
+ := push • id

+ • pop
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� block := pop • push.

Note thatgarb
+ is id plus one garbage level, where the garbage level is the only level

present. We proceed by considering the category

Varstack := (Scfin,+)∗Varfin .

HereVarfin is the m-category of finite sets of variables with the subset ordering and
union and as associated functor the obvious inclusion inSet.26 For anya ∈ Scfin,+,
defineax := 〈

s
{x}, {x : a}

s
〉. Let x+ := (id+)x. Finally we introduce the category

of meanings for our fragment of Predicate Logic. LetD be any nonempty set. We
take:Varman := Cont(Varstack, D). This category is designed to handlevariable
management. Its elements are of the form〈a, F〉, wherea is an element ofVarstack

and whereF is a set of assignments fromR(a) to D. The (finitely many) referents of
〈a, F〉 are located above variablesx in the outer context ofa. They occur at levels of
astacking cell, which forms the inner context. The general form of the referents—in
our standard way of coding—is〈x, 〈〈u, v〉,+〉〉 or, briefly, 〈x, 〈u, v〉,+〉, wherex is
avariable andu, v are inω ∪ {∗}, sothat〈u, v〉 is the level of a stacking cell.

x
1

x
2

x
3

x
4

+

+
+

+

+

+

D

F

R

a

Figure 7: An object ofVarman

We describe the language of the∧∃-fragment corresponding to Sequence Se-
mantics. To simplify inessentially, we consider only a language with a binary pred-
icate symbolP and a unary predicate symbolQ. The atomic formulas are [x, x],
P(x, y) and Q(x), wherex and y are variables. The languageL is the smallest set
containing the atomic formulas, such that ifA ∈ L and B ∈ L, then A.B ∈ L. An
example of a formulas is: [x.Q(x).[ y.P(x, y).x].Q(y).y]. Let a standard first order
modelM = 〈D, I〉 for our language be given. [x, the “left square bracket forx,” is
going to mean:create a discourse environment in which an occurence of a file labeled
x will be counted as new. Counting as new, here, means that the file is not going to
be identified with the current file—if there is one—labeledx. To put it in a different
way: [x meansdeclare x. Similarly x] will mean end the discourse environment in
which the current file (if any) for x is active. Wespecify theDRT-style meanings cor-
responding to Sequence Semantics for our fragment. Remember our convention that
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〈a, 〈b, c〉〉 = 〈a, b, c〉, etc. We putrx := 〈x, 〈0,0〉,+〉. Thusrx is the unique discourse
referent ofx+.

� [[[ x]] := pushx

� [[ x]]] : = popx

� [[ P(x, y)]] := 〈
c

x+ • y+, { f ∈D{rx,ry} | 〈 f (rx), f (ry)〉 ∈ I(P)}
c
〉

� [[ Q(x)]] := 〈
c

x+, { f ∈D{rx} | 〈 f (rx)〉 ∈ I(Q)}
c
〉

� [[ A.B]] := [[ A]] • [[ B]]

Note that wherepushx representsdeclare x, push
+
x would rather representdeclare and

initialize x. Wewill not give the precise correspondence of our semantics as presented
here to Sequence Semantics as defined in [19].27 Sequence Semantics as defined there
cannot make the distiction between declaring and initializing, so in one respect our
present semantics is more refined. We give two examples of interpretations. Letgx :=
〈x, 〈�,0〉,+〉. Thusgx is the unique discourse referent ofgarb

+
x . Wehave

[[[ x.Q(x).x]]] = 〈
c
garb

+
x , { f ∈D{gx} | 〈 f (gx)〉 ∈ I(Q)}

c
〉.

Note thatgx, the file “containing” possible witnesses for the truth of our formula is
a hidden, noninteractive level for possible texts surrounding the formula. Thus we
simulate the usual hiding of quantified formulas. Still in our setup the information
stored ingx is not really thrown away.28 We turn to our second example. Let:

� ry := 〈y, 〈0,0〉,+〉
� sx := 〈x, 〈∗,0〉,+〉
� tx := 〈x, 〈∗,1〉,+〉
� (push

+)2 := push
+ • push

+ = 〈
s

〈〈0,2〉,∅〉, {〈∗,0〉:{+}, 〈∗,1〉:{+}}
s
〉.

Wehave:

[[[ x Q(x)[x P(x, y)]] =
〈

c
〈

s
{x, y}, { x:(push

+)2, y:id+ }
s
〉,

{ f ∈D{ry,sx,tx} | 〈 f (tx)〉 ∈ I(Q) and 〈 f (sx), f (ry)〉 ∈ I(P)}
c
〉

We close this subsection with a brief look at Referent Systems (see [18]). Referent
Systems can be simulated by replacing [x andx] in our language by a single symmet-
ric bracket‖x. The semantics is as before, except that: [[‖x]] := blockx. So, when
using [[‖x]] to declarex, we simultaneously pop the current discourse environment
(if any) in whichx may have a value. Thus in the Referent Systems semantics, stack-
ing never happens. We leave it to the reader to compute, e.g., [[‖x.Q(x).‖x]] and
[[‖x Q(x)‖x P(x, y)]] . In the last example the file-discourse referent corresponding to
the first occurrence of‖x will be a garbage level. This in contrast to the second ex-
ample for Sequence Semantics, where the file corresponding to the first occurrence
of [x wastx, avisible file.

6.2 Managing argument structure In this subsection we treat a version of the
∧∃-fragment of Predicate Logic that looks suspiciously like a fragment of English.
We call our fragment: Semantics for Argument Management, or, briefly,SAM. Sup-
pose we would like to represent the meaning of a natural language like anaphor, say
hex /shex /itx , in our version of Sequence Semantics as described above. It would



354 ALBERT VISSER and KEES VERMEULEN

seem thatx+ is the perfect candidate for the job. It is a “free floating” variable, that
signals the presence of an object labeledx. On closer inspection, however, this ob-
ject would not really have a sensible role to play. How couldx+ ever interact in an
interesting way with the meanings of a text? We have for example:

x+ • [[ Q(x)]] = [[ Q(x)]] • x+ = [[ Q(x)]] .

One could say that (the interpretation of) the internalx of Q(x) already does the
work. Note also thatx+ = [[ x = x]] . Thus, naively, we seem to be close to providing
anaphor-like meanings, but we just cannot reach our goal. This malaise is shared by
theories likeDPL andDRT. It is curious that, where these theories are advertised as
providing a semantics for anaphoric reference, they fail to give a semantics that repre-
sents therole of anaphors, likehex /shex /itx . The reason they cannot do it is simple.
The specification language takes its format for handling arguments from Predicate
Logic. This format itself is already a solution of the problem that anaphors solve
in natural language, namely to link up local and global information management.
Since in Predicate Logic the problem is already solved, one cannot well represent an
alternative solution in the same language. In predicate language the arguments of a
predicate are always specified in fixed places immediately following it. There can be
no intervening material or changes of order (salva significatione). The meaning of,
e.g.,P(x, y) is specified as one package. There is no further analysis of the wayP, x,
andy interact in terms of representable semantical operations. Thereby we miss the
chance to tell the story about anaphors, about how they provide a link between the
local and the global .... We will now give a semantics in which the way arguments
are treated is more like the way it happens in natural language.

Let a finite setAH be given. The elements of this set are the argument handlers:
sub, ob, val, with, of .... LetAH be the m-category of subsets ofAH with subset and
union. Its associated functor is the inclusion inSet. We build up our target cate-
gory in steps. First we makeAH

∗Sc, in which sets of argument handlers are stored
on levels of stacking cells. This category represents the local grammatical structure
of sentences together with the arguments present at the various sentential levels. The
discourse referents arearguments on levels. Define for X ⊆ AH :

id
X := 〈

s
id, { 〈0,0〉:X }

s
〉.

Sometimes—as discussed in the introduction—the same object occurs on different
levels. Thus we need the categoryLoc := Eq(AH

∗Sc). This category will be suffi-
cient to handle local, sentential structure. To handle global, anaphoric structure we
useVarman. Finally local and global have to be linked. To do this we work in the
category:Sam := Varman‖Loc (see Example4.4).29

The languageL is defined as follows. The atomic formulas are:

Brac (, )
Link who, that,sub, ob, of, with, ...
Phor ax, thex, hex, shex, itx, Maryx, ...(for x ∈ VAR)
CN mother, father, child, horse, knife, ...
Adj angry, brown, ...
Verb cuts, sees, walks, is, ...
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Formulas are the smallest class containing the atomic formulas and closed under the
rule: if A andB are formulas, then so isA.B. In other words, formulas are strings of
atomic formulas with separating dots. To increase readability we will often omit the
dots. Let an ordinary first order modelM = 〈D, I〉, be given. I assigns relations to
the elements ofCN, Adj, andVerb. E.g., I(mother) could be a binary relation, repre-
sentingx is the mother of y. I(cuts) could be a ternary relation, representingx cuts y
with z. We could as well takeI(cuts) to be a 5-ary relation, representingx cuts y with
z in place p at time t, etc. The elements ofBrac, Phor, andLink are treated as logical
constants: their meanings are at most dependent on the domain of the model.30

Before we can proceed to specify the interpretations of theCN, theAdj, andthe
Verb, wehave to introduce some notational conventions and simplifications. If one of
the components of a pair from the Cartesian product underlying the‖-construction is a
unit of the appropriate kind, then we will omit it and just exhibit the other component.
This cannot lead to confusion, since the “inner context” of the first component always
is a set of variables and the “inner context” of the second component always is a stack-
ing cell. Moreover—in virtue of the specific categories going into this product—if a
component is a unit, then its contribution to the ultimate set of referents is empty.
Thus,a fortiori, Eq restricted to this contribution to the referents can only be trivial.
Wewill assume that an elementx ∈ X, goes to〈0, x〉 ∈ X ⊕ Y . Similarly y ∈ Y goes to
〈1, y〉. Wewill often omit singleton parentheses. Finally{ r = s} := {〈r, s〉}∗, where
we take the(.)∗ in the appropriate set.{ r = s, t = u} , etc., is similarly defined. We
give sample interpretations of the atoms of our language in Table2.

( push

) pop

who 〈
e
〈

s
id, {〈0,0〉:val , 〈2,2〉:val}

s
〉, { r1 = r2} e

〉
r1 := 〈〈0,0〉, val〉, r2 := 〈〈2,2〉, val〉

of 〈
e
〈

s
id, {〈0,0〉:val , 〈1,1〉:of }

s
〉, { r1 = r3} e

〉
r3 := 〈〈1,1〉,of 〉

ax 〈
e
〈push

+
x , id{val}〉, { r4 = r5} e

〉
r4 := 〈0, x, 〈∗,0〉,+〉, r5 := 〈1, 〈0,0〉, val〉

thex 〈
e
〈id+

x , id{val}〉, { r6 = r5} e
〉

r6 := 〈0, x, 〈0,0〉,+〉
mother 〈

c
id

{0,of }, { f ∈D{r5,r7} | 〈 f (r5), f (r7)〉 ∈ I(mother)}
c
〉

r7 := 〈1, 〈0,0〉,of 〉
knife 〈

c
id

{val}, { f ∈D{r5} | 〈 f (r5)〉 ∈ I(knife)}
c
〉

angry 〈
c
id

{val}, { f ∈D{r5} | 〈 f (r5)〉 ∈ I(angry)}
c
〉

cuts 〈
c
id

{sub,ob,with}, { f ∈D{r8,r9,r10} | 〈 f (r8), f (r9), f (r10)〉 ∈ I(cuts)}
c
〉

r8 := 〈1, 〈0,0〉, sub〉, r9 := 〈1, 〈0,0〉,ob〉, r10 := 〈1, 〈0,0〉,with〉
is 〈

c
id

{sub,ob}, { f ∈D{r8,r9} | f (r8) = f (r9)} c
〉

Table 2: SAM’s atomic interpretations

The recursive clause for interpretation is as expected: [[A.B]] := [[ A]] • [[ B]] .
We explain the definitions of Table2. The brackets are easy: they push or pop

levels of the local grammatical structure. Let’s look atmother. [[mother]] , has no
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links to the global anaphorical machinery and does not change local syntactical struc-
ture. Thus the set of variables in the first component of the context is empty and the
stacking cell in the second is the unit.31 The argument handlersval andof are stored at
the top level of the unit stacking cell in the second component of the context. These
argument handlers give theroles of things standardly associated with motherhood.
First there is the value, mother herself, taggedval. Then there are her children, tagged
of.32 E.g., the discourse referent〈1, 〈0,0〉,of 〉 can be understood as follows. The first
component 1 signals that we are in the second, the “local” component of the context.
The 〈0,0〉 signals that we are at the top level of the unit. Theof shows that we are
looking at the argumentof, stored at the top level.

Using the meanings introduced so far, we can already interpret a child reciting
consecutively things she sees.

(.horse.).(.mother.).(.dog.).(.cat.)

The interpretation will have the effect ofthere is a horse, there is a mother, there is
a dog, there is a cat. We do not analyze thedeixis present in the child’s words in our
interpretation—our framework is too poor for that—but just the fact that she notes the
existence of the consecutive items. The argumentof, associated withmother, does not
occur in the child’s utterance. In the interpretation this has the effect of existentially
quantifying out the argument. Thus,mother meansmother of someone. If we had
omitted the brackets separating the items, the effect would have been to identify the
items. E.g.(.mother.horse.), says that something is both a mother and a horse.

The interpretations ofknife andangry do not bring anything new. In the inter-
pretation ofcuts andis, we have the special rolessub andob of subject and object.
Weturn to the interpretations of the links. These interpretations serve to identify files
across syntactical levels.33 that is like who, andsub, ob, with, etc., are likeof. We
illustrate the way the linking works by means of an example.

Example 6.1 We assume thatruns corresponds to a unary predicate. Let’s con-
sider the termU:=(man ((who sub) runs)). who occurs in a termT:=(who sub). T
occurs inside the sentenceS:=((who sub) runs). S occurs, in its turn, inU. To each of
these components correspond “levels” of the stacking cell in the interpretation. These
levels are introduced by the three left brackets and popped into garbage by the corre-
sponding right brackets. Let’s call these levels:t, corresponding toT , s, correspond-
ing to S, andu corresponding toU. On t, areferentval is stored. This referent is the
result of the dynamic fusing of the referentval stored on the upper level of [[who]]
and the referentval stored on the upper level of [[sub]] . On s we find the referent
sub. It is the result of fusing the referentsub on the level〈1,1〉 of [[sub]] with the
referentsub of the top level of [[man]] . In [[sub]] the referentval of the top level is
“synchronically” identified with the referentsub one level below. So the referentsval
on t andsub on s are identified. On the levelu, we find again a referentval. It is the
result of fusing the referentval of the top level of [[man]] , with the referentval of
the level〈2,2〉 of [[who]] . Moreover by synchronic identification, the referentval on
〈2,2〉 in [[who]] is identified with the referent on〈0,0〉 in [[who]] . Henceval on t,
sub ons andval onu are identified. We give the result of computing the meaning ofU
incrementally from left to right. Remember that different ways of computing the se-
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mantics of our sentence will give different representations of the discourse referents.
The existence of the isomorphismsα guarantees that this is harmless. Define:

� r1 := 〈000,0〉, r2 := 〈0,0〉, r3 := 〈�,0〉
� X := {r1, r2, r3}
� σ := {r1:{val}, r2:{sub}, r3 : {val}}
� r4 := 〈r1, val〉, r5 := 〈r2, sub〉, r6 := 〈r3, val〉
� E := { r4 = r5, r4 = r6}
� r7 := {〈1, {r4, r5, r6}〉}
� F := { f ∈D{r7} | f (r7) ∈ I(man) ∩ I(runs)}.

We have: [[U]] = 〈
c

〈
e

〈
s

〈〈0,0〉, X〉, σ
s
〉, E

e
〉, F

c
〉. By our conventions we sup-

pressed the first component of the context. If instead we had computed [[U]] as
[[(man ((who sub]]• [[ ) runs))]] , the result would have been the same but for the fact
that, for i=1,2,3,ri would have been〈�, i − 1〉.
The phores operate like the links, only they link files or discourse referents of the
global machinery to files or discourse referents of the local machinery. On the global
side the machinery is simply Sequence Semantics. The meaning ofhex, shex, and
itx is taken to be the same as the meaning ofthex. Our choice of treatingthe as an
anaphor is not undisputed. There are plenty of examples that seem to undermine this
theory.34 Wewill not go into that discussion here. How do we treat names? In fact our
semantics provides various options. The one we prefer is viewing names as “frozen
anaphors.” So the meaning of a name is like the meaning ofhe. Our present frame-
work is too poor to model thefrozenness of names fully. For that we would need the
notion of state, which is not treated in this paper. We can, however, make one simple
adaptation to get part of the desired effect. We set aside some labels for variables to
function as subscripts of names. We exclude these labels from occurring as subscripts
of a andthe. They can occur as subscripts ofhe, she, andit.35

Claim Wesubmit that we are the first to describe correctlyin the semantics the role
of the phores as links. This does not mean, however, that we claim that our solution
is a fully correct representation of the meanings of phores in natural language. First,
it seems that Sequence Semantics allows lots of structure one never meets in natural
language. For example, nothing seems to correspond to the stacking underx in: ((sub
ax dog) sees (ob ax cat)). Secondly, it could well be that fusing in natural language
happens more by higher order inference than by label. These defects are a problem
for all approaches we know.

We have described the various meanings provided by our semantics, and we have
touched briefly on some further topics such as the problem of definite descriptions
and the proper treatment of names. It is time to have a look at some sample sentences
in our language.

(a) ((sub Maryx) cuts (they ob bread) (with az sharp knife))
(b) ((with az knife sharp) cuts (ob they bread) (Maryx sub))
(c) ((sub Maryx) cuts (they ob bread))
(d) ((sub Maryx) cuts (with az sharp knife))
(e) ((ax womansub) sees (ay horseob)) ((shex sub) beats (ity ob))
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(f) ((thex sub man ((whosub) sees (they ob brown horse)) cuts (thez ob bread))

(g) ((Maryx sub) ((shex sub) is (ob angry)) ((shex sub) is (hungryob)) cuts (they
breadob))

Example (a) illustrates one advantage of our approach: the interpretation of such a
sentence can proceed in the order in which it is given. (a) and (b) are equivalent in
meaning, since we may interchange,salva significatione (modulo some specifiable
isomorphism), the order of items as long as no bracket (local or global) intervenes to
which these items are sensitive. Leaving out argument places as in (c) or (d) has the
effect of having a hidden existentially quantified argument. Thus (c) means some-
thing like: Mary cuts the bread with something. Note that we can as well suppress
the subject, which is unusual in English (but it is common in Latin). (e) works like
the usualDPL/DRT-example of anaphoric reference. E.g., in the interpretation, the
horse will be fused withit. Example (g) illustrates the fact that in our approach sen-
tences can be interrupted for other sentences. These will be “laid over” the interrupted
sentence.

Weend this section with a brief remark on one possible extension of the fragment
and its problems.36 We could try to add a semantics for the Dutch reflexivezichzelf
(or Germansichselbst). One possible interpretation ofzichzelf is to make it just a link
between subject and object.37 So:

[[zichzelf]] := 〈
s

id, {〈0,0〉:{sub,ob}}
s
〉.

Under this analysis, we would representJohn snijdt zichzelf (English:John cuts him-
self) as: ((Johnx sub) snijdt zichzelf). Alternatively, we could makezichzelf a term.
Thus, we could take: [[zichzelf]] := [[sub]] . Under this analysis, we would represent
our sample sentence by: ((Johnx sub) snijdt (zichzelfob)). However, consider such
sentences as:

John ziet een foto van zichzelf

John ziet een foto van een foto van zichzelf

(meaning roughly:John sees a picture of himself andJohn sees a picture of a picture
of himself respectively). Here it seems that the meaning ofzichzelf is able to search
for the appropriate level for linking. Our approach in its present form allows us only
to build links across a specified fixed number of levels. One possible way out is as fol-
lows. We change our semantics in such a way that we put sentences always between
lazy brackets (see§2.4). Thus we would rewrite the above example (f) as:

� [thex sub man [whosub) sees (they ob brown horse] cuts (thez ob bread]

Obviously, we should make adaptations, e.g., for the meaning ofwho. (The second
term-labelval should be stored on〈ω,ω〉 instead of on〈2,2〉.) We treatzichzelf as a
term and storesub in its interpretation on all levels〈i, i〉 for i<ω. Moreover byEq,
we identify thesesubs. Obviously, our operation will cause spurioussubs to occur
on various term levels, but these can do no harm, since they will not fuse with other
labels on the term levels. Consider the sentence:

� [Johnx sub) ziet (eeny foto ob (van eenz foto (van zichzelf]
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Weobtain the effect that we search on each lower level for something to fuse withsub
until we reach the sentence level. Hence we will correctly identifyJohn with zichzelf.
Our “theory” simply predicts thatzichzelf is always fused with the subject of the near-
est sentence level below. E.g.zichzelf will be fused withde vrouw in: De man, aan
wie de vrouw een foto van zichzelf gaf, glimlachte (Here we see a major difference
with Englishhimself: The man, who gave the woman a picture of himself, smiled. In
this sentence, we certainly donot wantthe woman andhimself to be identified).

The main point of our elaboration is the mechanism ofsearching for the appro-
priate level can be implemented in our framework.

7 Concluding remarks This paper describes techniques to construct meaning-
objects for monoidal processing. One starts with simple objects—like finite sets or
stacking cells. By iterating the Grothendieck Construction more elaborate objects are
constructed. The great advantage of the Grothendieck construction is that the appro-
priate monoidal behavior is automatically preserved. We introduced stacking cells as
an interpretation of bracket structures. Subsequently, we outlined the interpretation
of a fragment using the construction methods of the paper. This fragment incorpo-
rates a linking mechanism to describe what anaphors do. We claim that only some
such mechanism can pretend to truly constitute a semantics of anaphoric reference.
If this claim is correct, we have given an example that monoidal semantics can pro-
vide faithful modeling of meanings.

The purpose of our paper is more to point in the right direction, than to estab-
lish a definitive, rigid framework once and for all. More questions are evoked than
answered. We distinguish three kinds of extension of our work: (i) mathematical im-
provement of the framework as it stands, (ii) extending the fragment developed here
within the boundaries of the present framework, and (iii) extending the framework
with essentially new elements both to increase expressive power and to incorporate
some further philosophical ideas. We briefly sketch some ideas for extensions of the
three different kinds.

Wemention some directions of local improvement of the framework as it stands.
First, one would like to incorporate a smooth construction of the “file-set functor”R.
Second, it would be good to be able to construct stacking cells from even simpler
objects. One of the authors (Visser) is currently working on a proposal to represent
stacking cells as multisets of morphisms of an appropriate category.

Wemention some ideas for extending the fragment that seem to be in the scope of
the methods developed so far. There are many interesting phenomena that we would
like to include. For example, we would like to have a way of working with an expand-
able number of argument places (cf.the horse of Sir John in §6.2). Currently we are
working on a uniform treatment of the semantics ofand in sentences such asJohn eats
the bread with a fork and the pudding with a spoon andJohn hates and Mary loves
Marc, etc. Another extension of the fragment could consist of a treatment of error
messages to ensure the propagation of information about local errors in the syntax,
e.g., in cases where term levels are erroneously fused with sentence levels.

Finally, we discuss some possible extensions of the framework. The present pa-
per is a study in dynamics. Therefore we would like to include into our framework
more of the salient ingredients occurring in the literature on dynamics. First and fore-
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most, we can extend our framework with a good notion of state and state transition,
so that a formulation of our semantics in update style (cf. Veltman [17]) and in the re-
lational format (cf. [2]) becomes available. There is an elegant way to do this, which
will be presented elsewhere. Another important ingredient we intend to include is
a rational reconstruction of dynamic implication. It is our prejudice that (dynamic)
implication should be an adjunction in an appropriate category of partial information
states. We suspect that finding this category will become possible once a proper no-
tion of presuppositional ordering (in which presuppositions are counted asnegative
information) has been added to the framework (cf. [21] for preliminary investiga-
tions).

Clearly, our work is just an initial step towards the grand aim of a theory of
monoidal processing. But we think that it exhibits very well the sort of thing one has
to do and the sort of question one has to answer. We submit that we have shown—by
means of examples—that such a theory can provide a powerful setting in which the
phenomena of discourse processing can be fruitfully discussed.

Appendix Semantics for binary notations In this appendix we show how to use the
Grothendieck Construction to give a semantics for binary notations.38 Binary nota-
tions are the usual designations of numbers in binary like “101,” which stands forfive.
Our problem is that we want to assign meanings to these notations that make concate-
nation of notations a meaningful operation. So consider a language containing binary
notations plus asymbol ∗ for concatenation. Let’s first consider the option of inter-
preting a notation as the number it designates. E.g., [[101]]= 5. The problem is that
we would have to put, e.g., [[01]]= [[1]] = 1. But,

[[11∗ 01]] = [[1101]] = 13 �= 7 = [[111]] = [[11 ∗ 1]] .

So we cannot interpret∗ compositionally under this semantics. At the other extreme
we could interpret binary strings autologically:as themselves. This would surely
lead to a compositional semantics, but we would lose the central idea that these nota-
tions are supposed to stand for numbers. Our solution is to interpret notations as pairs
〈m, n〉, wherem is the length of the notation and wheren is its customary value. We
show how this semantics can be assembled using the Grothendieck Construction.

Westart by specifying our m-category of contexts. This is the m-categoryNatloc

of located unary strings or located tally numbers.

� The objects are natural numbers{0,1,2, . . .}. These can be viewed as unary
strings or tally numbers.

� The morphisms are triples〈m, n, k〉, with m + n ≤ k. A morphism〈m, n, k〉
tells us thatm is embedded ink at locationn. Heren is the number of 1s ink
occurring afterm. Like this:

1 . . .1

m︷ ︸︸ ︷
1 . . .1

n︷ ︸︸ ︷
1 . . .1︸ ︷︷ ︸

k

.

� dom(〈m, n, k〉) = m, cod (〈m, n, k〉) = k, idm = 〈m,0, m〉
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� 〈m, n, k〉 ◦ 〈k, p, q〉 = 〈m, n + p, q〉

1 . . .11. . .1

m︷ ︸︸ ︷
1 . . .1

n︷ ︸︸ ︷
1 . . .1︸ ︷︷ ︸

k

p︷ ︸︸ ︷
1 . . .1

︸ ︷︷ ︸
q

� m • n = m + n, in1(m, n) = 〈m, n, m + n〉, in2 = 〈n,0, m + n〉
m︷ ︸︸ ︷

1 . . .1

n︷ ︸︸ ︷
1 . . .1︸ ︷︷ ︸

m+n

.

� α is just the appropriate identity, since+ gives us a standard monoid.
� id = 0

Take	(n) = Nat and p[	(〈n, m, k〉)] = p · 2m. It is easy to see that this defines an
m-functor. We get:

〈i, n〉 • 〈 j, m〉 = 〈i + j, n[	(in1(i, j))] + m[	(in2(i, j))]〉
= 〈i + j, n[	(〈i, j, i + j〉)] + m[	(〈 j,0, i + j〉)]〉
= 〈i + j, n · 2 j + m〉.

A good alternative way of representing the objects we constructed is as follows.
Consider the pair〈i, n〉. Write n in binary, and precede it by infinitely many 0s. Put a
pointer above the place followed byi digits. We represent, for example,〈3,41〉 by:

. . .00010
↓
1001. Note that, e.g.,〈4,9〉 • 〈3,41〉 can be computed by:

↓
0 0 0 1 0 1 0 0 1

↓
0 0 0 1 0 0 1

↓
0 0 0 1 1 1 0 0 0 1

Thus the context of the second component of the merge has the effect of a shift. We
interpret binary notations by the pair of their length and their value. The second com-
ponent is the classical content, the first a dynamic context that causes a shift in inter-
action. Evidently, [[σ ∗ τ]] = [[σ]] • [[τ]] . So our semantics produces the desired
effect. Note thatid = 〈0,0〉 �= 〈1,0〉 = [[0]] .
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NOTES

1. Our semantics is also closely related to Kamp’sDRT (see [8],[9]) and to Seuren’s Dis-
course Semantics (see [16]).

2. See also Hollenberg and Vermeulen [6].

3. If we say,suppose .. ., weintroduce an imagined world. Thus, supposing opens a stretch
of discourse which is interpreted with respect to this new imagined world. The idea that
suppose is “pushing into fantasy” comes from a suggestive discussion by Hofstadter [5],
p. 128. It was studied by Zeinstra [23].

4. Both relations and update functions can be associated to our meanings in a mathemati-
cally elegant way. We will substantiate these claims elsewhere.

5. Stacking cells were introduced by Visser [21],[20].

6. Note that we write. here between each of the elements of the strings. This is our official
notation, but, as usual, we will allow ourselves to omit. if no confusion can arise.

7. There is a strong analogy with the construction of the integers as pairs of natural num-
bers!

8. Here .− stands forcut-off substraction:x .− y = x − y if y ≤ x andx ·− y = 0 else.

9. The reader may wish to verify that the monoid of simple stacking cells is in fact the free
monoid over two generators ) and ( with equation() = 1. We will prefer to work with
the more concrete representations in this paper.

10. Wealways readf ◦ g asfirst f and then g (cf. p. 335).

11. By the symmetry of∧ the Boolean implication also is aright implication. Note however
that in a Boolean algebra L1 does not hold.

12. Recall that addition of ordinals is not in general commutative.

13. Wewere led to this view on things by remarks of Henk Zeevat on “discourse popping.”

14. In fact this gives us the free monoid over four generators ), (, ], and [ satisfying the ad-
ditional equations: [) = [(= [, (] =)] =], and [] = () = 1.

15. In fact ‘that’ will be interpreted as a link between levels (cf. the previous section), so
strictly speaking we cannot say that ‘that’ is located on one particular level.

16. The distinction between large categories, in which the objects or the arrows do not form
a set, and small ones, in which objects and arrows do form sets, plays no role in this
paper. Categories likeSet could, in our applications, always be replaced by appropriate
small categories.

17. It could be argued that to assign to the morphisms this double task is in some sense im-
pure. The point is strengthened by the fact that our monoidal operation is a bifunctor
with respect to the categories restricted to isomorphisms, but not with respect to the full
categories. The reason that we have the two roles in one and the same category, is prag-
matic: things seem to work out well this way.

18. Thusin1(a, id) andin2(id, a) have the role ofρ−1
a , respectivelyλ−1

a of [10], p. 158.
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19. Our conditions imply that an m-category is a monoidal category, when we restrict it to
isomorphisms and, thus, that it iscoherent. See [10], pp. 157–166, for further explana-
tion.

20. The Grothendieck Construction is, thus, reminiscent of the “central dogma of molecular
genetics,” viz., that information can flow from nucleic acids to proteins, but cannot flow
from protein to nucleic acid.

21. In a more definitive treatment we should expect to derive the newR systematically. In
this paper we will content ourselves by introducing themad hoc.

22. Note that the operation isnot exponentiation, even if there are some similarities.

23. This notation is very convenient, but please keep in mind that there is a difference be-
tween〈b∧

1 , b2〉 : a → a′ and〈b∧
1 , b2〉 : c → c′.

24. Note that the convention ensures thatb(�) andb′(�) are read as�.

25. Wehave chosen to take the garbage produced by the merger as the basic notion and to de-
fine the garbage introduced by a morphism as a derived notion. But this is merely a mat-
ter of choice: it can be checked thatG(ϕ) consists of all the levels that are sent to〈�, �〉
by L(ϕ). To be precise: there is a bijection betweenG(ϕ) and〈�, �〉[L(ϕ)]−1\{〈�, �〉}.
This suggests an alternative way of introducing garbage formally, where the garbage pro-
duced by a morphism is the basic notion and the garbage introduced by the merger is
defined in terms of it.

26. There is a slight inelegance in usingVarfin in the definition ofVarstack. It is that a
variablev can be “absent” in two ways in〈V, σ〉, viz., either ifv �∈ V or if v ∈ V , but
if σ(v) = id. We can get around this defect as follows. As contexts, start with the m-
category having the set of all variables as single element, with subset and union and with
the usual inclusion inSet as associated functor. Then apply theStorefin construction
with the set of variables as single context and the elements ofSc f in,+ as stored objects.

27. We hope to elaborate on this elsewhere. In fact, one can show that under quite general
conditions theCont construction yields a semantics from which a relationalDPL-style
semantics can be derived in a natural way. To do this we need the additional notion of
state, which is developed in [21].

28. A garbage disposal construction would be a useful addition to our framework.

29. In fact, it suffices to apply the constructionEq only once. We prefer the current set-
up, because it allows us to consider the local identifications in isolation of the global
anaphoric machinery.

30. Wewill also treatis as a logical constant.

31. Sam-meanings of which all embedded simple stacking cells are the unit (i.e., the embed-
ded stacking cells are unit plus garbage) are calledconditions. Sam-expressions, whose
meanings are conditions are likewise called conditions. Thusmother is a condition, but
( is not. When the embedded simple stacking cell of a first component is the unit, we
speak of aglobal condition and when the embedded simple stacking cell of a second
component is the unit of alocal condition. Thus, sentences and terms are (or stand for)
local conditions.

32. A disadvantage of our framework in its present form is that we have to choose the ar-
guments associated with a given word in advance. E.g., not every horse has an owner,
but to make sense ofthe horse of Sir John, wewould have to add an argumentof to the
interpretation ofhorse. But, adding the argument licenses the inference of the existence
of an owner, whenever we speak of a horse. We feel confident that it will be possible to
manufacture more flexible versions of our framework lacking this defect.
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33. The meaning ofwho, e.g., is a condition according to the definition of Note7. Note that
this usage does not quite correspond to the usual idea of a condition as a test.

34. For example:the winner will get one thousand guilders.

35. Note that the meaning of((sub Hesperusx) is (ob Hesperusx)) is different from the mean-
ing of ((sub Hesperusx) is (ob Phosphorusy)), since fusion of discourse referents is dif-
ferent from contentual identity.

36. Wewere made aware of the problems concerningzichzelf by Claire Gardent.

37. Note that we assume here thatzichzelf always fuses withsubs. It was pointed out to us
that this is not anadequate assumption about, for example, Englishhimself, as is clear
from: Mary gave John a picture of himself, wherehimself is the indirect object of the
nearest sentence level. However, it seems that what we give is a good approximation of
the meaning of Dutchzichzelf or Germansichselbst.

38. The appendix is our answer to a question posed by Theo Janssen.
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