321

Notre Dame Journal of Formal Logic
Volume 37, Number 2, Spring 1996

Dynamic Bracketing and
Discourse Representation

ALBERT VISSER and KEES VERMEULEN

Abstract In this paper we describe a framework for the construction of enti-
ties that can serve as interpretations of arbitrary contiguous chunks of text. An
important part of the paper is devoted to describing stacking cells, or the pro-
posed meanings for bracket-structures.

1 Introduction
Motto: Sentence structure and text structure are different, but not in kind.

1.1 Dynamic brackets in action Let’s start with an example. Consider the sen-
tence,
A dog sees a cat.

To give a logical semantics for this sentence, we have to produce a meaning for the
sentence. Such a meaning could be (given by) the following sentence of predicate
logic.

IX(DOG(X) A JY(SEESX, Y) A CAT(Y)))

Even if this result were a satisfactory meaning representation, we should not be con-
tent. We do not just want correct meanings to be produced in an oracular way. We
want theprocess of producing a meaning from a sentence to be systematic. Being
systematic involves precise specification of the interpretation process and satisfac-
tion of certain constraints. One such constraint is compositionality. Another such
constraint is maximizing the number of meaningful components. Yet another one—
subordinate to, but not a consequence of compositionality—is uniformity in the way
the meanings interact. In its usual formulation Montague grammar does not meet the
uniformity constraint, but we could try to set it up uniformly with function application
as the fundamental mode of meaning interaction.

Traditionally the process of interpretation has two stages. The first stage, pars-
ing, is still at the syntactical level. It consists of enriching the input sentence with
syntactical structure. We analyze what the appropataponents are and the way

322 ALBERT VISSER and KEES VERMEULEN

in which these components depend on each other. For example our sentence could be
parsed as one of,

(i) ((adog) (sees (acat)))(ii) ((adog)\ sees/ (acat))
(iii) (a(dog,sees(a cat))) (iv) (sees(a dog, a cat))

The second stage is semantical interpretation proper. Grammatical structure steers
this process. It is what makes the compositionality constraint meaningful. We in-
terpret componentwise, and the meaning of the whole is obtained from the meaning
of the parts, by applying the appropriate function to the meanings of the parts in the
way prescribed by the grammar. E.g., the meaningpedin our examplg(ii) above

could be a binary function which is applied to the meaningsadg anda cat, where

the slashes are indicative of argument location. Gramnmsnetegorematic in this
approach to semantics, i.e., no semantical objects are ascribed to the symbols fixing
grammatical structure. In our examples: the brackets and the slashes get no mean-
ings.

Why do we arrange the interpretation as we do? A number of the ideas—Iike
compositionality—that go into it can be viewed as general design constraints. They
do not reflect anything out there, but just fix a format for describing things. Other
things could be dictated by the idea that we want to model something. Dynamic se-
mantics as we view it is shaped by one such idea. We want the way the logical seman-
tics is produced to model the interpretation process in humans and machines. This
programmatic idea will cause us to diverge from the received idea of the role of gram-
mar as syncategorematic steering. (Note that “modeling the interpretation process”
is not among the classical aims of model theory; those aims are rather to gain under-
standing of validity and definability. Thus nothing we say should be constructed as
criticism of model theory.)

Does the interpretation process as programmed by the grammatical analysis of,
say, exampléi) reflect the actual temporal interpretation process? This analysis pre-
scribes that we first interpréa dog) and(a cat). Then we procesfsees (a cat)) and
finally ((a dog) (sees (acat))). Suppose we are hearing someone saying very slowly:
a...dog...sees...a...cat. Our “theory” predicts that after hearirsges we cannot
combine the meaning akes with the meaning o dog. But, surely, we can. The
point can be strengthened by looking at very long sentences.

If we accept this argument, there are two ways to go. First we may search for a
grammar that reflects the process of interpretation over time more adequately. But in
our example, what else could such a grammar yield than,

((((a dog) sees) a) cat)

Is this really convincing? We also would understand something, if we missed the
speakers first words and just heard:sees ...a ...cat. Surely, interpretation satis-

fies theBreak-in Principle: we can break into a piece of ongoing text at any place
and still gain a measure of understanding. The second possibility is to drop the treat-
ment of grammar as syncategorematic. Grammar is not what steers the interpretation
process. It does something else, which is reflected at the semantical level. For, where
else could it be reflected?

DYNAMIC BRACKETING 323

In this paper we will consider the idea that grammar is theredtagorematical
steering. In other wordsyes, grammar plays the role of guiding the way we process
information, butno, grammar’s role is not well placed at the transition from syntax
to semantics.

The semantics that we want to develop is a version of Heim’s file change seman-
tics for indefinites (sed],[[4)).1 In our version, the meaning ¢fs going to bentro-
duce a new file for storing the subsequent information. The action thaf means will
be modeled by an appropriate mathematical object, in the style of program-semantics.
Analogously, a right bracket is going to meeliminate the current file.

To understand the idea of brackets as actions or program-instructions better, it
helps to consider an analoggxistential quantification. In dynamic semantics the
existential quantifieBx is usually interpreted as the instructiotiroduce a new file
labeled x (see e.g., Groenendijk and StokhEf)| Vermeulen [L9 modified this to:
push a new file onto the stack labeled x.2 The stacking way of viewing the existential
quantifier opens the way for introducing a companioexidts x, viz., exit X, meaning:
pop the current filefromthe stack labeled x. Vermeulen’s alternative predicate logic is
calledDPLE. By way of example, we produce a sentencBRLE-language, written
with four different notational conventions, each suggestive in its own way.

(a) IX.P(x).3y.Q(x, y).EX.R(y).Ey

(b) pushy. P(X).pushy.Q(X, y).popy.R(Y).popy

(©) \begin{x}.P(x).\begin{y}.Q(X, y).\end{x}.R(y).\end{y}
(d) [x-P(X).[y-Q(X, ¥).x]. R(Y).y]

In contrast to predicate logic, where the existential quantifier is standardly associated
with scoping bracketsxists andexit are their own brackets. As suggested by (d), [
andy] are brackets enclosing a stretch of text in which the information stored under
goes to a certain fixed file. But if we can viexistsandexit as brackets, where these
brackets are given instructions as meanings, why should we not seriously consider
giving the usual brackets a similar semantics?

Our first programmatic point was the idea of modeling the interpretation pro-
cess. With the example of the existential quantifier a second theme has been tacitly
introduced. The aim of the dynamic interpretation of the existential quantifier was to
provide a better simulation of the way anaphoric phenomena are handled in natural
language. Anaphoricity is typically a text phenomenon, which exceeds the scope of
individual sentences. Thus dynamic semantics aims at describing not just interpre-
tation of sentences, but primarily interpretation of texts. Sentence interpretation just
appears as a subproblem. Note that, because texts can be arbitrarily long, there is no
temptation to interpret “text-brackets” likkeman or suppose syncategorematicalfy.

If we treat grammar categorematically, and if the syntax-to-semantics interpretation
process is not guided by grammatical structure, what is the syntax-to-semantics in-
terpretation process going to look like? Setting apart all kinds of hybrid approaches,
let's look at just the most radical one. The radical answer is simply that we can inter-
pret any stretch or chunk of text, and that the interpretation of the concatenation of
chunks is a function of the interpretation of the chunks. We will call this function the
merger. We will use ¢” to designate the merger.

324 ALBERT VISSER and KEES VERMEULEN

Let's look at an example. We are going to paasipg sees a cat as:
(.(.sub.ay.dog.).seesgb.ay.cat.).)

This formula is a formula of the fragment of predicate logic we are going to de-
velop. sub andob are markers for the argument places. We can both interpret
(.(.sub.ay.dog.).sees, getting as meaning, roughlya dog sees something, and
sees.(.ob.ay.cat.).), getting as meaning, roughlsomething sees a cat. Obviously, to
make this all work out well, we should demand that the result of merging the mean-
ing of (.(.sub.ax.dog.).seeswith the meaning of.ob.ay.cat.).) is the same as the result

of merging the meaning df(.sub.ax.dog.) with the meaning obees.(.ob.ay.cat.).).
Thus we demand thatis associative. We will conveniently add an empty meaning or
tabularasa. Thistabularasawill act as the identity fos. So our meanings will form
amonoid withtabula rasa as the identity. We call the interpretation process, as de-
scribed monoidal processing. Note that monoidal processing includes the possibility
of incremental processing, i.e., processing strictly from left to right.

In the most radical case, where we interpret all syntax categorematically, there
will be no syncategorematic syntax at all. Thus our approach has as consequence
a radical unburdening of the specification language. All sentences of this language
are grammatical and can be assigned meanings. Of course, some meanings are more
equal than the others....

In this paper we will address the problem of interpretation from parsed sentence
to semantical object. We will not consider the problem of run-time parsing. We
will, however, in designing our specification language, pause to consider variants that
would make the parsing easier. (See eg.4on the use of lazy brackets.) Some of
the work on incremental grammars (see e.qg., MilwB) [[13]) is close in spirit to
what we are aiming at.

1.2 Context and content In the previous subsection we introduced the first design
feature of our approach: grammatical structure is treated as meaningful. In this sub-
section, we describe the second feature:iR&-style representation of meanings as
context/content pairs.

In Groenendijk and Stokhof’®PL (see B]), dynamic meanings are actions,
which are in their turn mathematically represented as input-output relations. This ap-
proach has the advantage of mathematical simplicity. It has as disadvantages that one
cannot associate a good notion of information growth to it and that one cannot easily
separate the statical and the dynamical aspects. We follow another dynamic tradition,
DRT or File-change Semantics, in taking our meanings to be static objects (relational
databases, sets of assignments), enriched by dynamic contexts (see e.g.[Zpevat [
and Kamp[P]). We claim the following advantages.

> There is a good separation between the static and the dynamic. We keep the
classical ideas of a meaning as a database and of a meaning as a set of assign-
ments.

> Our approach supports a good notion of information growth.

> We do not throw away the relational approach. FroDRT-style meaning
a DPL-style relational meaning can be ‘extracted’. The ‘extraction’-function
will be morphism of monoids, mappingto relational compositions.

DYNAMIC BRACKETING 325

> Inaway similar to that of the previous item, we can associptiate functions
with our meaning$.

The main novelty of this paper is the machinery we develop to build the dynamic
contexts. We will begin the development of our tool-kitgzl

1.3 Thelocal andtheglobal In §1.7] wealready mentioned the structure of larger-
than-sentence discourses. Evidently, anaphoric phenomena belong to this structure.
In the present paper we will give a treatment of anaphoric phenomena, which can be
viewed, very roughly, as BRT-version of Vermeulen'®PLE. We will, on the other

hand, treat local sentential structure in a new way. The most salient property is that
our specification language embodies a different, more natural-language like, strategy
to handle argument places than Predicate Logic. In Predicate Logic terms getinto the
correct argument place by occurring at rigidly prescribed places after atomic predi-
cate symbols. In our approach terms get into place by carrying the appropriate place
markers (argument handlers). These place markers are analogous to prepositions in,
say, Dutch or to theasi in, say, Latin. In our language, the following items will be
essentially equivalent.

> (.(.hec.sub.).cut.(.thg.breadob.).(.with.g.knife.).)
> (.(.with.&.knife.).(.thg.breadob.).(.(.h&.sub.).cut.)

The role ofsub andob is the same as the role with. E.g.,subis like thecasus nom-
inativusin Latin.

By a mechanism to be explaineddd.2] we will see thathe, functions as dink
between the global discourse structure (which involves a discourse referent kgbeled
and the local sentential structure (which involves a discourse referent that fuses with
the discourse referent associated to the argument hasutileWe submit that in this
way our semantics for the first time correctly describes one major aspect of anaphors:
that they function as places where a local and a global machinery link up. Standard
DRT andDPL could not do this since their specification language uses the mechanism
of Predicate Logic for handling arguments. In Predicate Logic there is nothing like
therole of bringing an argument to its proper place. There an argument simply is in
place by being written in the proper place.

1.4 Ontheuseof categories One likely obstacle to reading the paper for the reader
whose roots are in linguistics is our use of Category Theory. We feel that the use of
this machinery was forced on us by the material. The categorical framework seems
tailor-made for the description of the flow of files. To be more precise, we do not want
just descriptions, we want descriptions such that objects described that way have cer-
tain desirable properties, the mostimportant one being that our objects interact as the
elements of a monoid. Moreover, our monoids will be monoids amigiulo isomor-

phism. Again, Category Theory is the appropriate medium to describe these isomor-
phisms in a systematic way. So there is no way to escape Categories. Let’s stress,
however, that Category Theory in our paper functions just as a definitional format.
We do not really use any deep or hard theory. We have added a brief introduction
to categoriesg3) to ease the pain. We have tried to keep the paper readable by sup-
pressing certain essentially trivial but lengthy computations.

326 ALBERT VISSER and KEES VERMEULEN

2 Monoids and structure: simple stacking cells
Motto: Don't be afraid of flatness!

2.1 Introduction One of the problems that one might expect for our setup is
the representation of (hierarchical/constituent/component/recursive/bracket) struc-
ture: since we have set out to describe the whole interpretation process in terms of
monoids, there seems to be little room to account for the hierarchical structure that
is so abundantly present in most syntactic and semantic phenomena. After all, the
monoidal operation igssociative, which means that the elements of a monoid are
insensitive to structure.

However, it turns out that the notion ostacking cell comes to rescue the hete.
We will see that stacking cells form a monoid, as required. But at the same time they
allow us to encode the structural properties of objects. This means that we can intro-
duce structure in the monoidal setup by using stacking cells as contexts.

As an example we will consider the following sentence:

The quick brown fox that jumped over the lazy dog wanted the rabbit that ran.

Before we can start to interpret this sentence, it will be necessary to make some of the
information about its syntactic structure explicit. Here we focus orctimstituent
structure of the sentence, which we make explicit by adding brackets, as follows:

((the quick brown fox ((that) jumped (over the lazy dog))) wanted (the rabbit
((that) ran)))

This is not the representation of constituent structure as it will be produced by the
ultimately correct theory of syntax. But that is not the point here. The point is that
even the ultimately correct representation will encode information about constituent
structure in some way or other. And we will use stacking cells in the processing of that
ultimately correct representation. As we do not wish to wait for that ultimately correct
representation, we illustrate the use of stacking cells using the naive representation,
with brackets.

Now we find ourselves confronted with a bracketed string in which different
items convey different kinds of information. We have isolated the structural infor-
mation in the brackets,) and (. The other elements of the string convey other kinds
of information that, for now, we will group under a common heading: (truth con-
ditional) content. In our (left-to-right) interpretation of this string we keep score of
the different kinds of contribution of the string components at the same time. The
content-like contributions will be ‘added up’ according to their location in the con-
texts: this corresponds to our view of the role of grammar in categorematic steering.
Therefore we work with objects which consist of a context component, which serves
to keep score of the structural information that we meet, and a content component, in
which we add up the content-like information according to its place in the context.
These context-content pairs have to form a monoid.

It fits into our program (as explained above) to try to construct this monoid of
complex objects from simple(r) monoids: the monoid of contexts and the monoids
of contents. Here we first discuss the monoid of contexts, i.e. the monoid which we
will use to represent the structural, constituent-like informatiorfidlve show how
simple monoids can be combined into complex ones. ThelgJiwewill discuss the

DYNAMIC BRACKETING 327

content components in some detail, so that we will have all the ingredients required
for the interpretation of our example.

Wehave used brackets to mark the boundaries of the constituents in the sentence.
Thus the brackets are the elements in the example that give the information about
the structure of the expression. The other elements give other kinds of information
altogether. Therefore we may first concentrate on the string:

((1111.((1).2.(1111))). 1. 1.1 (.1).1)).)

instead of the complete example above. This string is obtained from the example
by replacing everything but the brackets with 1, saiast®ila rasa element that is
structurally neutral. This way we can concentrate on the structural information in our
example®

2.2 Pair representation of simple stacking cells We now have to develop a suit-

able monoidal representation for the kind of strings that we saw above (cf23aahe

For each substring its representation has to encode the impact of the substring on the
structure in which it occurs. As a first attempt we consider the following method of
representation.

Weimagine ourselves working onstack of constituents in each stage of the in-
terpretation. The stack shows how deeply the constituent that we are currently work-
ing on is nested in the overall structure. For example, if our string starts with (((, we
will obtain astack consisting of three constituents. It is clear that a left bracket, (,
indicates the beginning of a new constituent. Each left bracket causes an increase in
the depth of nesting of constituents by one: it is a push action. So it seems that the
contribution of each left bracket can be described by the integer +1, to indicate that
it adds one new constituent to the current stack of constituents.

For the right bracket) the situation is dual: the right bracket indicates a decrease
in the nesting depth by one: itis a pop action. So it seems that the contribution of the
left bracket can be indicated by the integet. Also the stacks themselves can be
represented as integers: we can map each stack to the number of levels on the stack.
So the monoid of integers + addition seems a suitable candidate for the representa-
tion of bracket strings: stacks get represented by the number of push levels that they
contain and strings get represented as the sum of the contributions of the brackets in
the string: ((()) correspondstoll+ 1+ (—1)+ (—1)=1,()to 1+ (—1) = Oetc.

But this representation of bracket strings will not work. Let's compare the following
two strings: () and)(. If we apply the method of representation indicated above, we
find that both strings correspond to 0. Thus this method of representation suggests
that both strings are structurally neutral. It will be clear that this is not true: although
both strings leave thamount of constituents intact, they do not have the same effect
on the structure at all. The string () really does have a neutral contribution to the over-
all structure: if we add () to some strirgythen we will first start a new constituent
with (and then finish this constituent with). As a result we end up in the same con-
stituent where we were after But if we add)(to a string, things are different. Now

we will first finish a constituent (o) with) and then start eew one with (. So)(will
cause us tewitch from one constituent to the next.

328 ALBERT VISSER and KEES VERMEULEN

Clearly such switches will be important for the interpretation of our example.
Therefore the representation of the structural contribution of bracket strings by in-
tegers is too naive: it is not only the number of brackets that matters, but also their
order.

Fortunately it is possible to get away with an almost equally natural repre-
sentation: we will not represent bracket strings by one integer, but by two natural
numbers. One number will be used to indicate the number of constituents that are
closed off by the string, the other number gives the number of new, nested constituents
that the string introduces. By keeping these two effects separate, we will be able to
distinguish the effect of () and)(:

> (cannow be represented &8, 1),
>)as(l,0),

> () as(0, 0) and

>)(as(l,1).

We can go on and interpret arbitrary strings built up from)’s, ('s and 1's as such pairs
(n, m). To get a ‘monoidal’ picture of this interpretation of strings we have to supply
an operation of adding up—or merging—the pairs. This is achieved by the following
definition®

(Ng, N2) @ (My, Mp) = (Ng + (Mg — N2), Mp + (N2 — My)).
Some examples:

> ((((-)) e ((snce(0,4) e (2,0)=(0,2)
>) - (((Cev) since(2, 0) o (0, 4) = (2, 4)
> ((+)))) e~)), since(0,2) e (4,0) = (2,0)

The examples show how the second string will first pop all the constituents that the
first string has introduced. Then, if the second string still has some)-brackets left,
these are simply added to those of the first string: this is why wetaygm; — ny)
in the definition. Dually, if any (-brackets are left of the first string, then these are
simply added to the second string, + (np — my). This turns out to be the suitable
view of the role of the brackets in our set up: we will represent each bracket string
by two natural numbers which can be added/merged as indicated above. The first
number represents the negative effect of the string, the second number its positive
contribution.

It is not hard to check that this gives us a monoid. We find that the opergtion
as defined above, is associative and the t{(l6) is a unit element of the operation
(and hence we can use it as the 1 that we needed in our example).

Proposition 2.1 (v x w, e, (0, 0)) isa monoid.

We call such tuplegny, ny) simple stacking cells (SSCs) and we will use them to
encode the structural properties of expressfoiiis monoid is calledsSC pair, the
simple stacking cells represented as pairs.

2.3 Stacking cellsaspartial functions There is a slightly different way of looking
at SSCs that will turn out to be quite convenient later on: we can look at SSCs as
partial injections on the natural numbers.

DYNAMIC BRACKETING 329

Definition 2.2

1. A simple stacking cell represented as a partial injection (§B&is a partial
functiona: w —e o such that:

dom(a) = {ng,nNa+1, ...} forsomen, € w
a(ng+k) = a(ny) +kforallke w
2. The monoid of simple stacking cells as partial injectiafiSCinj, is defined as
SS5Cinj = (SSGnj, 0,10), where o stands for composition of (partial)

functiong® andi is the identity function om.

Figure 1: Simple stacking cell

Note that such a partial functicmis completely fixed by the choice of, and
a(ny) (which are equal to 3 and 5 resp. in Figure 1). In this way we get a correspon-
dence between the partial injections as defined here and the pairs of natural numbers
as introduced above.

Fact 2.3 Themapping p : SSCinj — @ x w, defined by p(a) = (na, a(na)) induces
an isomor phism of monoids p : SSCinj — SSC pair -

Once this isomorphism has been established it is no longer necessary to distinguish
carefully betweerSSCinj and SSC pair. In what follows we simply talk abou§SC,
“the” monoid of simple stacking cells.

One clear advantage of the functional representation of simple stacking cells is
the elegant definition of the monoidal operation: it is simply composition of partial
functions. This is not only an advantage because itis an extremely familiar operation,
but also because it is immediately clear that it is associative.

We see in Figur] for example, that the first cell maps 6 to 4, the second cell
maps 4 to 3. Therefore in the resulting cell 6 is mapped to 3. We can also read off
that the first number in the domain of the resulting cell is 5 and that 5 will be sent to
2 (via 3).

2.4 Excursion: L-monoids Above we have constructed several representations of
simple stacking cells. In the constructions involved we have used the natural numbers
with the usual notions of addition and cut-off substraction as a starting point. But it
turns out that the constructions can already be carried out in a slightly more general
situation: they work for any L-monoid.

Definition 24 An L-monoid is a structuréf = (M, e, <, id) such that M, e, i)
is a monoid and the following additional requirements are met.

330 ALBERT VISSER and KEES VERMEULEN

~ o oo s
oo w N
[

Figure 2: Merging simple stacking cells

Define:x <y <= forsomeu: uey=Xx.

L1 XeZ=YezZ = X=Y
L2 Xey=10 = y=1id
L3 XeYy<Z &< X=<Z<«Y

An L-monoid is a monoid with an additional operatien. Condition L3 says that
< is aleft-implication, whence the L in L-monoid. In the literature (see Pfa]]
Moortgat and Oehrldld]) the operation is also known as left residuation. Itis closely
related to the notion of an adjoint in category theory (cf. MacLEGB[The analogy
with implication becomes clear as soon as we consider L3 for a Boolean (or Heyting)
algebraB = (B, A, T): now L3reads ag Ay <z <= X< zZ<« Y, S0« isthe
Boolean implicationt!

If we regard thes-operation in the monoid as an operation for the addition of
information, then the operation- can also be seen as a sort of direcdalostraction
operation: if we take the monoid = (w, +, 0), then the left-implication is cut-off
substraction. So in general one can try to thinKraf<— n) asm minus n.

One important example of an L-monoid{®, +, —, 0). And the next example
is not far away: we obtain an L-monoit{;, = (M, e, <, id) for any limit ordinali
if we set?

> M={a|a <A}
>aef=8+ua
> 10 =0.
Wethen find thatr <\ Biff B <qoq . This results in the following definition for the
left implication, which we will write as-, ageneralization of cut-off substraction for
arbitrary ordinals:
0-y=0
(a+1l) = y=(a=) +1lify <oqe
(a+l) = y=(a= y)=0ifa <ga ¥
U=y =SUPoraglar = ¥ | @ <org p} for limit ordinals .

vV vV vV V

We can see our pair representation of simple stacking cells introduced above as a spe-
cial case of the construction of stacking cells over an arbitrary L-monoid.

Definition 2.5 (55C4,) For any L-monoidM we define the simple stacking cells
over M, SSC 4, asfollows:

SSCqr = (M x M, e, (i0, 10))

DYNAMIC BRACKETING 331

where(X', X) o (Y, y) = (Y < X) e X, (X< Y)eYy).

The definition ofe can be understood by direct analogy with the example of the
bracket strings (substitute for ¢ and - for <), but we can also try to get a more
general feeling for what is going on in terms of substraction and addition of informa-
tion. Recall our remark above thetan be seen as addition of information ardas
substraction of information. The paitg’, x) tell us to first substract informatioxi
from the context and then add informatinto it. In (X', x) e (y', y) we perform such
an operation twice: first fofx’, x) and then fory’, y). This has the overall effect that
we will substract at least’ from the context. Then we will provisionally add infor-
mationx, but immediately after that we will substragt Finally we add information
y.

In case theM we start out with is a linear order (as in the examples above), we
know that eitherx < y') = id or (Y’ < X) = id. Then we can compute the overall
effect of these actions by distinguishing two situations:

> (Y < X) =1i0. Now x provides all the information that wants to substract.
In that case some information will remain after substractinigjom x and the
remaining informatior(x <— y’) can be added to the informatign Weend up
with (X', (X <= Y') e y).

> (X < Y') =1id. Now x does not provide everything thgtasks for. In that case
there is an additional request foy' < x) from the context. Then we get the
overall effect of((y <— x) e X, y).

If M is not a linear order, a third case remains in which neitixer— y') = id0 nor
(Y < X) = id. The definition above simply summarizes all situations.

It is left to the industrious reader to check tigHC ,, is in fact a monoid. Thus
we obtain a pairing construction which makes monoids out of L-monoids. It is easy
to check that the simple stacking cells are indeed what we get if welthke M, as
astarting point.

So we see that the pairing construction generalizes to arbitrary L-monoids. Also
the representation of stacking cells as partial functions can be generalized to arbitrary
L-monoids. Each SSX, y) in S5C 4, gives rise to a partial mapping.y : M — M
as follows:

dom(exy) = {Z1z<x}={z Ju: uex=2z}and

pxy(UeX) = Uey.

(Here it has to be checked that thesuch thatu e X = zis unique, which follows
immediately from L1.)
We leave it to the reader to verify the following proposition.

Proposition 2.6 Themapping ¢ : SSCyr — {¢x y| X, Y € M} defined by:

(X, Y) = oxy

induces an isomor phism between SSC 5, and ({¢x y| X, Y € M}, 0, ¢ip in)

332 ALBERT VISSER and KEES VERMEULEN

2.5 Lazy vs. tiresome bracketing All this may seem an example of generalizing

for the sake of generality, but it turns out that there are some nice ideas about the
management of (linguistic) structure that can be captured in this way. As an example
we discuss the idea of lazy bracketing, which will amount to the usgof,» instead

of SSC,,. Let's reconsider our example:

The quick brown fox that jumped over the lazy dog wanted the rabbit that ran.

Above we have explained that we have to add some information about the manage-
ment of constituents if we want to interpret this sentence, and we have used brackets
to make the constituent information explicit. The brackets correspond to very explicit
operations on constituent structures: each bracket corresponds to pushing or popping
exactly one constituent. Thus the use of brackets as indicated above gives the follow-
ing tiresome picture of the left-to-right interpretation of a sentence: first we decide
(or guess) at run-time exactly how many levels we have to push. (In the example this
turns out to be three.) We push these levels one by one. Then we go on to interpret
the sentence. Finally we pop the remaining levels one by one.

But we can also give a more easy-going picture of how things Wbkt the
beginning of each sentence, indicated by the use of a capital letter, we know that we
are at a new starting point. At such a point we do not have to count the exact number
of constituents required: we simply introduce “sufficiently many” constituents. Then
we go on to interpret the sentence. At the end of the sentence, indicated by the use
of a full stop, we know that we have reached an end point. So there is no need to be
very careful in popping the remaining constituents one by one: we can simply throw
awayall remaining constituents in one sweep.

To represent this picture of the lazy management of constituents we do not
bracket the example as before, but instead use the following bracketing.

[the quick brown fox ((that) jumped (over the lazy dog))) wanted (the rabbit
((that) ran]

Here [indicates the introduction of “sufficiently many” constituents and] stands for
throwing away whatever remains. We call [anddy brackets. In the monoid con-
taining lazy brackets we would expect equalities such as[[)) =1[,[))) =, etc.

to hold, indicating that [does indeed introduce sufficiently many constituents. Dually
we would like to have] =], ((] =], (((] =], etc. Of course we also wantf () = 1.

It turns out that we can adapt our definitions to model these ideas about lazy con-
stituent management quite easily: we simply set up the whole machinery starting with
the L-monoid based o@? instead ofw. Then it turns out that the following way of
looking at the brackets work:

> (~ (0,1)

>)'\» (1, 0)

> [~ (0, w)

>] ~ (w,0).

Thus the general construction of stacking cells from L-monoids allows us to look

at constituent management in nonstandard ways. Lazy brackets are just a first exam-
ple of an interesting kind of variation on the operations that we may want to consider

DYNAMIC BRACKETING 333

for linguistic applications: starting from other suitable L-monoids may very well gen-
erate other interesting views on the management of (linguistic) structure. But at this
point there is no time to speculate more in this direction. In what follows we will con-
centrate on the first kind of stacking cells: stacking cellsohazy brackets will not

pop up again until our treatment of the Dutch reflexigehzelf’ on pagd35d

2.6 Levelsof stacking cells The stacking cells will be our way of coding up struc-
tural information in a monoidal setting. Our overall goal is to use this structural infor-
mation in the interpretation of (structured) expressions. These expressions not only
contain information about their structure, but typically also contain other sorts of in-
formation, which we have called (truth) content above. It is important that we are
able to locate this content in the correct way in the (structural) context: the content
information has to be stored in the constituents of the stacking cell.

As a first step, we show how we can associate with each simple stacking cell a
set oflevels (or constituents) in such a way that we keep control over their location in
the simple stacking cell. Then we can store the content items in the stacking cell by
linking them to the appropriate level of the simple stacking cell. We will be able to
complete this task properly only aftdé] when we will have seen the Grothendieck
construction, but already at this point we can go some way towards explaining the
idea and showing what the problems are.

First we present a mappingthat associates to each SSC its set of levels.

Definition 2.7 For each SS@ we define the sef(a), the levels ofa, asfollows:
L@ = auU {(nx)[n<na} U {(x,n|n<aa)} U {{x *)}

(herex is some fixed new entity).
Among the levels o we distinguish the following types:

> (0, %), (1, %), (2,%),...(ng— 1, %): thepop levels (in chronological order)

> (x,a(Ng) — 1), (x,a(ng) —2),..., (x,0): thepushlevels (in chronological or-
der)

> a: thestemlevels

> (%, x): agarbagelevel

We will store the content information that we find in the constituents on these levels.
The pop levels correspond to the constituents that our stacking cell will close off. The
push levels correspond to the constituents that the stacking cell introduces. Note that
the location of a leveln, m) is fixed byn andm. For example in the representation

of the string:

lazy dog))) wanted (the rabbit ((that

we will find the SSC(3, 3). We will attach the information ‘lazy dog’ to the level
(0, %), the first pop level. The information ‘the rabbit’ will end up at level 2), a
push level, and the information ‘that’ will go t@, 0), another push levef
The stem levels are levels that are structurally neutral. In this example the infor-
mation ‘wanted’ will be stored on such a level: the example tells us ‘wanted’, and we

334 ALBERT VISSER and KEES VERMEULEN

Figure 3: An inhabited stacking cell

know that this information lives in the constituent in which all the pop and push lev-
els are nested. But the string does not give this level any structural status: it may be-
come a push or pop level depending on the context in which the whole string occurs.
Therefore we store the information that ‘wanted’ conveys on a structurally neutral
stem level:(3, 3).

In our setup we have provided a rather large number of stem levels. The example
above does not make clear why we would ever need more than one such level, but
we will see that there are cases where several stem levels are required. Although in
practice we will always only use finitely many stem levels, we have chosen to add
w-many such levels, mainly for technical convenience.

So far all levels correspond directly to one of the constituents of an expression.
In addition we will allow ourselves to have some extra levels, where we can store in-
formation that is not located in any of the constituents, but still belongs to the stacking
cell. We will call these extra levelgiarbagelevels. Here we have just one such level,

(%, x), but later finite sets of garbage levels will occur. At this point it is hard to be
precise about the exact use of garbage levels. The real reason for introducing them
is that it will considerably smooth the definitions later on: when we want to merge
two simple stacking cella andb in which we have stored information, some of the
push levels ot may be popped bip. This means that these levels will not show up

in the merger e b. But if we are not careful this will also mean that all the informa-
tion that we stored on those levels is lost. It will be easy to prevent such disasters by
(temporarily) storing the information of these levels in a garbage level.

In fact the use of garbage levels is just one example of a general issue in the defi-
nition of the merger of stacking cells once they are enriched with additional informa-
tion. As we pointed out above, we want to add information content to the context that
a smple stacking cell provides by attaching this information content to the levels of
asimple stacking cell. So, as a first step, we will have to be able to work with tuples
(a, X3) where£(a) gives us the constituent levels@and X, stands for the garbage
levels ofa. We want to define the monoidal operatieiin this situation. This means
that, apart from producing the right SSG b, we also have to make sure that the
information that we have stored on some leveaafr b ends up on the right level of
aeb. Inslogan:

we have to keep track ¢iow levelstravel.

Todo this correctly we will borrow some techniques from category theory, which will
be presented i@2land §4]

DYNAMIC BRACKETING 335

3 Categoriesfor monoidal updating For the development of our tool-kit for build-

ing meanings, we need categories. How nice it would have been if monoids were
sufficient. The reason they are not is as follows. Consider simple stacking cells or
SSCs. SSCsinteract with reassuring monoidal simplicity. But how can we use SSCs
to describe more complicated objects? We need some way to talk about the individ-
ual “levels” of an SSC, andie need some way to describe what happensto the levels

when two SSCsinteract! In such interactions, levels merge with other levels, are sent
into the garbage limbo, etc. To describe filogv of the levels, the category-theoretical
machinery is tailor-made.

3.1 Basics This section introduces the basic concepts of category theory. The
reader is referred to MacLang(], Manes and Arbib[{1], and Barr and Welld]]
for more information.

A categony’l is a structurd Ob, Ar, id, dom, cod, o), where:

> Obis a nonempty class, the class of objects

> Ar is a class, the class of arrows or homomorphisms

> idis a function fromOb to Ar. We will write id, for id(a)

> domandcod are functions fromAr to Ob

> dom(iday) = cod(idy) = a

> o is a partial function fromAdr x Ar to Ar

> fogisdefinediffcod(f) = dom(Q)

> If fogisdefined, therlom(f og) = dom(f)andcod(f og) = cod(Q)
> igom(fyo f = foideggr) =T

> If (f og)ohisdefined, therifog)oh= fo(goh)

In what follows, identity between partial terms means: either both sides are defined
and equal, or both are undefined. Thus we have, quite gene(dllyg) oh= f o
(go h). We go against the mainstream tradition in category theory by readiimg
the order of the depicted arrows. Thus dus g “means”first f, then g. The reason
for this deviation is that our morphisms often represent “updates.” For representing
updates, it is most natural to read composition in the order of application. (See below
for more conventions in a similar spirit.) We will call the set of morphisms between
a andb, Hom(a, b), or, if we want to emphasize the dependence on the category,
Homg(a, b). A morphismf : a— bis anisomorphismif there is ag: b — a, such
that f o g = ida andgo f = idp.

A Functor ® between?(andB is a morphism of categories betweg&nand
%B. le., ® a function mappingObgy to Oby, and Ary to Arsy, which preserves
all categorical structure. So, for exampte(idg a) = idy @ andO(f og g) =
O(f)op ©(9).

Example3.1 Animportant example of a category will be the categémt, where
we take:

Ob s the class of all seté
Ar is the class of all functions from sets to sets

id x is the identity function orX
dom(f) is the domain off andcod (f) is the range off.

vV vV vV V

336 ALBERT VISSER and KEES VERMEULEN

> o is function-composition, read in order of application

In this category the elements of the sets are treatéehigeless objects. Their inci-

dental features are divided out by the isomorphisms present in the category and iso-
morphism in the category is the intended notion of object identity. So just the “sizes”
of the sets are counted relevant.

Example3.2 Anotherimportant example of a category is given by a partial (weak)
preorder oppo, (D, <). Herethe Ob = D and the arrows are the “inclusionsgsic, p,
witnessing thaa < b. A prominent example of a category based gpais the cat-
egory Get,,;,, Where theppo is formed by sets with the subsetordering. Note that
Get,,, IS a subcategory abet. The notion of identity inSet,,,;, is, however, com-
pletely different. Isomorphism in this category is ordinary identity of sets. So every
incidental feature of an element counts. Another example is the catgtargf the
natural number$0, 1, 2, ...}, with their natural ordering.

At this point we introduce an important convention. We want to think about updat-
ing and interpreting language fragments. Composition will reflect concatenation at
the level of surface syntax. Thus, as already mentioned above, we read composition
in order of application. For the same reason we should use postfix notation to de-
scribe function application. However, as so often, it turns out ;e Konsequenz

zum Teufel fuhrt. The postfix notations indiscriminately applied look peculiar, cer-
tainly in case of binary functions. Moreover, not all functions that appear need to be
considered as update functions. So a hybrid notation seems best. We wilf wijte
when using prefix notation, andl f], when using postfix notation. So for example if

@ is a functor fromRl to Set, if f:a— bisamorphismirl, andifx € ®(a), then:
O(f)(x) = X[6(f)] = x[f[O]]. In a suitable context, functions from sets to sets
could represent updates, whereas the fun@tadoes not. So, here we would prefer
the notation:x[®(f)]. Another convention that we will use igx, (y, 2)) = (X, Y, 2).

The objects of our categories are supposed to be informational items. The arrows
fulfill two important roles. The first is that they represent ways in which one piece of
information is part of another. The second is that the isomorphisms that are present
fix what objects and arrows we will count te same.!” We also need an operation
merge or e that enables us to glue some pieces of information together. To describe
the operation os, we again need some extra morphisms. To motivate our choices,
we first look at an example.

Example3.3 We consider what is involved in adding the monoidal operatlisn

joint union to Get. In one sense this example is thieexample of a monoidal oper-
ation on a category. In another sense it is somewhat misleading: disjoint union is a
bifunctor. Moreover it is the direct sum or co-product of the category we are consid-
ering. These features will not be incorporated in the general case. We start by fixing
a representation of disjoint union.

X@Y = ({0} x X)U {1} x V).

The elements oK will have descendants iK @ Y. This descendancy relation can
be described by a morphism, say. For x € X, we take: x[in1(X, Y)] := (0, X).
Similarly y[ino(X, Y)] := (1, y). The inclusion morphisms keep track of how levels

DYNAMIC BRACKETING 337

travel when objects are fused. Disjoint union does not give us a monoid in the strict
sense. We have, for example:

(e {yho{z = {(0,0,x),(0,1,y),(1 2}
Xeodyte{z)h = {(0,x),(1,0y), (112}

However, we wish to view the coding machinery we introduced to keep elements out
of each other’s way in taking disjoint unions as “inessential.” The elementX af

Y) @ Z are the same as thoseX (Y & Z) modulo some coding. To make this idea
explicit we introduce a standard isomorphiaftX, Y, Z) between(X & Y) & Z and

X@® (Y® 2). Inour example we would have0, 0, x)[a ({X}, {y}, {zD)] = (0, x). It

is not sufficient that there be some isomorphism: we want the correct isomorphism.
For one thinge and thein-functions will have to cooperate in appropriate ways. For
example, we expect the following diagram to commute.

inl

(X} 1 {x} @ {y}

inl inl

X (o) —— (Na{y) e (2

An easy check shows that the diagram commutes. Our monoid hasia.urtits is
of course the empty set. We see thaf is an isomorphism betweed and X & @
and thatin, is an isomorphism betweehando @ Y. The richer structure built on
Get, that we have described is ancategory according to the definition given below.
We will call the enrichedSet again: Set.

After this motivating example we turn to the main definition. Our framework is rather
similar to the usual notion of monoidal category, the main differences being the fact
that the monoidal operation is not a functor and the presence ahthactions.

A structurel = (Ob, Ar, id, dom, cod, o, e, 10, iny, ino,), IS anm-category if (i)

(Ob, Ar, id, dom, cod, o) is a category and (i) (Ob, e, 10, in1, iny, a) describes a
monoid relative to the category.” Our phrase (ii) means that we have a monoid only
modulo the isomorphisms of our category. We spell (ii) out in some detail:

o: 0Obx Ob— Ob

> i0 e Ob

> inj . Ob x Ob — Ar,whereinj(a;, ay) : 8 — aj e ax. Thein; tell us in which
way theg; are embedded ia; e a, by the operatiors

> a: 0Obx Obx Ob — Ar,wherex(a,b,c): (aeb)ec— ae (bec). Here:

v

1. in1(a,b)oini(aeb,c)owa(a, b, c)=1ini(a,bec)
2. inx(a,b)oini(aeb,c)oa(a,b,c) =1ini(a,b)ocins(a,bec)
3. insx(aeb,c)oa(a,b,c) =iny(b,c)oins(a, bec)

> in1(a,i0) is an isomorphism betweenandae iv. Similarly, in,(iv, @) is an
isomorphism betweeaandid e a. Finally in1(id, id) = ino(iv, id).18

338 ALBERT VISSER and KEES VERMEULEN

How nice it would have been, if these were all the conditions we needed to impose.
However, to guarantee that everything works smoothly we need some conditions of
amore technical nature. For the record, we give them here.

> We need everything to behave well with respect to isomorphisms. Ii, for
1, 2,b; isisomorphic tdy], thenb, e by isisomorphic td e b5,. The full formu-
lation is as follows. Suppos@ : bj — b/ is an isomorphismi(= 1, 2). Then
there is a unique isomorphisfi e B : by e b, — b} e b}, such that:

inj (b1, b2) o (B1 e B2) = Bi o inj (b, b)).

> The conditions omx are not sufficient to ensure that the correct isomorphisms
are generated after repeated applications of associativity. To guarantee correct
behavior (“coherence”), we have to add an extra condition. We ask thatijthe
are jointly surjective, i.e., if, for = 1, 2, inj o f = inj o g, then f = g.1°

A functor® between m-categories is anfunctor if it preserves the additional struc-
ture. E.g.®(in1(a, b)) = in1(O(a), ©(b)).

Example 3.4

1. We add the monoidal operatigoius to 9tat. The further details are fixed by
this choice.

2. Consider arupper semilattice 4, i.e., a structureD, <, v, 1). HereD is a
nonempty set angk is a partial order, which is closed under taking suprema
of finite sets of elementsyv is the operation of taking the supremum of two
elements, and. is the bottom il can be viewed as an m-category, by viewing
(D, <) as a category as in Examfie?] We take Vv as the monoidal operation
and_L asiv. Animportant special case of this exampledst,,,;, with union
and empty set.

Par abus delangage we will call the resulting m-categories agaitut, 4l andGet,,, .

Weare now ready to introduce the last ingredient. Our semantics is intendeél® be
change semanticsin the sense of Heinfd]. The objects of our categories are dynamic
whatshallwecallthems. Using the category we can describe their interactions. We will
need some way to talk about the files and the information stored there. The solution is
to extend our categories with a funcfarfrom the category t&et. For each objed,

MR (a) wil give the set of files “contained ird. Thus in our example above we could
takeR to be the identity functor in Exampl&1]the standard inclusion @et,,;, in

Get in the special case of Examjiie3 and we can tak&(n) := {mew | m < n} in
Exampldﬁ We do not requireéR to be an m-functor! In fact, since we want to view

the elements of the category under consideration as coordinating possible unifications
of referents, it is, in general, essential thats not an m-functor. The choice a@bet

as category of sets of files reflects that we view a file as a featureless object, but for
its connection viaRk with the dynamic machinery.

4 The Grothendieck Construction The Grothendieck Construction can be viewed
as a definitional format. It is a way of constructing objects which carries with it
the guarantee that objects so constructed have such-and-such properties. In a sense

DYNAMIC BRACKETING 339

one could say that the Construction constitutéanational role definition of what

it is to be a context’'s content and what it is to be a content’s context. The most
salient ingredient here is that contexts transform independently of the content, but
that the transformation of contents is guided by the corfiext.good discussion of

the Grothendieck Construction can be foundlihgnd in Jacobd7].

Consider an m-categofy and a functo® from 2 to the category n€at of m-
categories. The Grothendieck construction allows us to make a new category of pairs,
(a, t), wheret is an object of® (a). The intuition is this 2l is a category o€ontexts.
®(a) is the category otontents abovea. A pair (a, t) will be a content at a con-
text. A morphismf from ato b, will be viewed as armbedding of contexts. When
we take the &-object,”t, under our arm, when traveling viafrom ato b, t will be
“transformed” into a-objectt’ := (O (f))(t). So(®(f))(t) is the canonical image
of t via f.

Before giving the definition let us give a kind of-example, that well conveys
the flavor of what is going on.

Example4.1 Consider a model of predicate logic with domdn Usually the
meanings of formulas are defined as sets of assignments from the set of variables
VAR to D. However we could also wish to work with local assignments acting only
on the (free) variables that are “present.” Meanings now will be pairs of a finite
set of variables/ and a sefr of assignments fronV to D. Thus, e.g., the mean-
ing of P(vq,...,vn) would be(V, {feDY | (f(v1),..., f(vn)) € I(P)}) where
V = {vy,..., v} andl is the interpretation function associated with the model. The
first componenty, of such a pair is viewed as the context, the second component,
F, asthe content. The m-category of contexts here has as objects finite/setf,
variables, and as arrows the inclusion functioms, v, signaling thatv < V'. The
monoidal operation is union. Above each contéxte have a categoi® (V) of con-
tents. The contents abo¥eare the sets of assignments frdfrto D. The arrows of
this category are the opposites of the inclusion functions,say, r/, signaling that
F 2 F’. The monoidal operation is intersection.

Suppose/ C V' andF is a set of assignments & How is F going to appear if
we transport it to/’? Well, we wantF to decribe the same constraint at the new con-
text. In other words, we warit’s “successor” to be the least informative objectin the
new context, which is constrained in the same way with respect to the old variables.
Thus we take:

F[O(ineyv)] := (V, {feDV' | IV € F}).

How are we going to define the meaningdh B, say| A A B||? Suppose| A
is (V, F) and||BJ is (W, G). If the contexts/ andW were the same this would be
simple: ||AA B|| = (V, FNG). If VandW are unequal, howeveF, andG live in
different worlds and cannot be intersected in a sensible way. What we do is take them
under the arm and take them to the nearest world where both can breathe, the world
above contexV/ U W. In this world wecan intersect. So our new conjunction will be
as follows:

IAIAIBI == (VUW, F[®(incv,vuw] N GO (incw,vuw)])-

340 ALBERT VISSER and KEES VERMEULEN

o(m) ()

Figure 4: The Grothendieck Construction

Definition 4.2 Letan m-categorl and a functo® : 20 — m-Cat be given. Then
we define a new m-catego®y :=) ,_, ©(a) as follows:

> the objects ofB are the pairga, t) wheret is an object o®(a)
> the morphisms betweed, t) and(b, s) are the pairg f, u) such thatf € Ary
andf :a— bandue Argpy andu:t[e(f)] — s
> composition of arrows is defined as follows: (if, u) : (a,t) — (b, s) and
(g,v) : (b,s) — (c,r), then(f,u)o(g,v) : (at) — (c,r) is the pair{f o
g, u[e (] ov).
> 10% = <iag, ib@(wmﬁ
Weintroduce the new monoidal operator and the in@functions. We want to define
(a,t) o (b, s). On the first components, we take the obvious operations, serading
andbto ae b. In going froma via ini(a, b), toae b, the object is transformed to
t':=1[®(in1(a, b))]. Similarly sis transformed ta& := J® (in2(a, b))]. Finally—
on the second component—we take s'. Thus:
> (a,t)e(b,s)=(aeb,t'es)
> ni({a,t), (b, s) = (inj(a, b), inj(t’, 9)).

The newx is defined in a similar way.

It requires quite a bit of tedious work to check in detail that the Grothendieck con-
struction really preserves m-categories.

Example4.3 Consider any two m-categori@sandB. We mnfuse®B with the
following functor from®(to m-Cat: B(a) := B andB(f) := [Dgy, wherelDy is
the identity functor or8. Then)_,_, B (a) is (isomorphic toR(x B.

A somewhat larger example is worked out in the Appendix. An important pointis the
fact that the m-categofyf reoccurs as a sub-m-category)f,_, ®(a). Consider the
following mapping®:

> P(a) := (@, id(a))
> q)(f) = <fa idib(;)(b))'

DYNAMIC BRACKETING 341

Figure 5: m-structure under the Grothendieck Construction

It is not difficult to see tha® is an injective m-functor. Thus we are licensed to iden-
tify objects and morphisms @&, with their images unded.

We give three particularly useful specializations of the Grothendieck Construc-
tion.

4.1 Adding contentsto contexts Letan m-categorf, afunctorR from 2l to Get,
and a nonempty domaid be given. Remember thg& need not be an m-functor. We
generalize the construction of the meanings of Exabdpl#Define the functoR(ss
as follows.

> Uss(a) is the following m-category.

o The objects are sets of functions frdit(a) to D.
o The arrows are given by the partial ordering

o The monoidal operation is intersection of sets.
o The rest of our category is fixed by the above.

> Let f : a— bbe an-morphism. We define the funct8iss(f) as follows.

o G[Ass()]:={heDM® | 3g e Gvr € R(a) h(r[R(F)]) = g(r)}.
o The application ofR(f) on the morphisms is fixed by the preceding item.

It is easy to verify thaflss is a functor. We put:
> Cont(A, R, D) :=) o Ass(a).

We define a newdk on the new category byR((u, v)) := 9(u).?! It is not difficult

to see that our ExampleTkan be obtained by takirj the category of finite sets of
variables, with the inclusion functions as morphisms and union as monoidal operator.
The functori of this m-category is the standard inclusiondat. Note that via the
standard embedding of the contexts into the context/content pairs we can identify a
finite set of variable®/ with (V, DV).

342 ALBERT VISSER and KEES VERMEULEN

One could think of all kinds of variants of our construction. E.g., instead of
working with sets of assignments, we could work with relational databases over the
given set of referents.

4.2 Synchronic identification It will happen often that we want to say of two in-
habitants of different parts of the (linguistic) structure that they are really the same.
A familiar example is formed by re-entrancies in feature structures, where we want
to express that two distinct expressiahsre some feature. We have not included
any feature information in our linguistic examples, but already in our naive example
asimilar phenomenon pops up: in the interpretation of the relative ‘that’. We want to
say that ‘that'shares its denotation with an expression that lives in some other con-
stituent. Consider:

wanted (the rabbit ((that) ran)))

Here ‘that’ points to the same object as ‘the rabbit’. We keep score of information
concerning such identities by working with an equivalence relation on all the objects
that occur somewhere in the relevant stacking cell.

So we will have, in the semantics, as one of the informational items an equiv-
alence relation on a set of objects. The Grothendieck Construction can be used to
describe the dividing out of equivalence relations. Rdie any binary relation on a
setX. We write R* for the transitive, reflexive, symmetric closureR{in X). Thus
R* is theleast, or finest, equivalence relation containirfg. Let 2l be an m-category,
and letR be a functor fron®l to Set. We describe the functog.

> &(a) is the following category.

o The objects are the equivalence relationgrya).

o The morphisms are given by the subset ordering on equivalence relations
considered as sets of pairs. So, we have arrows from finer to coarser
equivalence relations.

o EeE' :=(EUE)*.

o The other data on the category are fixed by the preceding items.

> Let f : a— b be an-morphism. We putE[&(f)] := (E[PR(f)])*, where
E[R(D)] := {r[[R(OL I [RD]) [(r,1') € E}
We may check tha€ is, indeed, an m-functor. Take&q(A, R) 1= > o €(a). We
may chose the ne®t as follows.

> R((a B)) '=NR(@)/E,
> Let(f, f'):(a, E)— (@, E), then: (r/e)[R((f, f')]:= (r'[R(HD/e.

It is easy to see that this definition is correct.

Example4.4 Let?2 andB be m-categories and I8ty and9g be the correspond-
ing functors. The Cartesian product®fand®s is defined in the obvious way. E.g.,
(a,b)e (a,b) = (aed,beb). Take: Ry, x((a, b)) := Ry (a) ® Ry (b). Hered
stands for disjoint union. Th&y, o ((f, g)) are defined in the obvious way. Now
the Cartesian product can be viewed as two forms of dynamic machhand
running in parallel, without any connection. Now we may defifjgs := Eq (A x

DYNAMIC BRACKETING 343

B, Raxx). The newR is defined in the obvious way. The result of our construction
enables two different machineries to contribute to the identification of the same files.
We will use this construction to link the global anaphoric way of identifying referents
and the local grammatical way.

4.3 Storing dynamic objects on levels We turn to our final subconstruction. The
idea here is to store the elements of an m-categotiye files of another m-category.
Let 20 andB be two m-categories, and I8t and & be the corresponding functors.
Suppose that for alll-morphismsf, RR(f) is injective. We specify the functor].
Leta e Oby.

> $(a) is the following category.
o The objects are functions frofi(a) to the objects of5. We will use
o, 1, ... for the objects.

o A morphismg : 0 — tis a function fromi(a) to the morphisms of3,
such thatip(r) : o(r) — z(r).

oocet(r):=o(r)et(r).
o The further definitions are similar.

> Supposef : a— a. WedefineQ(f) : Q(a) - Q(@@).

o(r[(R(f))~1]) if risinthe range ofR(f)
0y otherwise
e(r[(R(f))™1]) if risinthe range ofR(f)
idip otherwise

o (T2(HDM) :={

o (@A) = {

Note that in these definitions the injectivity %f is essential.

We ddine Gtote(2, R, B, &), or, briefly, B*%, as) ..o (a). Inthe last notation
we takeft and@ to be given with the m-categorié$.The construction gives us pairs
(a, o), whereo stores an object dB on each referent ifR(a). We ddine the new
functor, say¥, to Get, asfollows.

> T({a,0)) :={(r,s|reR@ andse &(a(r))}
> Suppose f, ¢) : (a,0) — (@, o’). Lets putr’ :=r[JR(f)]. Then we may de-
fine: (r, [T T,)] 1= (", S (p(r")])

ThusX((a, o)) gives the disjoint union of th& (o (r)) forr € $R(a). A variant of this
construction is the finitized versio&toreg, (2, R, B, &), where we restrict the to
functions that ar@most everywhere, i.e., for all but finitely many arguments, equal
toi0g and thep to functions that are almost everywhere equailg,,, .

Example4.5 We give a useful application of our construction. The referents or
filesin our applications sometimes only have an “internal” or “virtual” function. They
function as indicators of places in a structure or whatever, but they are not used for
further storage. It is often pleasant and even necessary to make such files invisible
in the final stage. The following constructioBres, does just this. We will use the
construction in the next section.

344 ALBERT VISSER and KEES VERMEULEN

Consider the m-categofirue. This is the m-category based on the upper semi-
lattice (p{+}, <, U, &), where+ is an arbitrary objectR«,,. is the standard inclu-
sion of our m-category iet. Consider an m-catego®y, with associated functoR.
Define: Pres(A) := True*®. The objects of this m-category are pajes o). Here
o is a function frontR(a) to {@, {+}}. Thuso functions as a characteristic function
onfi(a), representing a sef, C MR(a). Here X, is the set of elements &t (a) that
are “present.” We haveZ((a, o)) = {(X, +) | X € X,}. We will also write 2, for
Pres(RA). If we want the finitized version of our construction we add the subscript
fin in the obvious way.

Example4.6 Let True be as in ExamplE.H Consider2***¢. The objects are
of the form (@, &) or ({+}, o). Since, in the second casé&gym (o) = {+}, we may

identify o, with o(+). Hence, the objects can be viewed as péirsa). Thus, the
result of our construction iadding a new unit to 2.

Example4.7 Let Abe afinite set of items. We define multisets of the item& as
follows. We associate an m-categ@fyvith A. 2 is the category consisting éfas its
single object, with as unique morphism the identity witnessing the standard inclusion
of Ainitself. For our monoidal operation we cannot but choose “union.” The functor
fR is the obvious inclusion oA in Set. We take as a category of multisets of items
from A: Gtorve(2, Gettin). The objects of our new category are in essence functions
f from Ato finite sets. (We may omit the context, since it is fixed.) Moreover, e.g.,
f e g(a) is the disjoint union off (a) andg(a). The new functor, sa{f, sendsf to
{{a,x)|ae A, xe f(a)}.

In TabldIlwe repeat the most important constructions introduced in this section.

5 Category of stacking cells In this section we look at stacking cells once again.
But this time we look at them in a (m-)categorical setting, adding the appropriate no-
tions of morphism and embedding.

Recall that it is necessary and handy to enrich simple stacking cells with garbage
levels. Adding the garbage levels is one of the things we have to do in order to keep
track of how levels travel. So, instead of working with SSCs we will have to work
with pairs(a, X) consisting of an SS@ and an appropriate set of garbage lev¢ls
The resulting objects will then have as levels the levels of the SSC, as we introduced
them above, as well as the garbage levels that we have added to them.

But before we define the m-category of stacking cells (with garbage), we first
introduce the m-category of simple stacking cells, without garbage.

5.1 The category of simple stacking cells In what follows it will be convenient to
use the following notation:

we writea < b for a C b (as partial functions® —e> w) anda” for the converse
of a (as a partial function)io is the unit of SSC.

We collect the following useful facts (notation as on p&Egs).
Fact 5.1

> a<biffng—ny=a(ng) —b(ny) >0

DYNAMIC BRACKETING 345

Cont(2A, R, D) | This operation was introduced #.1] It puts sets of
assignments frorfR(a) to D above each context
¢q(2A,) | This operation was introduced#.2] It adds equiv-
alence relations ofR (a) above each contest The
new referents assigned &oare equivalence classes
of the old ones.
2B | This operation was introduced Exampldd.4]
The new objects are paita, b), wherea, b are from
2, respectivelys, together with an equivalence rela-
tion E on the disjoint union ofk(a) andR(b). The
new referents are the equivalence classds.of
Gtore(A, R, B, &) | This operation was introduced B3] It stores an
element ofB above each € SR(a).
Gtore(A, B) | The same aStore (2, R, B, &), where we assum
R and& to be given withl and®B.

B*% | The same aStore(A, B).
Pres(A) | This operation was introduced §.3] exampld4.5]
It stores{+]}, for present, or &, for absent, on each
r e R(a).

112

Table 1: Special cases of the Grothendieck Construction

N = a(ng) and a” (Ngr) = Ny

()" ismonotonic (with respect to <) and

e ismonotonic in both arguments (with respect to <)
> (aeb)* =btea"

> a\=a

> aed <ivanda“ea<id

\%

\

Now we are ready to introducg&¢, the category of simple stacking cells. We al-
ready know the objects of this category, the simple stacking cells, and also the merger
has been discussed above. So the crucial thing to add is an appropriate notion of mor-
phism. Here we are led by the following minimal requirement: we want to Kmmw
levelstravel when simple stacking cells are merged, so we will need to keep track of
the way that stacking cells get merged in between other stacking cells. This means
that whenever a stacking callgets embedded in some contbxte — e b, then we

want to have a morphism fromato the resulting stacking cdil, e ae b, that withesses

this embedding. Therefore we will at least need a morphism:

Yaby,b, - A —> blo ae b2

for any choice ob; andb,. We will denote such a morphisip, p, b, by (b7, by) to
limit the use of subscripts in our notatiéh.The morphismgb?, by) will be the only
morphisms in the category of simple stacking c&is¢.

Definition 5.2 66, the m-category of simple stacking cells, has as objects the
simple stacking cells and as morphisgnsa — a’ pairs(b, b’) suchthab” eae b’ =
a’. Composition and identities are as follows:

346 ALBERT VISSER and KEES VERMEULEN

v

for eacha (i0, i0) : a — ais the identity ora

for (b,b') :a— a and{c,c):a — a”’, (b,b’) o (c,c’) :a— a” is given by
(bec,b' o)

ini(a a) = (iv, &)

> inp(a,a) = (a", i)

> a(a,a,a’) =(i0,id) : (aed)ed’ — ae (a' ed’).

v

v

Weleave it to the reader to check in detail that this does indeed define an m-category.
As an example we consider the composition of morphisms: givdsi) : a — a and
(c,c)y:a — a’,weknowthata’ =b" eae b’ anda’ = c" ea e c’. Substitution now
gives:a’ =c" eb" eae b’ e ¢'. By Fac(s.1this can be written aghec)" eaeb’ e C’
as required.

It may be useful to note that: a — a’ is an isomorphism o6&¢ iff a= &
andeg = (0, i0). SO6G&C has very few isomorphisms.

In what follows we will usep as a variable over morphisms&S¢.

5.2 How some levels travel Before we go on to extend the stacking cells with
garbage levels, we take some time to check how the nongarbage levels travel when
we merge two stacking cells. For each morphigmb’) : a — a we give a cor-
responding mapping({(b, b’)) : £(a) — £(a@) as follows: for an arbitrary level
(n,n) € £(a) we set

(n, M[£({b, b')] = (b(n), b'(n)),

where we readh(n) = x if n ¢ dom(b) andb’(n") = = if " ¢ dom(b’). Of course
it has to be checked that this does indeed define a mapglimg— £(a’). Thisis a
matter of case-checking.
Intuitively £((b, b’)) has to describe what happens to the level§ @f) whena
gets merged witlv" andb’. Inthis process many things can happen: for example, a
push-levelx, n) € £(a) could simply become a push-level b’(n)) € £(aeb’) and
then stay a push-levék, b'(n)) € £(b" eae b’). Butit can also happen that a push
level (x, n) € £(a) gets popped iae b'. Then it will be mapped to the garbage level,
(x, %), of ae b’ and then to the garbage levellwf e ae b'. For stem- and pop-levels
we have to distinguish similar cases. It turns out that the forrthuia), b’(n")) (with
the notation convention as indicated) gives a concise presentation of all thétases.
Note that all the levels that “disappear” in the merlgeée ae b’ are sent to the
garbage levelx, x). Ifwehad not added this garbage level, we would not know where
to send such “disappearing levels” which would force us to work with partial func-
tions at this point. But by the introduction 6f, x) we can keep all the functions total.
Now it is easy to check the following.

Fact 5.3 £ asdefined above is a functor from &S to Get, the category of sets
(with arbitrary mappings as morphisms).

5.3 Traveling with garbage Now we come to the crucial step of adding more
garbage (levels) to the picture. By adding a set of garbage levels we make a real stack-
ing cell out of a simple stacking cell.

DYNAMIC BRACKETING 347

Above we have already smuggled in one garbage level, which enabled us to keep
working with total mappings in the category of sets. The trick was to map all levels
that were in danger of getting lost to the garbage level. This way no information needs
to get lost, since it can all be sent to the garbage levelinSosense information
can be preserved, but as all the information ends up on the same level, we will get
confused as to which information belongs together. In order to keep the information
from different “disappearing levels” separate we need more than one garbage level.

So we start using pair&, X) wherea is a simple stacking cell, as before, and
X is afinite set of garbage levels. We simply call such pairs (not-so-sirstplekj ng
cells.

Important examples of such stacking cells will be:

> push = ((0, 1), @)
> pop = ((1,0),9)
> gath = (10, {{A, O)}).

These three are about the most basic stacking cells one can thipkstfconsists

of just one push level and no garbage. Similardy consists of just one pop level
without any garbagegatb is the stacking cell that just has one garbage level and no
real “structural” contribution. We have called the garbage levgheb (A, 0), apair
consisting of the empty stringg and the natural number 0. Later on it will become
clear why it is convenient to assume that garbage levels have this kind of shape.

Whenever we merge two stacking cefis X) and(a’, X), the result is of the
form (ae @, Y). HereY contains (i) the garbage levels (ii) the garbage levelX’
and (iii) new garbage levels that are produced by the mexgef. The new garbage
levels are the levels that “disappear” in the merging process. This happens when a
push level(x, n) of a meets a pop levein, x) of &. Each time this happens, we in-
troduce a new garbage level and callAt, n).

Since it is essential that we keep distinct garbage levels distinct, we will always
have to take thelisoint union of garbage sets. There are, of course, several imple-
mentations of disjoint union around, each of which would do equally well for our
purposes. But to keep things readable we prefer an implementation that does not in-
troduce a lot of confusing brackets. To achieve this we assume that all garbage levels
are pairs{o, X), whereo is some string of 0’'s and 1's. We introduce the two shift
operationsShy and Sh; on sets of such elements. These operations are defined by:

Shi (X) = {{io, X)| (o, X) € X}.

The shift operations allow us to discriminate between elements of different origin
without introducing lots of brackets. This is a clear advantage in the examples that
follow later. Now we can implement disjoint union of garbage s¢@ndY as fol-

lows:

X @Y = Sho(X) U Shy(Y)

This gives us all the (notational) ingredients we need to introduce the garbage levels
properly.

348 ALBERT VISSER and KEES VERMEULEN

Definition 5.4 For eachs, & we defineG(a, &), the garbage introduced by merg-
ingaanda’:

G@ a)={{A,n)] (x,n) € £@) & (n,*) € £(@') & n € w}.

For a morphismy = (b}, by) : a — by e a e by we defineG(¢), the garbage intro-
duced byy as:
G(p) = G(by,aeby) U Sy (G(a, by)).

Note that in definingG(¢) we have—as it were—chosen a bracketinglipe a e
b,. Here we see why we need to worry about the presence of suitable isomorphism:
the existence of a “coherent” isomorphisnimplies that such choices do not really
matter in the end®

Throughout this section it will be helpful to keep Figlekn mind. There we
see three stacking cells, X), (&, X’), and(a”’, X”). The setsX, X', and X" are
indicated by the little clouds below the S|mple stacking cells. Now when we merge
(@, X’y and(a’, X"y, for example, this will produce as new garbdga, 0)}.

<* 0> <0*>
<* 3> <32> <1*>Y®@

<a,X> <a X> <a’ X'>

Figure 6: Merging with garbage
Now we can take as morphisms in the category of stacking &#s pairs:
{p, T) 1 (&, X) — (&, X)

such thatp : a — & is a morphism of5G&¢ and f : G(¢) ® X — X'. The identity
arrows simply are:

(ida, 1ggx) © (a, X) = (a, X)
wherelggx : g X—> X is defined by ggx ({10, X)) = (0, X),

and composition of arrows is defined as:

(0,) o (¥, 9) = (9o, h),

whereh: G(gp o) & X — X" is specified as follows.

We may assume that = (b}, by) :a— byeaebyandy = (cy,cy) :bieae
b, -~ crebjeaebr,ecr. SOG(poy)=G(creby,aebrecy) U Shi(G(a,bye
C2)). Now we distinguish the following cases:

DYNAMIC BRACKETING 349

> h({1o, X)) = g((1o’, X))
Here we write:(o’, X') = f ({10, X))
(in this cas€o, X) € X)
> h((0,n) = g((10’, X))
in case(0, n) € dom(f)
Here we write:(o’, X') = ({0, n))
(in this casg A, n) € G(by, ae by))
> h({0, n)) = g({0, n)) in case(0, n) & dom(f)
(inthis casg A, n) € G(cp e by, aebyecy)\G(by, aeby))
> h((01,n)) = g((1o’, X))
in case(01, n) € dom(f)
Here we write:(o’, X') = ({01, n))
(in this casg A, n) € G(a, by))
> h({01, n)) = g((01, n)) in case(01, n) & dom(f)
(in this casg A, n) € G(a, by e ¢)\G(a, by))

Here the first case definéson levels that initiate fronX, and the second and third
clauses consider garbage levels that are produced in the megermfandae b, e

cz. The fourth and fifth clauses take care of the garbage that originates from marging
with b, e ¢,. Basically what we have to do is to keep in mind what could happen if we
merge the five (!) simple stacking celisb;, andc; in two different ways: either we
first mergea with theb; and then later add theg. This is what happens if we dofirst

and theny. Or else we first merge thig with thec; and then merge the result wigh
This is what happens if we compuge i “right away.” The definition is hard to read,
and perhaps it is good advice to skip it and concentrate on our discussion of[&igure
in §59 in which we see a case whetfwee stacking cells are merged. However it
can be checked that our definition does indeed produce a category.

Fact 5.5 We have defined a category of stacking cells G¢.

It is important to note that the isomorphisris f) : (a, X) — (&, X’) of this cat-
egory are of the form{y, f) = (idy,), where f is a bijectionf : Sh;(X) - X',
This shows that isomorphism conditions (‘coherence’) in this category arise only at
the level of the garbage sets: we have only to check that appropriate canonical bijec-
tions of garbage sets can be defined §t5For more details).

To extend this category into an m-category we have to specify the merger, the
embeddings and the appropriate isomorphisms. We will not do this in full detail here:
we just specify the merger of stacking cells and leave the other det&fisGb

(a, X)e(a,X)y=(aed,G(aa) U (X X))
5.4 Levelsagain Now all that remains to be done is to extend the level functor

£:66¢ — Setto alevel functors¢ — Set. We will use £ as notation for both
functors. On objects we simply take:

£((a, X)) = X@ (L@\{(*, x)}).

350 ALBERT VISSER and KEES VERMEULEN

So we collect the “real” levels i and the garbage level§ of (a, X).
On morphismge, f): (a, X) — (@, X’) we take:

L({p,) £((a, X)) — £((@, X))
> (In,m[L£({g, f))] = (1n', m)
in case(n, m) € £((a)) and(n, M[L({p))] = (', M) # (x, %)
> (In, m[L((g, f))] = (00’, K') incasgn, m) € £((a)), (n, M[L({¢))] = (x, %)
Now (n, m) gives rise to a tupléo, k) € G(¢), where(o, k)[f] = (¢’, K')
> (0o, X)[£({g, f))] = (0o’, X)
in case(o, X) € X and(o, X)[f] = (o, X).

It can be checked that this does indeed mgknto a functor&¢ — Set. In other
words, we can check the following.

Fact 5.6 (¢, f) o (¥, 9)[L] = (¢. H)[L] o (¥, @)[£] and ida x)[£] = ida,x)(-

Note that botha, X) and(¢p, f) are determined by theit-images. So we can regard
GC as a subcategory @et.

5.5 How levelsreally travel Finally we look at our example again to see in some
more detail how levels really travel when three stacking cells are merged in the cat-
egory&e. Werecall the following observation abo@ic.

Fact 5.7 The isomorphisms (¢, f) : (a, X) — (&, X) of G¢ are of the form:
(p, f) = (idy, f), where f isabijection f : Shy(X) — X'.

So to check that suitable isomorphisms are present, we have only to look at the map-
pings of the garbage levels. This can be illustrated with our example Higure

There are two different ways of merging these three stacking cells. We can either
first merge the two leftmost stacking cells and then merge the resultaitiX”), or
we can first merge the two rightmost stacking cells and merge the resultayit).
In the stacking cell component we will not notice any difference between the two ap-
proaches, sincae (8’ e @’) = (ae &) e a”. But there will be a difference in terms of
the garbage sets produced. To ensure the presence of suitable isomorphisms (“coher-
ence”), we need a canonical bijection between the two garbage sets that the two differ-
ent bracketings produce. (RecalltilatY) e (b', Y') = (be b/, G(b, b)Y U (YD Y")).)
Let's say thatX, is the garbage set obtained by left association of the bracket&.and
the set obtained by right association. We need a bijectio), — X;.

Here it helps to distinguish the following four cases:

1. x € X originates from one of the garbage s&tsX’ or X”

2. x € X originates from a push level af that becomes garbage wharanda”
are merged

3. x € X originates from a pop level &’ that becomes garbage whamanda’
are merged

4. x € X originates from a stem level af that does not become garbage popped
until the second merge step.

An example of Case 1 is given in the picture by the elemer) € X. This will end
up as(000, 1) € X, but as(0o, 1) € X;. So the bijectiona will have to map(0Qo, I)
to (Qo, I). The general prescription for levels of type 1 is:

DYNAMIC BRACKETING 351

(000, 1) ~»q (Oc, 1)
(0lo, 1)~y (100, 1)
(10,1) ~sy (110, 1).

An example of an element of type 2 is given in the pictureay0). This will end
up in X as(A, 0, but in X; it will appear as(1, 0). So« will have to map(A, n) to
(1, n) in such a case.
By duality we need not consider 3 as a separate case.
The fourth case arises for the lev@, 2) in the picture. This will end up as
(A, 2) € X, butas(A, 3) € X;. Soa will have to map elements of the forfa, n)
to (A, @' (n)) in these cases.
This gives a complete description®f X, — X;. We will not go into the busi-
ness of proving that this does indeed induce all the isomorphisms that are required.

6 Constructing meaningful monoids In this section we will put the machinery

to work to construct some useful monoids. Remember thaGteee-construction

works only if thefR-images of the morphisms of the context category are injective.
Let's say that such categories have the injectivity property. We will start our con-
structions with&¢ and with categories of sets where the morphisms correspond to
the subset ordering. The images of the morphisms of these categories are surely in-
jective. Itis not difficult to check thatont, andGtore preserve the property. On the
other hand®q does not preserve the injectivity property. Thus, we have to take care
not to applyStote after &q!

6.1 Managingvariables In this subsection we study a semantics for toy languages
corresponding to the3-fragment of Predicate Logic. In particular, we indicate how
to use this semantics both to simulate ttfragment of Vermeulen’s Sequence Se-
mantics and of Vermeulen’s Referent Systems (see VermdL@iilg], and Hollen-
berg and Vermeuledg]). We start by introducing some auxiliary objects and some
useful notational conventions. Consider the m-categdry,, . of stacking cells
where only finitely many levels are present. Remember that, via the standard embed-
ding, we consider the objects éfc as occurring ir6cg,, . Note that fora € &¢, we
have thatig (@) is an infinite set, but tha):%gcﬁn_+(a) = @. Wedefine (suppressing
the obvious subscripts)d™ := (id, o), whereo((0, 0)) := {+} ando((n, n)) := &
forn#£0.

In the definitional format we use, the foregoing definition looks like this:

"=, 10,{(0,0): {+}} ,).

The salient points are these. First we indexed our brackets to indicate the relevant
instance of the Grothendieck Construction. We u$er Cont, ¢ for €q, ands for

Gtore. Secondly we use an alternative notation for pairing in the description of the
functiono. Finally we suppress both the constructions that add a unit of the relevant
category and the function assignments of units: they are the default. Define further:

> pusht ;= push eid™
> popT =10 e pop
> gatht :=push eid™ e pop

352 ALBERT VISSER and KEES VERMEULEN

> block ;= pop e push.

Note thatgatb™ isid plus one garbage level, where the garbage level is the only level
present. We proceed by considering the category

Varstackt .= (& cﬁn,+)*%‘“ﬁ".

HereUaryg, is the m-category of finite sets of variables with the subset ordering and
union and as associated functor the obvious inclusiait?® For anya e Schin 4
defineax := (, {x}, {x: a} ,). Letxt := (id")«. Finally we introduce the category

of meanings for our fragment of Predicate Logic. IZzbe any nonempty set. We
take: Yarman := Cont(YVarstack, D). This category is designed to handkriable
management. Its elements are of the forfa, F), wherea is an element ofjarstact

and wherd- is a set of assignments fro?(a) to D. The (finitely many) referents of

(a, F) are located above variablgsn the outer context od. They occur at levels of
astacking cell, which forms the inner context. The general form of the referents—in
our standard way of coding—ix, ({(u, v), +)) or, briefly, (x, (u, v), +), wherex is
avariable andy, v are inw U {x}, sothat(u, v) is the level of a stacking cell.

Figure 7: An object offarman

We describe the language of thel-fragment corresponding to Sequence Se-
mantics. To simplify inessentially, we consider only a language with a binary pred-
icate symbolP and a unary predicate symb@. The atomic formulas arg[«],

P(x, y) and Q(x), wherex andy are variables. The languadkis the smallest set
containing the atomic formulas, such thatdfe £ andB € £, thenA.B € £. An
example of a formulas isy[Q(X).[y.P(X, ¥).x].Q(y).y]. Let a standard first order
model?t = (D, I) for our language be giveny,[the “left square bracket fox,” is

going to meancreate a discour se environment in which an occurence of afilelabeled

x will be counted as new. Counting as new, here, means that the file is not going to
be identified with the current file—if there is one—Ilabeledro put it in a different

way: [x meansdeclare x. Similarly x] will mean end the discourse environment in

which the current file (if any) for x isactive. We specify theDRT-style meanings cor-
responding to Sequence Semantics for our fragment. Remember our convention that

DYNAMIC BRACKETING 353

(a, (b, c)) = (a, b, c), etc. We puty := (X, (0, 0), +). Thusry is the unique discourse
referent ofx™.

I[[x]] L= PUﬁhx

[0 : = popy

[P] :=(, x" ey, {feD=M | (f(ro), f(ry) € I(P)})

[QX] := (. x*. {feD™ | (f(rv) € 1(Q)})

[A.B] :=1[A] o[B]

Note that whergush, representdeclarex, push;” would rather represedeclareand
initializex. Wewill not give the precise correspondence of our semantics as presented
here to Sequence Semantics as defind@ldhy” Sequence Semantics as defined there
cannot make the distiction between declaring and initializing, so in one respect our
present semantics is more refined. We give two examples of interpretations. . et

(X, (A, 0), +). Thusgy is the unique discourse referentgfrb; . We have

vV V VvV VvV V

[[x.- Q)11 = (. garby, {feD!% | (f(go) € 1(Q)}).

Note thatgy, the file “containing” possible withesses for the truth of our formula is
a hidden, noninteractive level for possible texts surrounding the formula. Thus we
simulate the usual hiding of quantified formulas. Still in our setup the information
stored ingy is not really thrown awa$® We turn to our second example. Let:

> Ty = (. (0,0),+)
> Sx = (X (x,0), +)
> b= (X, (k, 1), +)
Pusb+)2 = push® e push™ = (, ((0,2), @), {{x, 0):{+}, (x, 1:(+}} ,).

We have:

[[xQX)[xP(x,)] =
(X Y {x(push™)?, yio™)),
{feDySet | (f(ty) € 1(Q) and (f(sy), f(ry)) € 1(P)},)

We close this subsection with a brief look at Referent Systems (5@ [Referent
Systems can be simulated by replacipgfidy] in our language by a single symmet-

ric bracket|x. The semantics is as before, except thafy][: = bloctx. So, when

using [lix] to declarex, we simultaneously pop the current discourse environment

(if any) in whichx may have a value. Thus in the Referent Systems semantics, stack-
ing never happens. We leave it to the reader to compute, €|g.QX).|Ix] and
[IxQMX)IxP(x, y)] . Inthe last example the file-discourse referent corresponding to
the first occurrence dfx will be a garbage level. This in contrast to the second ex-
ample for Sequence Semantics, where the file corresponding to the first occurrence
of [x wasty, avisible file.

v

6.2 Managing argument structure In this subsection we treat a version of the
A3-fragment of Predicate Logic that looks suspiciously like a fragment of English.
We call our fragment: Semantics for Argument Management, or, brigfly]. Sup-

pose we would like to represent the meaning of a natural language like anaphor, say
hes/she; /it,, in our version of Sequence Semantics as described above. It would

354 ALBERT VISSER and KEES VERMEULEN

seem thak™ is the perfect candidate for the job. It is a “free floating” variable, that
signals the presence of an object labeted®n closer inspection, however, this ob-
ject would not really have a sensible role to play. How cadtdever interact in an
interesting way with the meanings of a text? We have for example:

xt e [QX] = [Q(X)] ex" = [QX)] .

One could say that (the interpretation of) the intemalf Q(x) already does the
work. Note also thax™ = [x = X] . Thus, naively, we seem to be close to providing
anaphor-like meanings, but we just cannot reach our goal. This malaise is shared by
theories likeDPL andDRT. It is curious that, where these theories are advertised as
providing a semantics for anaphoric reference, they fail to give a semantics that repre-
sents theole of anaphors, likée, / she, /it,. The reason they cannot do it is simple.

The specification language takes its format for handling arguments from Predicate
Logic. This format itself is already a solution of the problem that anaphors solve

in natural language, namely to link up local and global information management.

Since in Predicate Logic the problem is already solved, one cannot well represent an
alternative solution in the same language. In predicate language the arguments of a
predicate are always specified in fixed places immediately following it. There can be
no intervening material or changes of ordsal{a significatione). The meaning of,
e.g.,P(x, y) is specified as one package. There is no further analysis of th&yay

andy interact in terms of representable semantical operations. Thereby we miss the
chance to tell the story about anaphors, about how they provide a link between the
local and the global We will now give a semantics in which the way arguments
are treated is more like the way it happens in natural language.

Let a finite setdH be given. The elements of this set are the argument handlers:
sub, ob, val, with, of Let$ be the m-category of subsetsAtfl with subset and
union. Its associated functor is the inclusiondrt. We build up our target cate-
gory in steps. First we mak#$*®*, in which sets of argument handlers are stored
on levels of stacking cells. This category represents the local grammatical structure
of sentences together with the arguments present at the various sentential levels. The
discourse referents aseguments on levels. Define forX C AH:

%= (,10,{(0,0:X}).

Sometimes—as discussed in the introduction—the same object occurs on different
levels. Thus we need the categatyc := Eq(AH*°). This category will be suffi-
cient to handle local, sentential structure. To handle global, anaphoric structure we
useYarman. Finally local and global have to be linked. To do this we work in the
category:Sam = Yarman| Loc (See ExamplE4).2°

The language is defined as follows. The atomic formulas are:

Brac ()

Link who, that,sub, ob, of, with, ...

Phor ax, the, hg,, shg, itx, Maryy, ...(forx € VAR)
CN mother, father, child, horse, knife, ...

Adj angry, brown, ...

\erb cuts, sees, walks, is, ...

DYNAMIC BRACKETING 355

Formulas are the smallest class containing the atomic formulas and closed under the

rule: if AandB are formulas, then so i&.B. In other words, formulas are strings of

atomic formulas with separating dots. To increase readability we will often omit the

dots. Let an ordinary first order mod®t = (D, I), be given. | assigns relations to

the elements oEN, Adj, andVerb. E.g., [(mother) could be a binary relation, repre-

sentingx is the mother of y. 1(cuts) could be a ternary relation, representirogits y

with z. We oould as well takd (cuts) to be a 5-ary relation, representinguts y with

zinplacep at timet, etc. The elements drac, Phor, andLink are treated as logical

constants: their meanings are at most dependent on the domain of the3fhodel.
Before we can proceed to specify the interpretations o€iKgthe Adj, andthe

\erb, we have to introduce some notational conventions and simplifications. If one of

the components of a pair from the Cartesian product underlyingtioastruction is a

unit of the appropriate kind, then we will omit it and just exhibit the other component.

This cannot lead to confusion, since the “inner context” of the first component always

is a set of variables and the “inner context” of the second component always is a stack-

ing cell. Moreover—in virtue of the specific categories going into this product—if a

component is a unit, then its contribution to the ultimate set of referents is empty.

Thus,a fortiori, €q restricted to this contribution to the referents can only be trivial.

Wewill assume that an elemex X, goesto0, x) € X@ Y. Similarlyy € Y goes to

(1, y). Wewill often omit singleton parentheses. Finafly = s}| := {(r, s)}*, where

we take the(.)* in the appropriate sef.r = s, t = u}], etc., is similarly defined. We

give sample interpretations of the atoms of our language in Table

(push
) pop
who (, {, 10,{(0,0):val, (2,2):val}), {ri=r2) .)

r:= ({0, 0y, val), ro:= ({2, 2), val)

of (, {,10,{(0,0):val, (1, 1):0f}), [ri=r3) .)
rs:=((1,1), of)
ax (. (pushy,i0™), [ra=rs})

rg:= (0, X, (*,0), +), rs:= (1, (0, 0), val)

the, (. (g, [re=rs))

= (0, X, (0, 0), +)

mother| (_ 0% (feDIs"7 | (f(rs), f(r7)) € | (mothep))
r7:=(1,(0,0), of)

knife | (0!, {feDUs) | (f(rs)) € | (knife)})

angry | (" {feDUs | (f(r5)) € I(angry)} ,)

cuts (. iofsub-ob.with} “e g e plaroriol | (f(rg), f(rg), f(rig)) € I(cuts)})
rg:= (1, (0, 0), sub), rqg := (1, (0, 0), ob), rip:= (1, (0, O), with)

is (. i0lsubobl (feDlrerol | f(rg) = f(rg)} .)

Table 2: SAM’s atomic interpretations

The recursive clause for interpretation is as expected:B] := [A] « [B].
We explain the definitions of Tablg] The brackets are easy: they push or pop
levels of the local grammatical structure. Let’s looknadther. [mother], has no

356 ALBERT VISSER and KEES VERMEULEN

links to the global anaphorical machinery and does not change local syntactical struc-
ture. Thus the set of variables in the first component of the context is empty and the
stacking cell in the second is the uAttThe argument handleval andof are stored at
the top level of the unit stacking cell in the second component of the context. These
argument handlers give thieles of things standardly associated with motherhood.
Firstthere is the value, mother herself, taggald Then there are her children, tagged
of.32 E.g., the discourse referefit (0, 0), of) can be understood as follows. The first
component 1 signals that we are in the second, the “local’ component of the context.
The (0, 0) signals that we are at the top level of the unit. Tshows that we are
looking at the argumerdf, stored at the top level.

Using the meanings introduced so far, we can already interpret a child reciting
consecutively things she sees.

(.horse).(.mother).(.dog).(.cat)

The interpretation will have the effect tfere is a horse, there is a mother, there is

adog, thereisa cat. We do not analyze theleixis present in the child’s words in our
interpretation—our framework is too poor for that—but just the fact that she notes the
existence of the consecutive items. The argurogmissociated witimother, does not

occur in the child’s utterance. In the interpretation this has the effect of existentially
quantifying out the argument. Thusother meansmother of someone. If we had
omitted the brackets separating the items, the effect would have been to identify the
items. E.g.(.mother.horse.), says that something is both a mother and a horse.

The interpretations dfnife andangry do not bring anything new. In the inter-
pretation ofcuts andis, we have the special rolesib andaob of subject and object.
Weturn to the interpretations of the links. These interpretations serve to identify files
across syntactical levef$. that is like who, andsub, ob, with, etc., are likeof. We
illustrate the way the linking works by means of an example.

Example6.1 We assume thatuns corresponds to a unary predicate. Let's con-
sider the termJ:=(man ((who sub) runs)). who occurs in a ternT:=(who sub). T
occurs inside the sentenge=((who sub) runs). Soccurs, inits turn, itJ. To each of

these components correspond “levels” of the stacking cell in the interpretation. These
levels are introduced by the three left brackets and popped into garbage by the corre-
sponding right brackets. Let’s call these leve|xorresponding td, s, correspond-

ing to S, andu corresponding tdJ. Ont, areferentval is stored. This referent is the
result of the dynamic fusing of the referera stored on the upper level of [who]

and the referental stored on the upper level ofsfib] . On s we find the referent

sub. It isthe result of fusing the referestib on the level(1, 1) of [sub] with the
referentsub of the top level of [man]. In ub] the referenval of the top level is
“synchronically” identified with the referestib one level below. So the referenia

ont andsub onsare identified. On the level, we find again a referental. It isthe

result of fusing the referenial of the top level of [man], with the referenial of

the level(2, 2) of [who]. Moreover by synchronic identification, the referemat on

(2,2) in who] is identified with the referent o0, 0) in [who]. Henceval ont,
subonsandval onu are identified. We give the result of computing the meanirid of
incrementally from left to right. Remember that different ways of computing the se-

DYNAMIC BRACKETING 357

mantics of our sentence will give different representations of the discourse referents.
The existence of the isomorphismguarantees that this is harmless. Define:

ri ;= (000 0),r, :=(0,0),rz:= (A, 0)

X = {rl’ 2, r3}

o = {ry:{val}, ro:{sub}, r3: {val}}
r4:=(ry1, val), rs:= (ro, sub), rg := (r3, val)
E:=[rs=rs5 ra=rg)

rz = {<1a {r4’ Is, r6}>}

F:={feD" | f(r7) € I(man N I(rung)}.

vV V. V V V V V

We have: [U] = ¢, (. (, ((0,0), X),o ,), E), F). By our conventions we sup-
pressed the first component of the context. If instead we had compudddaf
[(man ((who sub]e [) runs))], the result would have been the same but for the fact
that, for i=1,2,3y; would have beenA, i — 1).

The phores operate like the links, only they link files or discourse referents of the
global machinery to files or discourse referents of the local machinery. On the global
side the machinery is simply Sequence Semantics. The meanimgy,ahe,, and

ity is taken to be the same as the meaninghef. Our choice of treatinghe as an
anaphor is not undisputed. There are plenty of examples that seem to undermine this
theory3* Wewill not go into that discussion here. How do we treat names? In fact our
semantics provides various options. The one we prefer is viewing names as “frozen
anaphors.” So the meaning of a name is like the meanirg.oDur present frame-

work is too poor to model thirozenness of names fully. For that we would need the
notion of state, which is not treated in this paper. We can, however, make one simple
adaptation to get part of the desired effect. We set aside some labels for variables to
function as subscripts of names. We exclude these labels from occurring as subscripts
of a andthe. They can occur as subscriptste, she, andit.3®

Claim Wesubmit that we are the first to describe correatlthe semanticsthe role

of the phores as links. This does not mean, however, that we claim that our solution
is a fully correct representation of the meanings of phores in natural language. First,
it seems that Sequence Semantics allows lots of structure one never meets in natural
language. For example, nothing seems to correspond to the stackingimd@sub

ay dog) seesdb ax cat)). Secondly, it could well be that fusing in natural language
happens more by higher order inference than by label. These defects are a problem
for all approaches we know.

We have described the various meanings provided by our semantics, and we have
touched briefly on some further topics such as the problem of definite descriptions
and the proper treatment of names. It is time to have a look at some sample sentences
in our language.

(a) ((sub Maryy) cuts (the ob bread) (with a sharp knife))

(b) ((with &, knife sharp) cutsdb the, bread) (Mary sub))

(c) ((sub Maryy) cuts (the ob bread))

(d) ((sub Maryy) cuts (with g sharp knife))

(e) ((ax womansub) sees (@ horseob)) ((she sub) beats (if ob))

358 ALBERT VISSER and KEES VERMEULEN

(f) ((the, sub man ((whosub) sees (thg ob brown horse)) cuts (theb bread))

(9) ((Maryy sub) ((she sub) is (ob angry)) ((she sub) is (hungryoby)) cuts (thg
breadob))

Example (a) illustrates one advantage of our approach: the interpretation of such a
sentence can proceed in the order in which it is given. (a) and (b) are equivalent in
meaning, since we may interchangalva significatione (modulo some specifiable
isomorphism), the order of items as long as no bracket (local or global) intervenes to
which these items are sensitive. Leaving out argument places as in (c) or (d) has the
effect of having a hidden existentially quantified argument. Thus (c) means some-
thing like: Mary cuts the bread with something. Note that we can as well suppress
the subject, which is unusual in English (but it is common in Latin). (e) works like
the usuaDPL/DRT-example of anaphoric reference. E.g., in the interpretation, the
horse will be fused withit. Example (g) illustrates the fact that in our approach sen-
tences can be interrupted for other sentences. These will be “laid over” the interrupted
sentence.

Weend this section with a brief remark on one possible extension of the fragment
and its problem$® We could try to add a semantics for the Dutch reflexihzel f
(or Germarsichselbst). One possible interpretation z@ithzelf is to make it just a link
between subject and objettSo:

[zichzelf] := (, id, {(0, 0):{sub, ob}} .).

Under this analysis, we would represdalin snijdt zichzelf (English: John cutshim-
self) as: ((Johg sub) snijdt zichzelf). Alternatively, we could makachzelf a term.
Thus, we could take: [zichzelf[= [[sub] . Under this analysis, we would represent
our sample sentence by: ((Jaisub) snijdt (zichzelfob)). However, consider such
sentences as:

John ziet een foto van zichzelf
John ziet een foto van een foto van zichzelf

(meaning roughlyJohn sees a picture of himself andJohn sees a picture of a picture

of himself respectively). Here it seems that the meaningidizelf is able to search

for the appropriate level for linking. Our approach in its present form allows us only

to build links across a specified fixed number of levels. One possible way out s as fol-
lows. We change our semantics in such a way that we put sentences always between
lazy brackets (se&2.4). Thus we would rewrite the above example (f) as:

> [they sub man [whosub) sees (thg ob brown horse] cuts (theob bread]

Obviously, we should make adaptations, e.g., for the meanimghof (The second
term-labelval should be stored ofw,) instead of on2, 2).) We treatzichzelf as a

term and storeub in its interpretation on all level§, i) for i<w. Moreover by€q,

we identify thesesubs. Obviously, our operation will cause spuriosihs to occur

on various term levels, but these can do no harm, since they will not fuse with other
labels on the term levels. Consider the sentence:

> [Johny sub) ziet (eery foto ob (van een foto (van zichzelf]

DYNAMIC BRACKETING 359

We obtain the effect that we search on each lower level for something to fuseuith
until we reach the sentence level. Hence we will correctly idedthn with zichzelf.
Our “theory” simply predicts thaichzelf is always fused with the subject of the near-
est sentence level below. Ezchzelf will be fused withde vrouw in: De man, aan
wie de vrouw een foto van zichzelf gaf, glimlachte (Here we see a major difference
with Englishhimself: The man, who gave the woman a picture of himself, smiled. In
this sentence, we certainly ot wantthe woman andhimself to be identified).

The main point of our elaboration is the mechanisrseaf ching for the appro-
priate level can be implemented in our framework.

7 Concluding remarks This paper describes techniques to construct meaning-
objects for monoidal processing. One starts with simple objects—Ilike finite sets or
stacking cells. By iterating the Grothendieck Construction more elaborate objects are
constructed. The great advantage of the Grothendieck construction is that the appro-
priate monoidal behavior is automatically preserved. We introduced stacking cells as
an interpretation of bracket structures. Subsequently, we outlined the interpretation
of a fragment using the construction methods of the paper. This fragment incorpo-
rates a linking mechanism to describe what anaphors do. We claim that only some
such mechanism can pretend to truly constitute a semantics of anaphoric reference.
If this claim is correct, we have given an example that monoidal semantics can pro-
vide faithful modeling of meanings.

The purpose of our paper is more to point in the right direction, than to estab-
lish a definitive, rigid framework once and for all. More questions are evoked than
answered. We distinguish three kinds of extension of our work: (i) mathematical im-
provement of the framework as it stands, (ii) extending the fragment developed here
within the boundaries of the present framework, and (iii) extending the framework
with essentially new elements both to increase expressive power and to incorporate
some further philosophical ideas. We briefly sketch some ideas for extensions of the
three different kinds.

We mention some directions of local improvement of the framework as it stands.
First, one would like to incorporate a smooth construction of the “file-set fungtor”
Second, it would be good to be able to construct stacking cells from even simpler
objects. One of the authors (Visser) is currently working on a proposal to represent
stacking cells as multisets of morphisms of an appropriate category.

Wemention some ideas for extending the fragment that seem to be in the scope of
the methods developed so far. There are many interesting phenomena that we would
like to include. For example, we would like to have a way of working with an expand-
able number of argument places (tife horse of Sr Johnin §6.2). Currently we are
working on a uniform treatment of the semanticsiad in sentences such ashn eats
the bread with a fork and the pudding with a spoon andJohn hates and Mary loves
Marc, etc. Another extension of the fragment could consist of a treatment of error
messages to ensure the propagation of information about local errors in the syntax,
e.g., in cases where term levels are erroneously fused with sentence levels.

Finally, we discuss some possible extensions of the framework. The present pa-
peris astudy in dynamics. Therefore we would like to include into our framework
more of the salient ingredients occurring in the literature on dynamics. First and fore-

360 ALBERT VISSER and KEES VERMEULEN

most, we can extend our framework with a good notion of state and state transition,
so that a formulation of our semantics in update style (cf. Veltfa@}) pnd in the re-
lational format (cf. [2J) becomes available. There is an elegant way to do this, which
will be presented elsewhere. Another important ingredient we intend to include is
a rational reconstruction of dynamic implication. It is our prejudice that (dynamic)
implication should be an adjunction in an appropriate category of partial information
states. We suspect that finding this category will become possible once a proper no-
tion of presuppositional ordering (in which presuppositions are countedgative
information) has been added to the framework (&f [for preliminary investiga-
tions).

Clearly, our work is just an initial step towards the grand aim of a theory of
monoidal processing. But we think that it exhibits very well the sort of thing one has
to do and the sort of question one has to answer. We submit that we have shown—by
means of examples—that such a theory can provide a powerful setting in which the
phenomena of discourse processing can be fruitfully discussed.

Appendix Semantics for binary notations In this appendix we show how to use the
Grothendieck Construction to give a semantics for binary notaff®minary nota-

tions are the usual designations of numbers in binary like “101,” which stantigdor

Our problem is that we want to assign meanings to these notations that make concate-
nation of notations a meaningful operation. So consider a language containing binary
notations plus @ymbol % for concatenation. Let’s first consider the option of inter-
preting a notation as the number it designates. E.g., [10H} The problem is that

we would have to put, e.g., [01} [1] = 1. But,

[11%01] = [1101] = 13# 7 = [111] = [111].

So we cannot interpretcompositionally under this semantics. At the other extreme

we could interpret binary strings autologicallgs themselves. This would surely

lead to a compositional semantics, but we would lose the central idea that these nota-

tions are supposed to stand for numbers. Our solution is to interpret notations as pairs

(m, n), wheremis the length of the notation and wharés its customary value. We

show how this semantics can be assembled using the Grothendieck Construction.
We start by specifying our m-category of contexts. Thisis the m-cateljaty,.

of located unary strings or located tally numbers.

> The objects are natural numbdfl 1, 2, ...}. These can be viewed as unary
strings or tally numbers.

> The morphisms are triplegn, n, k), with m+ n < k. A morphism{m, n, k)
tells us thaimis embedded ik at locationn. Heren is the number of 1s ik
occurring aftem. Like this:

m n

——
1...11...11...1.
k

> dom({m,n,k)) =m, cod({m, n, k)) =K, idm = (M, 0, m)

DYNAMIC BRACKETING 361

> (m,n,k)o(k p,g =(mn+p,Qq

e Yo N
1...11...12...11...11...1
k

q

> MeN=m+n, (M N)=(mMn, m+n), in, =(n, 0, M+ n)

m n
—— —
1...11...1.
-

m+n

« is just the appropriate identity, singegives us a standard monoid.
>i0=0

v

Take®(n) = Nat andp[O((n, M, k))] = p-2™. Itis easy to see that this defines an
m-functor. We get:

(i+j,n[O, i+ N+ mO],0.i+j)])
= (i+j,n-21+m).

A good alternative way of representing the objects we constructed is as follows.
Consider the paifi, n). Write nin binary, and precede it by infinitely many Os. Put a
pointer above the place followed byligits. We represent, for examplg, 41) by:

\

...00010001. Note that, e.g{4, 9) e (3, 41) can be computed by:

!
01 01 0 01

0
!
0 001 0 0 1
b
0 111 0 0 01

Thus the context of the second component of the merge has the effect of a shift. We
interpret binary notations by the pair of their length and their value. The second com-
ponent is the classical content, the first a dynamic context that causes a shift in inter-
action. Evidently, f*x t] = [o] e [t] . So our semantics produces the desired
effect. Note thato = (0, 0) # (1, 0) = [[0].

Acknowledgments Both during the process of theory formation and that of document
preparation we benefited from the help and influence of colleagues and friends. We thank
Patrick Blackburn, Jan van Eijck, Tim Fernando, Claire Gardent, Marco Hollenberg, Marcus
Kracht, Emiel Krahmer, and Henk Zeevat for enlightening discussions. We found intellec-
tual inspiration in the work of Johan van Benthem, Jeroen Groenendijk, Remco Scha, Martin
Stokhof, Frank Veltman, and Henk Zeevat. We were helped both with matters of notation
and matters ofAlEX by Jan Friso Groote, Karst Koymans, Jaco van de Pol, Alex Sellink,

362 ALBERT VISSER and KEES VERMEULEN

Jan Springintveld, and Freek Wiedijk. We thank Maarten de Rijke and Patrick Blackburn for
encouraging us to write the paper and for their comments on the penultimate version.

NOTES

1. Our semantics is also closely related to KanpRT (see], [9)) and to Seuren’s Dis-
course Semantics (sd&f).

2. See also Hollenberg and Vermeulf&} [

3. If we say,suppose..., weintroduce an imagined world. Thus, supposing opens a stretch
of discourse which is interpreted with respect to this new imagined world. The idea that
supposeis “pushing into fantasy” comes from a suggestive discussion by Hofstlgter [

p. 128. It was studied by Zeinstfad.

4. Both relations and update functions can be associated to our meanings in a mathemati-
cally elegant way. We will substantiate these claims elsewhere.

5. Stacking cells were introduced by Vissed], [2d].

6. Note that we write here between each of the elements of the strings. This is our official
notation, but, as usual, we will allow ourselves to omiftno confusion can arise.

7. There is a strong analogy with the construction of the integers as pairs of natural num-
bers!

8. Here— stands forcut-off substractionx — y=x—yif y < xandx~ y = 0else.

9. The reader may wish to verify that the monoid of simple stacking cells is in fact the free
monoid over two generators) and (with equatior= 1. We will prefer to work with
the more concrete representations in this paper.

10. We always readf o g asfirst f and then g (cf. p.335).

11. By the symmetry ofx the Boolean implication also isreght implication. Note however
that in a Boolean algebra L1 does not hold.

12. Recall that addition of ordinals is not in general commutative.
13. Wewere led to this view on things by remarks of Henk Zeevat on “discourse popping.”

14. In fact this gives us the free monoid over four generators), (,], and [satisfying the ad-
ditional equations:)[=[(=[, (=) =],and []= () = 1.

15. In fact ‘that’ will be interpreted as a link between levels (cf. the previous section), so
strictly speaking we cannot say that ‘that’ is located on one particular level.

16. The distinction between large categories, in which the objects or the arrows do not form
a set, and small ones, in which objects and arrows do form sets, plays no role in this
paper. Categories lik&e¢t could, in our applications, always be replaced by appropriate
small categories.

17. It could be argued that to assign to the morphisms this double task is in some sense im-
pure. The point is strengthened by the fact that our monoidal operation is a bifunctor
with respect to the categories restricted to isomorphisms, but not with respect to the full
categories. The reason that we have the two roles in one and the same category, is prag-
matic: things seem to work out well this way.

18. Thusini(a, i0) andin,(id, a) have the role op;?, respectively.;* of [[L0], p. 158.

19.

20.

21.

22.
23.

24,
25,

26.

27.

28.
29.

30.
31.

32.

DYNAMIC BRACKETING 363

Our conditions imply that an m-category is a monoidal category, when we restrict it to
isomorphisms and, thus, that itdsherent. See (L], pp. 157-166, for further explana-
tion.

The Grothendieck Construction is, thus, reminiscent of the “central dogma of molecular
genetics,” viz., that information can flow from nucleic acids to proteins, but cannot flow
from protein to nucleic acid.

In a more definitive treatment we should expect to derive thefResystematically. In
this paper we will content ourselves by introducing thashhoc.

Note that the operation it exponentiation, even if there are some similarities.

This notation is very convenient, but please keep in mind that there is a difference be-
tween(by, by) 1 a— a and(by, by) :c— C.

Note that the convention ensures thét) andb’(x) are read as.

Wehave chosen to take the garbage produced by the merger as the basic notion and to de-
fine the garbage introduced by a morphism as a derived notion. But this is merely a mat-
ter of choice: it can be checked tHaty) consists of all the levels that are sent4ox)

by £(¢). To be precise: there is a bijection betwe€iip) and (x, x)[£(¢)] "2\ {(x, *)}.

This suggests an alternative way of introducing garbage formally, where the garbage pro-
duced by a morphism is the basic notion and the garbage introduced by the merger is
defined in terms of it.

There is a slight inelegance in usifiintg, in the definition ofUarstact. It is that a
variablev can be “absent” in two ways itV, o), viz., either ifv ¢ V or if v € V, but

if o(v) = i0. We can get around this defect as follows. As contexts, start with the m-
category having the set of all variables as single element, with subset and union and with
the usual inclusion iBet as associated functor. Then apply théreg,, construction

with the set of variables as single context and the elemer&s gf, . as stored objects.

We hope to elaborate on this elsewhere. In fact, one can show that under quite general
conditions theZont construction yields a semantics from which a relatidbBL-style
semantics can be derived in a natural way. To do this we need the additional notion of
state, which is developed ir{d].

A garbage disposal construction would be a useful addition to our framework.

In fact, it suffices to apply the constructiaty only once. We prefer the current set-
up, because it allows us to consider the local identifications in isolation of the global
anaphoric machinery.

We will also treatis as a logical constant.

Sam-meanings of which all embedded simple stacking cells are the unit (i.e., the embed-
ded stacking cells are unit plus garbage) are calteditions. Sam-expressions, whose
meanings are conditions are likewise called conditions. Tatker is a condition, but

(is not. When the embedded simple stacking cell of a first component is the unit, we
speak of aglobal condition and when the embedded simple stacking cell of a second
component is the unit of Bcal condition. Thus, sentences and terms are (or stand for)
local conditions.

A disadvantage of our framework in its present form is that we have to choose the ar-
guments associated with a given word in advance. E.g., not every horse has an owner,
but to make sense tifie horse of Sr John, we would have to add an argumeuftto the
interpretation ohorse. But, adding the argument licenses the inference of the existence
of an owner, whenever we speak of a horse. We feel confident that it will be possible to
manufacture more flexible versions of our framework lacking this defect.

364 ALBERT VISSER and KEES VERMEULEN

33. The meaning oivho, e.g., is a condition according to the definition of NEeNote that
this usage does not quite correspond to the usual idea of a condition as a test.

34. For examplethe winner will get one thousand guilders.

35. Note that the meaning @fsub Hesperusy) is (ob Hesperusy)) is different from the mean-
ing of ((sub Hesperusy) is (ob Phosphorusy)), since fusion of discourse referents is dif-
ferent from contentual identity.

36. We were made aware of the problems concerraiegzelf by Claire Gardent.

37. Note that we assume here thzathzelf always fuses wittsubs. It was pointed out to us
that this is not anadequate assumption about, for example, Emifishlf, as is clear
from: Mary gave John a picture of himself, wherehimself is the indirect object of the
nearest sentence level. However, it seems that what we give is a good approximation of
the meaning of Dutchichzelf or Germarsichselbst.

38. The appendix is our answer to a question posed by Theo Janssen.

REFERENCES

[1] Barr, M., and C. WellsCategory Theory for Computmg Science, Prentice Hall, New
York, 1989|ZbJ_011_4__'L8.0.0.LMR_92g.J.8m

[2] Groenendijk, J., and M. Stokhof, “Dynamic predicate logidfiguistics and Philoso-
phy, vol. 14 (1991), pp. 39-10dL 1] 2]

[3] Heim, I., The Semantics of Definite and Indefinite Noun Phrases, Ph.D. thesis, Univer-
sity of Massachusetts, Amherst, 1942.1]

[4] Heim, 1., “File change semantics and the familiarity theory of definiteness,” pp. 164—-189
in Meaning, Use and Interpretation of Language, edited by R. Bwerle, C. Schwarze,
and A. von Stechow, De Gruyter, Berlin, 1988 TJET]

[5] Hofstadter, D. R.Godel, Esher, Bach: An Eternal Golden Braid, Basic Books, New
York, 1979. 7]

[6] Hollenberg, M., and C. F. M. Vermeulen, “Counting variables in a dynamic setting,”
Logic Group Preprint Series LGPS-125, Department of Philosophy, Utrecht University,
December 19946 1]7]

[7] Jacobs, B. P. FCategorical Type Theory, Ph.D. thesis, Catholic University Nijmegen,
1991.[4]

[8] Kamp, H., “A theory of truth and semantic representation,” pp. 277-3Z2omal
Methods in the Sudy of Language, edited by J. Groenendijk et al., Mathematisch Cen-
trum, Amsterdam, 198 5

[9] Kamp, H., and U. Reyldsrom Discourseto Logic, vol. I, 1, Kluwer, Dordrecht, 1993.

[10] MacLane, S.Categories for the Working Mathematician, Number 5 in Graduate Texts
in Mathematics, Springer, Berlin, 19140l 0705.180001 MR 50:727% 2JR 1](7]7]

[11] Manes, E., and M. Arbibirrows, Structuresand Functors: the Categorical Imperative,
Academic Press, New York, 191800374 18001 MR 51638 311

[12] Milward, D., “Dynamics, dependency grammar and incremental interpretation,”
pp. 10951099 ifProceedings of COLING 92, 1992. [T

http://www.emis.de/cgi-bin/MATH-item?0714.18001
http://www.ams.org/mathscinet-getitem?mr=92g:18001
http://www.ams.org/mathscinet-getitem?mr=84h:03069
http://www.emis.de/cgi-bin/MATH-item?0705.18001
http://www.ams.org/mathscinet-getitem?mr=50:7275
http://www.emis.de/cgi-bin/MATH-item?0374.18001
http://www.ams.org/mathscinet-getitem?mr=51:638

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

DYNAMIC BRACKETING 365
Milward, D., “Dynamic dependency grammai.inguistics and Philosophy, vol. 17
(1994), pp. 561-606[L.1]

Moortgat, M. J., and R. Oehrle, “Adjacency, dependency and order,” pp. 447—-466 in
Proceedings of 9th Amsterdam Colloquium, ILLC Publications, 1994[2.4]

Pratt, V., “Action logic and pure induction,” pp. 97—120Llingics in Al — European
Workshop JELIA '90, edited by J. van Eijck, Springer, Berlin, 19%1bl 0814.03024
MR 92d:03016[2.}

Seuren, PDiscourse Semantics, Blackwell, Oxford, 1985 [7]

Veltman, F., “Defaults in update semantics,” pp. 28—6&amditionals, Defaults and
Belief Revision, edited by H. Kamp, Dyana Deliverable R2.5A, Edinburgh, 1981.

Vermeulen, C. F. M., “Merging without mystery, variables in dynamic semantics,”

forthcoming inJournal of Philosophical Logic.[Zbl 0825 03016 MR 960:03044 6.1
%1

Vermeulen, C. F. M., “Sequence semantics for dynamic predicate lafparhal of
Logic, Language and Information, vol. 2 (1993), pp. 217—25&bl 0802.03024
[MR 95e:03097

Visser, A., “Lazy and quarrelsome brackets,” Logic Group Preprint Series 82, Depart-
ment of Philosophy, Utrecht University, November, 19¢2.

Visser, A., “Actions under presuppositions,” pp. 196—233.agic and Information
Flow, edited by J. van Eijck and A. Visser, MIT Press, Cambridge, 1994.
IMR 1295064 4IZJI7]

Zeevat, H., “A compositional approach to DRT,inguistics and Philosophy, vol. 12
(1991), pp. 95-131[.2]

Zeinstra, L., “Reasoning as discourse,” Master’s thesis, Philosophy Department,
Utrecht University, 1990[7]

Department of Philosophy
Utrecht University

P.O. Box 80.126

3508 TC Utrecht

The Netherlands

email:
email:

http://www.emis.de/cgi-bin/MATH-item?0814.03024
http://www.ams.org/mathscinet-getitem?mr=92d:03016
http://www.emis.de/cgi-bin/MATH-item?0825.03016
http://www.ams.org/mathscinet-getitem?mr=96b:03044
http://www.emis.de/cgi-bin/MATH-item?0802.03024
http://www.ams.org/mathscinet-getitem?mr=95e:03097
http://www.ams.org/mathscinet-getitem?mr=1295068
mailto: Albert.Visser@phil.ruu.nl
mailto: Kees.Vermeulen@phil.ruu.nl

