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Semantics for Two Second-Order
Logical Systems: ≡RRC* and

Cocchiarella’s RRC*

MAX A. FREUND

Abstract We develop a set-theoretic semantics for Cocchiarella’s second-
order logical systemRRC*. Such a semantics is a modification of the nonstan-
dard sort of second-order semantics described, firstly, by Simms and later ex-
tended by Cocchiarella. We formulate a new second order logical system and
prove its relative consistency. We call such a system≡RRC* and construct its
set-theoretic semantics. Finally, we prove completeness theorems for proper
normal extensions of the two systems with respect to certain notions of validity
provided by the semantics.

1 Introduction Conceptualism, as a philosophical theory of predication, posits
concepts as the semantic ground for the correct or incorrect application of predicate
expressions. Like many philosophical views, however, it is not a monolithic theory.
That is, different forms of the theory, not necessarily compatible, are possible.1 A par-
ticularly interesting form isconceptual intensional realism.2 Being a modern form of
conceptualism, it maintains a dispositional view of concepts. More precisely, it looks
at concepts as cognitive (human) capacities, or cognitive structures otherwise based
upon such capacities, to identify, characterize, classify, or relate objects. It is impor-
tant to note that this philosophical framework assumes that there is an ontological
distinction between objects and concepts. This distinction is reflected in their seman-
tic relation to expressions of the language: predicate expressions can never stand for
objects, only for concepts; singular terms can never denote concepts, only objects.

Another important feature of conceptual intensional realism is related to the
nominalization of predicate expressions, that is, the transformation of predicate ex-
pressions into abstract singular terms.3 Conceptual intensional realism is committed
to the assumption that some predicate expressions (standing for concepts) have nom-
inalizations denoting intensional objects. A connection is supposed to exist between
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the concept the predicate expression stands for and the intensional object denoted by
the nominalization of the expression, which is why such an object is also called acon-
cept correlate.4

Different features of a variant of conceptual intensional realism known asreal-
ist ramified constructive conceptualism have been described and analyzed by Coc-
chiarella, for example, in [3] and [4]. This form of conceptualism posits concepts
formed in accord with the so called Poincaré-Russell vicious circle principle (as ap-
plied to concepts), that is, it postulates the existence of concepts whose construc-
tion does not involve a totality to which they belong. Formation of such concepts is
viewed as a potentially denumerably infinite process of hierarchized stages, in which
all concepts formed at one stage become the basis for the construction of concepts
formed at the next one.5 (We shall hereafter refer to these sorts of concepts as “pred-
icative” or “constructible.”) Construction of concepts at any given stage (different
from the first one) is carried out by quantifying over concepts formed at the imme-
diate lower stage and closing them under Boolean operations. Realist ramified con-
structive conceptualism assumes that every predicative concept is correlated with an
intensional object and, consequently, that any nominalization of a predicate expres-
sion (standing for a predicative concept) is a singular term denoting one of such inten-
sional objects. Correlates of predicative concepts we shall call “constructive objects.”

Logical aspects of realist ramified constructive conceptualism have been ex-
pressed in the axiomatic logical systemRRC*, formulated in [3]. A set-theoretic
semantics for this system, however, has not yet been developed. In this paper we
construct such a semantics and prove, moreover, a completeness theorem for certain
extensions of the system with respect to a notion of validity provided by the seman-
tics. We developed this semantics by modifying the sort of models described, firstly
by Simms, for Cocchiarella’s systemT and, later adapted by Cocchiarella, for normal
extensions of his systemM*, such asT*, λT* or HST*.6 Weshould note that realist
ramified constructive conceptualism leaves open the possibility of postulating other
sorts of concepts (as well as of a decision concerning which ones of these other pos-
sible concepts would have a correlate). In [2], [3], [6] and [7], second-order logical
systems have been presented whose philosophical background implies the existence
of impredicative concepts the formation of which presupposes the predicative con-
cept formation process.

Within the context of realist ramified constructive conceptualism, identity can
not be reduced to indiscernibility (with respect to predicative concepts). This is be-
cause the only circumstance in which such a reduction could be possible is that one
in which every well-formed formula would stand for a predicative concept. But such
a circumstance can never obtain, since (according to the philosophical framework
of realist ramified constructive conceptualism) what motivates the transition from
one given stage of concept formation to the next one is, precisely that at that given
stage not every well-formed formula stands for a concept. Therefore, an identity free
second-order logical system (having realist ramified constructive conceptualism as its
philosophical background) would be a system in which identity could not be defini-
tionally introduced. Such a system so far has not been formulated and this is our topic
in the third part of this paper. More precisely, in the third section of this paper we state
a second-order logical system (viz.,≡RRC*) involving indiscernibility with respect
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to predicative concepts and in which identity is no longer among the primitive logical
symbols.7 We also prove the relative consistency of≡RRC* as well as develop its
set-theoretic semantics; relative to such a semantics, we prove a completeness theo-
rem. We should note that≡RRC* is not a restriction ofRRC* to the identity-free
language.

2 The Syntax of RRC* We begin by describing the syntax ofRRC*. We take a
languageL to be a countable set of individual and predicate constants. We assume the
availability of denumerably many individual variables as well as denumerably many
n-place predicate variables (for each natural numbern). We shall use ‘x’,‘ y,’ ‘ z’, and
‘w’ , with or without numerical subscripts, to refer in the metalanguage to individ-
ual variables and ‘Fn’,‘ Gn’and ‘Rn’ to refer ton-place predicate variables. We shall
usually drop the superscript when the context makes clear the degree of a predicate
variable or when it otherwise does not matter what degree it is. For convenience, we
shall also use ‘u’ i n order to refer to variables in general. As primitive logical con-
stants we take→, =, ¬, λ, ∀, and∀ j (for each natural numberj > 0).

The reader should recall from the introduction that concept formation, accord-
ing to ramified conceptualism, constitutes a countably infinite hierarchy of levels,
in which concepts formed at a certain level are taken as the basis for concept for-
mation at the next level. The denumerably infinite series of universal quantifiers
∀1,∀2,∀3,∀4,∀5, . . . , assumed as primitive logical constants, corresponds to the hi-
erarchy of levels: for every positive numberi, the constant∀i when applied either
to ann-place predicate or individual variable should be intuitively understood, re-
spectively, as universally quantifying either overn-ary concepts formed at stagei of
the process of predicative concept formation or over correlates of concepts formed at
stagei.

The constant ‘∀’ when applied to individual variables should be intuitively un-
derstood as universally quantifying over individuals. The occurrence of the lambda
operator, among the logical primitives, is to allow for the formation of lambda ab-
stracts as complex predicate expressions. The constants→,¬, and = should be inter-
preted intuitively as the material implication, classical negation, and identity, respec-
tively.

Given a languageL (i.e., a set of individual and predicate constants), we define
recursively expressions of typen of L , (in symbols, MEn(L)) as follows.

1. Every individual variable or constant is in ME0(L), everyn-place predicate
variable or constant is in both MEn+1(L) and ME0(L).

2. If a, b ∈ ME0(L), then(a = b) ∈ ME1(L).
3. If π ∈ MEn+1(L) anda1, . . . , an ∈ ME0(L), thenπ(a1, . . . an) ∈ ME1(L).
4. If δ ∈ ME1(L) andx1, . . . , xn are pairwise distinct individual variables, then

[λx1, . . . , xnδ] ∈ MEn+1(L).
5. If δ ∈ ME1(L), then¬δ ∈ ME1(L).
6. If δ, σ ∈ ME1(L), then(δ → σ) ∈ ME1(L).
7. If δ ∈ ME1(L), x is an individual variable,F is a predicate variable, andj is a

positive integer, then(∀x)δ, (∀ jx)δ and(∀ j F)δ ∈ ME1(L).
8. If δ ∈ ME1(L), then [λδ] ∈ ME0(L).
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9. If n > 1, then MEn(L) ⊆ ME0(L).

For n ∈ ω we shall understand MEn+1(L) to be the set ofn-place predicate expres-
sions ofL . ME1(L) will contain all well-formed formulas ofL (wffs) and ME0(L)
all terms ofL . Note that by clause (9), forn ≥ 1, everyn-place predicate expression
is also term. Forn = 0, only wffs prefixed by the lambda operator (that is, of the form
[λσ], whereσ is a wff) are terms. We shall use ‘a’,‘t’ and ‘b’, with or without numer-
ical subscripts, to refer to terms in general. We set ME(L) = ⋃

n∈ω MEn(L) (where
ω is the set of natural numbers), that is, the set of meaningful expressions ofL . We
shall use ‘δ’, ‘ µ’, ‘ σ’, ‘ θ’, ‘ π’ and ‘α’ to refer to meaningful expressions ofL .

Now, whereσ,µ ∈ ME(L), we define ‘σ is a subexpression ofµ’ ( ‘subexp’, for
short) as follows: (a)µ is a subexp ofµ; (b) if σ is a subexp ofµ and is of the form
π(tl, . . . , tn), whereπ ∈ MEn+1(L) and t1, . . . , tn ∈ ME0(L), then ‘π’ and ‘tl,’ . . .,
‘ tn’ are subexp ofµ; (c) if δ is a subexp ofµ and is of either the formσ → α, ¬α

[λx1, . . . , xnσ], (∀x)α or ((∀ ju)α), thenσ, α are subexp ofµ. In other words, the
subexpressions of a meaningful expressionδ are those expressions occurring inδ (in-
cludingδ itself) which are meaningful expressions ofL .

An occurrence of an individual variablex in an expressionδ is said to be abound
occurrence if it is an occurrence within a subexp ofδ of the form(∀x)σ, (∀ jx)σ or
[λy1 . . . ynσ], wherex = yi, for someyi, otherwise it is said to be afree occurrence.
An occurrence of a predicate variableF in an expressionδ is said to be a bound oc-
currence if it is an occurrence within a subexp ofδ of the form(∀ j F)σ, otherwise it is
said to be afree occurrence. An occurrence of a termt in an expressionδ is a bound
occurrence if some occurrence of a variable int is free int but bound inδ. The bound
and free terms of an expression are the terms having bound or free occurrences in that
expression.

Let L be a language. Ift andb are terms ofL , i.e., t, b ∈ ME0(L), we shall take
δ(t/b) to be the expression which results by replacing inδ each free occurrence of
b by a free occurrence oft, if such an expression exists, in which case we say thatt
is free for b in δ; if no such expression exists, then we takeδ(t/b) to be justδ itself.
Finally, if σ is a wff of L , then we shall say thatσ is basic if and only if it is of the
form πt1 . . . tn, whereπ ∈ MEn+1(L) andt1, . . . , tn are terms.

We proceed now to describe the axiomatic systemRRC*.8 Whereu is a pred-
icate or individual variable,µ andσ are wffs, anda1, . . . , an terms, the axioms of
RRC* are as follows.

(A0) All tautologous wffs.
(A1) (∀x)(µ → σ) → ((∀x)µ → (∀x)σ).
(A2) (∀ ju)(µ → σ) → ((∀ ju)µ → (∀ ju)σ), whereu is an individ-

ual or predicate variable.
(A3) σ → (∀x)σ, wherex does not occur free inσ.
(A4) σ → (∀ ju)σ, whereu does not occur free inσ.
(A5) (∀iu)σ → (∀ ju)σ, i > j.
(A6) a = a.
(A7) (∀x)(∃y)x = y.
(A8) (∀ jx)(∃ j y)x = y.
(A9) (∀ j F)(∃ j y)y = F.
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(A10) (∀ jx)(∃y)x = y.
(LL*) If a = b → (µ ↔ σ) , whereσ comes fromµ by replacing one

or more free occurrences ofa by free occurrences ofb.
(ID*) [λx1, . . . , xn R(x1, . . . , xn)] = R (whereR is ann-place pred-

icate variable or constant).
(∃/λ-CONV) [λx1, . . . , xnσ](a1, . . . , an) ↔ (∃x1) · · · (∃xn)(x1 =

a1 & · · · & xn = an & σ) (provided xi is not free in any
a j, (0 < i, j ≤ n).

(Rw) [λx1, . . . , xnσ] = [λy1, . . . , ynσ(y1/x1 · · · yn/xn)], where no
yi occurs inσ.

(RRCP!*) (∀ j y1) · · · (∀ j ym)(∀ j F1) · · · (∀ j Fr)(∃ jG)([λx1, . . . , xnσ] = G).

where (1)σ is a wff in which no nonlogical constants occur and in which the identity
sign does not occur, (2)G is ann-place predicate variable not occurring free inσ,
(3) for all k ≥ j, ‘∀k’does not occur inσ, and (4)F1, . . . , Fr are all of the pairwise
distinct predicate variables occurring free inσ and y1, . . . , ym, x1, . . . , xn are all of
the pairwise distinct individual variables occurring free inσ. The inference rules of
RRC* aremodus ponens,

(MP) Fromσ → δ andσ, infer δ.

anduniversal generalization with respect to an individual and predicate variable,

(UG) Fromσ, infer (∀x)σ, (∀ jx)σ and(∀ j F)σ.

The reader should note that, according to the intuitive interpretation of the logical
constants we have given above, A5 would be asserting that predicative concept for-
mation is cumulative, A9 that for every predicative concept there is a correlate and,
finally, A10 that concept correlates are existing objects. Schema RRCP!* expresses
conditions under which a predicate expression will stand for a predicative concept.
Since the first and third restriction of the schema might not be obvious, we shall offer
a brief and intuitive justification of them.

Beginning with the first restriction, we should note that identity implies indis-
cernibility with respect to all predicative concepts and should allow for the full sub-
stitutivity of terms in impredicative contexts as well. Then, it cannot be assumed that
an identity expression will, in general, stand for a predicative concept and hence the
restriction of not allowing such an expression to occur in an instance of RRCP!*.

Concerning again the first restriction, we should note that, according to ramified
constructive conceptualism, the domain of discourse and how that domain is concep-
tually represented determine which predicate constants will stand for predicative con-
cepts. Then, obviously, relative to a given domain of discourse in a given conceptual-
ization, a predicate constant might stand for a primitive concept while in some other
conceptualization the same predicate constant might not stand for a predicative con-
cept or for no concept at all. It is for this reason that ramified constructive conceptual-
ism is said to be free of existential presuppositions regarding predicate constants and
variables, and so the restriction of not allowing occurrences of predicate constants in
instances of the Comprehension Schema RRCP!*.

The third restriction corresponds to the nature of predicative concept formation.
Formation of predicative concepts at a certain levelL in the hierarchy of predicative
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concept formation cannot presuppose concepts whose formation is supposed to be
given at levels higher thanL .

Note that none of the restrictions forbids the occurrences of unrestricted individ-
ual quantifiers such as ‘∀x’. Such quantifiers range, intuitively, over all existing ob-
jects, including concept correlates of predicative concepts, whichseems to run against
the intuitions behind the restriction of the third clause. For example, according to
RRCP!*, ‘[λy(∃x)(∃1F)Fxy]’ stands for a predicative concept, even though it pre-
supposes as given the complete totality of concept correlates. However, we should
recall that Poincaré-Russell Principle is being applied (in the framework of ramified
conceptualism) to concept formationonly and not to object construction such as the
formation of concept correlates. Constructive objects are entities not constructed by
the mind and are ontologically independent of concept formation, even though they
are correlated to predicative concepts. So it is ontologically possible for them to exist
even if no corresponding concepts have been formed. Their construction is not as-
sumed to be carried out following the Poincaré-Russell Principle. However, the third
restriction to RRCP!* concerning quantifiers ranging over correlates of predicative
concepts is due to the indirect reference to predicative concepts of such quantifiers.

We now define what it is to be a theorem ofRRC* (in symbols,
RRC∗) as fol-
lows:


RRC∗ δ if and only if there is a finite sequenceδ1, . . . , δn = δ of wffs

such that for eachi(0 < i ≤ n) either,

1. δi is an axiom;

2. there arej, k ∈ ω(0 < j, k < i) such thatδk = (δ j → δi);

or

3. there isj ∈ ω(0 < j < i), such that eitherδi = (∀x)δ j orδi = (∀mu)δ j, for some
m ∈ ω − {0}, whereu is either a predicate variable or an individual variable.

That is, a theorem ofRRC* is a wff for which there is a finite sequenceS fulfilling
the following conditions: (1) every member ofS is a wff, which is either an axiom of
RRC* or follows from preceding wffs inS by the rules ofRRC* (i.e., either byMP
or UG); (2) σ is the last member ofS. We say thatτ is a theorem of	 within RRC*
(in symbols,	 
RRC∗ τ) if and only if for somen ∈ ω there are wffsδ1, . . . , δn ∈ 	

such that
RRC∗ (δ1 & , . . . , & δn) → τ (wheren = 0, we take this “conditional” to
beτ itself). The following are theorems ofRRC* whose proof can be found in [3]:

(∃ /UI*) 
RRC∗ (∃x)(x = a) → ((∀x)σ → σ(a/x)) (providedx does not
occur free ina anda is free forx in σ).

(∃ /UI*o/ j) 
RRC∗ (∃ jx)(x = a) → ((∀ jx)σ → σ(a/x)) (providedx does
not occur free ina anda is free forx in σ).

(∃ /UI*/ j) 
RRC∗ (∃ j F)(F = t) → ((∀ j F)σ → σ(t/F)) (providedF does
not occur free int andt is free forF in σ).

(EG/o) 
RRC∗ (∃x)(x = a) → (σ(a/x) → (∃x)σ) (providedx does not
occur free ina anda is free forx in σ).

(EG/o/ j) 
RRC∗ (∃ jx)(x = a) → (σ(a/x) → (∃ jx)σ) (providedx does
not occur free ina anda is free forx in σ).
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(EG/ j) 
RRC∗ (∃ j F)(F = t) → (σ(t/F) → (∃ j F)σ) (providedF does
not occur free int andt is free forF in σ).

(TH 1) 
RRC∗ (∀i F)(∃ jG)(F = G) i ≤ j.
(TH 2) 
RRC∗ (∀x)σ ↔ (∀y)σ(y/x) (providedy is free forx in σ andy

does not occur free inσ).
(TH 3) 
RRC∗ (∀ jx)σ ↔ (∀ j y)σ(y/x) (providedy is free forx in σ and

y does not occur free inσ).
(TH 4) 
RRC∗ (∀ j F)σ ↔ (∀ jG)σ(G/F) (providedG is free forF in σ

andG does not occur free inσ).
(TH 5) 
RRC∗ (∃kx)x = t → (∃ jx)x = t, k ≤ j.
(TH 6) 
RRC∗ (∃k F)F = t → (∃ j F)F = t, k ≤ j.

The reader should note that (∃ /UI*), (∃ /UI* o/ j), (∃ /UI*/ j) are restricted forms of
instantiation with respect to the universal quantifiers of the system. TH2 – 4 consti-
tute rewrite laws for predicate and individual variables. TH5 – 6 state the cumulative
character of predicative concept formation.

By anormal extension 	 of RRC* (in symbols,	-RRC*) weunderstand an ax-
iomatic extension ofRRC* which has the same inference rules asRRC*. Theorem-
hood in	-RRC* (in symbols,
	-RRC∗ τ) is defined in way analogous to theorem-
hood inRRC*. We shall say thatτ is a theorem of 
 within 	-RRC* (in symbols,

 
	-RRC∗ τ), if and only if for somen ∈ ω there are wffsδ1, . . . , δn ∈ 
 such that

	-RRC∗ (δ1, . . . , δn) → τ (again, wheren = 0 we take this “conditional” to be just
τ itself). We say that a set
 of wffs is 	-RRC*-consistent if and only if there is no
wff τ such that
 
	-RRC∗ ¬(τ → τ), and that
 is 	-RRC*-maximally consistent
if and only if it is 	-RRC*-consistent and for every wffσ eitherσ ∈ 
 or 
 ∪ {σ} is
not	-RRC*-consistent. A normal extension	 -RRC* is aproper extension if and
only if for everyσ ∈ ME1(L), if 
	-RRC∗ σ, then
	-RRC∗ σ(t/a) where ‘t’ and ‘a’
are terms of the same type. Finally, by anω-complete set
 we understand a set of
wffs which satisfies the following conditions.

1. If (∃x)σ ∈ 
, then there is a termt which is free forx in σ (and in whichx does
not occur free) such thatσ(t/x) ∈ 
 and(∃x)(x = t) ∈ 
.

2. If (∃ ju)σ ∈ 
, then there is a termt of the same type asu which is free foru in σ

(and in whichu does not occur free) such that(σ(t/u) ∈ 
 and(∃ ju)(u = t) ∈ 


(whereu is either an individual or predicate variable).

3 Set-theoretic semantics for RRC* We shall now describe the set-theoretic se-
mantics we have developed forRRC*.9 We shall proceed as follows: we first char-
acterize the notion of a Simms-structure for Realist Ramified Constructive Concep-
tualism (anRRC*-S-structure); then, we introduce the concept of a model forRRC*
and a given languageL (anRRC*-L-model); finally, we define the concept of an in-
terpretation for a languageL based on anRRC*-structure and, relative to such an
interpretation, the concepts of satisfaction, truth and validity.

By a Simms-structure for Realist Ramified Constructive Conceptualism (RRC*-
S-structure) we understand a structure

S = 〈D, E, C j, X( j,n), Yn, H, f 〉, n ∈ ω, j ∈ ω − {0}
where
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1. E ⊆ D,
2. C j ⊆ E,
3. C j ⊆ Ck, j ≤ k,
4. X( j,n) ⊆ Yn,
5. X( j,n) ⊆ X(k,n), j ≤ k,
6. Yn ∩ Ym = ∅, if n �= m,
7. D �= ∅,
8. Yn �= ∅, n ∈ ω,
9. H ⊆ ⋃

n∈ω(Yn × Dn),
10. f is a function fromD ∪ (

⋃
n∈ω Yn) into D such that

(a) f (x) = x if x ∈ D.
(b) for every j ∈ ω − {0}, if z ∈ ⋃

n∈ω X( j,n), then f (z) ∈ C j.

We shall now present an intuitive explanation of the elements constituting an
RRC*-S-structure. This explanation and the one on page 492 will help the reader to
understand how our semantics captures different features of realist ramified construc-
tive conceptualism. Such features include the hierarchical and cumulative nature of
predicative concept formation, the correlation of predicative concepts to certain exist-
ing objects, the approach to predication as a relation between objects and universals
(but which is not the membership relation) and the view that predicates stand for en-
tities other than sets.

We begin with setsD, E, andYn of any RRC*-S-structure. SetD represents
the set of individuals,E the set of existing individuals andYn the set of universals
corresponding ton-place predicates. The reader will note that there is nothing in the
semantics that will require us to think of the elements of the setYn of universals as
extensional entities, such as sets. Our intention is rather to think of universals inYn as
concepts, as the set ofn-ary predicative concepts. By clause 6, non-place universal
is m-place, wheneverm �= n.

According to ramified conceptualism, concept formation constitutes a countably
infinite hierarchy of levels, in which concepts formed at certain level are taken as the
basis of concept formation at the next level. Formation of a new level is carried out
by quantifying over concepts of the immediate lower level and closing them under
Boolean operations. The set of predicativen-place concepts constructed at certain
level j will be represented by the setX( j,n) of anRRC*-S-structure. Obviously, ev-
ery concept formed in accordance with principles of ramified conceptualism should
be considered to be a member of the set of all predicative concepts. This idea is ex-
pressed in clause 4, in which it is stated that, for every levelj, the set ofn-place pred-
icative concepts should contain the predicativen-place concepts formed atj.

Another important aspect of the structure of predicative concept formation is the
cumulative character of every level, according to which concepts formed at certain
level will be among the concepts formed at any subsequent level. This feature of
predicative concept formation is expressed in clause 5 of the semantics, whereX( j,n)

is required to be a subset ofX(k,n) wheneverj ≤ k.
The version of conceptualism assumed in this article also postulates objects cor-

related with predicative concepts. Recall that such objects are called “constructive”
and constitute, according to conceptualism, the reference of the nominalizations of
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predicates standing for constructive or predicative concepts. Concept correlation is
represented, in our semantics, by thefunction f . Clause 10b expresses the assumption
that there should always be an object correlated with every constructive concept. The
set of objects correlated with concepts of certain levelj are represented by the setC j

Because of the cumulative and hierarchical nature of predicative concept formation,
constructive objects are to be viewed in the same cumulative and hierarchical way.
For this reason, in clause 3 it is required thatC j be a subset ofCk wheneverj ≤ k.
Finally, according to realist ramified conceptualism, constructive objects should be
understood as existing entities and this is expressed by clause 2 of the semantics.

So far, we have intuitively explained clauses 1–8 and 10. Before proceding to
explain clause 9, we first need to describe more elements of the semantics. So, letL
be a language andg a function withL as domain such that: (a) for every individual
constantc ∈ L, g(c) ∈ D, (b) for everyn-place predicate constantPn ∈ L, g(Pn) ∈
Yn. By a realist ramified constructive conceptualist model forL (RRC*-L-model)
we shall understand an ordered pairM = 〈S, g〉,whereS is anRRC*-S-structure.
By an assignmentA in a RRC*-structureS we understand a function with the set of
variables of all types as domain such that (a) ifx is an individual variable,A(x) ∈ D
(b) if F is a variable of typen + 1, A(F) ∈ Yn (for n ∈ ω). If A is an assignment, then
A(d/u) = (A − {〈u, A(u)〉} ∪ {〈u, d〉}), that is, A(d/u) is an assignment which is
exactly likeA except (at most) for its assigningd to u (whereu is either an individual
or predicate variable). Finally, we want to point out that by “〈 〉” wemean the empty
sequence and, for convenience, sometimes we will write “〈a, b〉 ∈ H” as “aHb”.

If L is a language andM = 〈S, g〉 is aRRC*-L-model, then we shall say thatM
is aRRC*-L-interpretation, if there is a functionvalM defined for each assignment
A in S so thatvalM,A is a function with ME(L) asdomain and, for everyδ ∈ ME(L),
valM,A satisfies the following conditions.

1. If δ is a variable, thenvalM,A(δ) = A(δ).
If δ is a constant inL , thenvalM,A(δ) = g(δ).

2. If δ is π(a1, . . . , an) (where π ∈ MEn+1(L)) and
a1, . . . , an ∈ ME0(L) then, 〈valM,A(δ), 〈 〉〉 ∈ H if and only if
〈valM,A(π), 〈 f (valM,A(a1)), . . . f (valM,A(an))〉〉 ∈ H.

3. If δ is [λx1, . . . , xnθ] (whereθ ∈ ME1(L)), then for alld1, . . . , dn ∈
D, valM,A(δ)H〈d1, . . . , dn〉 if and only if valM,A(d1/x1,...,dn/xn)(θ)H〈 〉
andd1, . . . , dn ∈ E.

4. If δ is ¬τ, then valM,A(δ)H〈 〉 if and only if it is not the case that
valM,A(τ)H〈 〉.

5. If δ is (µ → τ), thenvalM,A(δ)H〈 〉 if and only if either it is not the
case thatvalM,A(µ)H〈 〉 or valM,A(τ)H〈 〉.

6. If δ is (∀x)µ, then valM,A(δ)H〈 〉 if and only if for everyd ∈ E,
valM,A(d/x)(µ)H〈 〉.

7. If δ is (∀mx)µ, then valM,A(δ)H〈 〉 if and only if for every d ∈
Cm, valM,A(d/x)(µ)H〈 〉.

8. If δ is (∀m Fn)µ, then valM,A(δ)H〈 〉 if and only if for every p ∈
X(m,n)valM,A(p/F)(µ)H〈 〉.

9. If δ is [λµ], thenvalM,A(δ)H〈 〉 if and only if valM,A(µ)H〈 〉.
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10. If δ is a = b, then valM,A(δ)H〈 〉 if and only if f (valM,A(a)) =
f (valM,A(b)).

Weshall proceed now to explain clause 9 on page 490. We begin by pointing out
that, as noted by Cocchiarella in [5], at least two approaches to predication should be
distinguished. According to one of the approaches, predication should be taken as a
fundamental and irreducible relation between the universal and the objects of which
the universal is being predicated. Its characteristics are to be determined by the philo-
sophical background assumed: different philosophical theories concerning the nature
of universals, such as logical realism, nominalism and conceptualism, will result in
different views of what the essential properties of predication should be.10 In accor-
dance with the second approach, predication should be interpreted in terms of mem-
bership in a set, that is, predication should be reduced to the membership of certain
objects in certain particular sets and so there being no need for a theory of predication.
Examples of both approaches can be found in the two semantic systems, developed
by Montague, for his first and second intensional logics (viz., his higher order modal
logic and his sense-denotation intensional logic). (See Montague [8], [9]). The sec-
ond intensional logic represents predication in terms of membership, while the first
one assumes predication to be a more fundamental concept than membership, since,
as pointed out by Cocchiarella in [5, p. 54], membership in a class is defined in Mon-
tague’s higher order modal predicate logic in terms of predication.

An approach to predication in terms of membership in a set is not compatible
with a philosophical framework assuming conceptualism as a theory of universals.
According to this philosophical theory, predicates should be understood as standing
for concepts and concepts are to be viewed as cognitive capacities, as intensional enti-
ties which do not have an individual nature but are rather unsaturated cognitive struc-
tures. On the other hand, predication is to be interpreted as a relation: as the relation
of “an object falling under a concept” or as “the saturation of a concept by an object.”
This relation is not to be understood, according to conceptualism, as membership in
a set.

One of the important and interesting features of the semantic system we have
here developed is that predication is formally represented as a two-place relation but
not as the membership relation. According to clause 9 on page 490 and the defini-
tion of anL-interpretation, predication should be understoodextensionally as theH-
relation: �P(a1, . . . , an)� is true if and only if the (correlates of the)n-tuple of enti-
ties referred to by ‘a1,’ . . . , ‘an’ f all under the relationH with the universal for which
the predicate expression ‘P’ stands; in other words, that a universal be related to an-
tuple of individuals byH will indicate that such a universal is being predicated of
the individuals of then-tuple. However, nothing in the semantics suggests that the
H-relation should be understood as the membership relation: each member of theH-
relation is an ordered pair in which the first element is a universal belonging to the
setYn of n-place universals and the second one is an-tuple of individuals of the set
D. But it is not being assumed that the elements ofYn are sets under which then-
tuples might fall as members of such sets. We are rather takingYn to be the set of
n-ary predicative concepts and, consequently, the first component of the relationH
will correspond to a concept under which the other components fall.

We shall now define truth, validity and other related semantic concepts. As
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usual, we shall define the notions of truth and validity in terms of satisfaction. Let
L be a language,M = 〈S, g〉 an RRC*-L-interpretation,A an assignment inS,
δ ∈ ME1(L) and	-RRC* a proper normal extension ofRRC*. We definesatis-
faction, truth, and	-RRC*-validity of δ in M as follows:

1. A satisfies δ in M if and only if valM,A(δ)H〈 〉.
2. δ is true in M if and only if every assignment inS satisfiesδ in M .

3. δ is S-RRC*-valid if and only if for all RRC*-L-interpretationsM , if every
axiom of	-RRC* is true inM , thenδ is true inM .

4. 
 is 	-RRC*-satisfiable if and only if there is an assignmentA and anRRC*-
L-interpretationM in which every axiom of	-RRC* is true and such thatA
satisfiesδ in M , for everyδ ∈ 
.

We shall proceed now to prove soundness and completeness of a proper extension
	-RRC* with respect to	-validity.

3.1 Soundness and completeness of 	-RRC* with respect to 	-RRC*-validity
Let 	-RRC* be a proper extension (see page 489 for a definition of this concept).
It can easily be shown that for everyδ ∈ ME1(L),


	-RRC* δ only if 	-RRC* is
	-RRC*-valid. Then, we show only completeness of	-RRC* with respect to	-
RRC*-validity.

Theorem 3.1 (Completeness) Let L be a countable language and 
 ⊆ ME1(L). If

 is 	-RRC*-consistent, then 
 is 	- RRC*-satisfiable.

Proof: WeextendL to a languageL+ by adding to it a denumerable set of distinct
constants for each typen ∈ ω. It can easily be shown that
 is 	-RRC*-consistent
in L+.

Weassume an enumerationδ1, . . . , δn, . . . of all the wffs ofL+ of either the form
“ (∃ ju)σ” (whereu is either an individual or predicate variable) or the form “(∃x)σ”.
Wedefine a chain
0, . . . , 
n, . . . by recursion, as follows.

1. 
0 = 
.

2. If δn+1 is (∃ ju)σ andσ is not an identity(a = u)(wherea is of the same type
asu), then
n+1 = 
n ∪ {(∃ ju)σ → (σ(b/u) & (∃ ju)(b = u))}, whereb is the
first constant inL+ of the same type asu which is new to
n ∪ {δn+1}.

3. If δn+1 is of the form(∃x)σ, then
n+1 = 
n ∪ {(∃x)σ → (σ(c/x) & (∃x)x =
c)}, wherec is the first individual constant which is new to
n ∪ {δn+1}.

4. If δn+1 is (∃ ju)u = a (wherea is of the same type asu), then
n+1 = 
n ∪
{(∃ ju)u = a → b = a, (¬(∃ ju)u = a) → b = a}, whereb is the first constant
in L+ of the same type asu which is new to
n ∪ {δn+1}.

Weobserve that, by hypothesis,
0 is 	-RRC*-consistent. Using universal general-
ization, A8–9, TH 1, elementary logical operations and the assumption that	-RRC*
is a proper extension ofRRC*, it can be shown (by reductio ad absurdum) that
n+1

is 	-RRC*-consistent, if
n is 	-RRC*-consistent. We conclude, accordingly, that

∗ = ⋃

n∈ω 
n is 	-RRC*-consistent. By Lindenbaum’s method, we extend
∗ to a
maximally	-RRC*-consistent setK.
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Note that, by construction,K is ω -complete. Also, by clause 4 above, for every
terma there is a constantb of the same type such thata = b ∈ K. On pp. 494–5, the
reader will note that this part of the construction is needed in the completeness proof.

Let ‖t‖ (wheret ∈ ME0(L+), i.e., a term ofL+) be the equivalence class de-
termined by the equivalence relation “≈” defined as follows:t ≈ a if and only if
t = a ∈ K (wheret anda are terms). LetSK be the structure

〈D, E, C j, X( j,n), Yn, H, f 〉n ∈ ω, j ∈ ω − {0}

where

1. D = {‖t‖ | t ∈ ME0(L+)};
2. E = {‖t‖ ∈ D | (∃x)x = t ∈ K, x does not occur free int };
3. C j = {‖t‖ ∈ D | (∃ jx)x = t ∈ K, x does not occur free int };
4. Yn = {‖t‖ ∈ D | t ∈ MEn+l(L+)};
5. X( j,n) = {‖t‖ ∈ Yn | (∃ j F)t = F ∈ K, F doesn’t occur free int and is of the

same type ast };
6. f is the identity function onD, i.e., f (‖t‖) = ‖t‖ ,for every‖t‖ ∈ D;
7. H = ⋃

n∈ω{〈‖π‖, 〈‖t1‖, . . . ,‖tn‖〉〉 ∈ Yn × Dn | πt1, . . . , tn ∈ K}.
WeproveSK to be anRRC*- structure.

1. E ⊆ D, X( j,n) ⊆ Yn andH ⊆ ⋃
n∈ω{Yn × Dn} (directly from the definitions).

2. D �= ∅ andYn �= ∅ (sincet = t ∈ K , for everyt ∈ ME0(L+), and MEn+1(L+)
�= ∅).

3. Yn ∩ Ym = ∅ (since MEn+1(L+) ∩ MEm+1(L+) = ∅), for m �= n.
4. C j ⊆ E.

Proof of 4: So supposea ∈ C j. By assumption and definition ofC j, a = ‖t‖
for somet ∈ ME0(L+) such that(∃ jx)x = t ∈ K. By (∃ /UI* o/ j), A10 and
Modus Ponens,(∃x)x = t ∈ K and soa = ‖t‖ ∈ E. �

5. Ck ⊆ C j if k ≤ j.

Proof of 5: So supposea ∈ Ck. By assumption and definition ofCk there is
a t ∈ ME0(L+) such thata = ‖t‖ and(∃kx)x = t ∈ K. By TH 5 and Modus
Ponens,(∃ jx)x = t ∈ K and soa = ‖t‖ ∈ C j. �

6. X(k,n) ⊆ X( j,n), if k ≤ j.

Proof of 6: Similar to 5, but using TH 6 instead of TH 5. �

7. Since f is the identity function onD andYn ⊆ D (for everyn ∈ ω) only clause
(b) remains to be proved.

So supposez ∈ ⋃
n∈ω X( j,n). By assumption, for somen ∈ ω, there is aπ ∈

MEn+1 such thatz = ‖π‖ and(∃ j Fn)π = F ∈ K. Then (by A9 ,(∃/UI* 0) and Modus
Ponens)(∃ jx)π = x ∈ K. So, by definition off , z = ‖π‖ = f (‖π‖) ∈ C j.

Let g be the function with languageL+ as domain such that for everyc ∈
L+, g(c) = ‖c‖. Let M K = 〈SK , g〉. Clearly M K is anRRC*-L+-model, since we
already showed thatSK is anRRC*-structure.
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Wemust note now that by construction ofK, more precisely, by clause 4 on page
493, if t is a term ofL+ of type n, then there is a constantb ∈ L+ of type n such
that t = b ∈ K. Therefore, for every assignmentA in SK and finite set of variables
{a1, . . . , an}, there is a finite set{b1, . . . , bn} of constants such that

1. ai is of the same type asbi, and
2. A(ai) = ‖bi‖.

So letδ ∈ ME(L+), {d1, . . . , dn} be the set of all variables occurring free inδ and
{b1, . . . , bn} the set of first constants that satisfy conditions (1) and (2) above. We
defineδA as follows:

δA =d f δ(b1/d1, . . . , bn/dn).

Let VAL A be a function on ME(L+) such that for everyδ ∈ ME(L+):

1. if δ is a variable, then VALA(δ) = A(δ);
2. if δ is a constant inL+, then VALA(δ) = g(δ);
3. if δ isπ(a1, . . . , an) (whereπ ∈ MEn+1(L+) anda1, . . . , an ∈ ME0(L+)) then

VAL A(δ ) = ‖[λδ] A‖;
4. if δ is [λx1, . . . , xnθ] (whereθ ∈ ME1(L+)), then VALA(δ) = ‖δA‖;
5. if δ is ¬τ, then VALA(δ) = ‖[λδ] A‖;
6. if δ is (µ → τ), then VALA(δ) = ‖[λδ] A‖;
7. if δ is (∀x)µ, then VALA(δ) = ‖[λδ] A‖;
8. if δ is (∀mx)µ, then VALA(δ) = ‖[λδ] A‖;
9. if δ is (∀m Fn)µ, then VALA(δ) = ‖[λδ] A‖;

10. if δ is [λµ], then VALA(δ) = ‖δA‖;
11. if δ is a = b, then VALA(δ) = ‖[λδ] A‖.

Weprove by induction over the set of meaningful expressions ofL+ that VALA satis-
fies the conditions forvalM,A in the definition of anRRC*-L-interpretation. (For
definition of this concept see page 491). Letδ ∈ ME(L+.)

1. Clearly VALA satisfies the corresponding clauses whenδ is either a variable or
δ ∈ L+.

2. If δ is π(a1, . . . , an) (whereπ ∈ MEn+1(L+) anda1, . . . , an ∈ MEm+1(L+))
then VALA(δ)H〈 〉 if and only if (by definition)

[λπ(a1, . . . , an)] A ∈ K

if and only if (since, by (∃/λ-CONV), σ ↔ [λσ] is a provable schema of
RRC*)

π(a1, . . . , an)A ∈ K

if and only if (by definition)

‖πA‖H〈‖a1A‖, . . . ,‖anA‖〉

if and only if (since f (VAL A(am)) = ‖amA‖,for 1 ≤ m ≤ n)

VAL A(π)H〈 f (VAL A(a1), . . . , f (VAL A(an))〉.
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3. If δ is [λx1, . . . , xnθ] (whereθ ∈ ME1(L+)) andt1, . . . , tn ∈ ME0(L+), then

VAL A([λx1, . . . , xnθ])H〈‖tl‖, . . . ,‖tn‖〉
if and only if (by definitions)

[λx1, . . . , xnθ] A(t1, . . . , tn) ∈ K

if and only if (by ∃/λ-CONV, ω-completeness, EG/o) there are constants
c1, . . . , cn such that

(∃x1)(x = c1) & , . . . , & (∃xn)(xn = cn) &

(c1 = t1 & , . . . , & cn = tn & θ(c1/x1, . . . , cn/xn)A) ∈ K

if and only if (by definition of E and LL*) there are constantsc1, . . . , cn such
that

〈‖t1‖, . . . ,‖tn‖〉 ∈ En

and
c1 = t1 & , . . . , & cn = tn & θ(c1/x1, . . . , cn/xn)A ∈ K

if and only if (by construction ofK, LL* and definitions)

〈‖t1‖, . . . ,‖tn‖〉 ∈ En andθA(‖t1‖/x1, . . . ,‖tn‖/xn) ∈ K

if and only if (by∃/λ-CONV and definitions)

〈‖t1‖, . . . ,‖tn‖〉 ∈ En and VALA(‖t1‖/x1, . . . ,‖tn‖/xn)(θ)H〈 〉.
4. If δ is ¬τ, (µ → τ) or [λµ], then it can easily be shown that VALA satisfies

their corresponding clauses using the inductive hypothesis. The case whereδ

is a = b can be proved by an argument similar to the one for atomic formulas.
5. If δ is (∀m Fn)µ then VALA(δ)H〈 〉 if and only if (by definition)

[λ(∀m Fn)µ] A ∈ K

if and only if (by (∃/λ-CONV))

((∀m Fn)µ)A ∈ K

if and only if (by ω-completeness of K and (∃ /U.I.* j)) for all constantsc of
the same type asF,

if (∃m F)F = c ∈ K, thenµ(c/F)A ∈ K

if and only if (by LL*, construction ofK and (∃/λ-CONV)) for all constantsc
of the same type asF,

if (∃m F)(F = c) ∈ K, then VALA(‖c‖/F)(µ)H〈 〉.
Wemust note thatd ∈ X(m,n) if and only if there is a constantc of typen such
that

‖c‖ = d and(∃m F)F = c ∈ K.

So

(∀m Fn)µA ∈ K if and only if, for everyd ∈ X(m,n),VAL A(d/F)(µ)H〈 〉.
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6. By an argument similar to the one above, it can be proved that VALA satisfies
the corresponding clauses whenδ is either(∀ jx)µ or (∀x)µ.

Therefore, since VALA fulfills the conditions forvalM,A, M K = 〈SK , g〉 is anRRC*-
L+-interpretation. LetAK be the assignment inSK such thatAK (u) = ‖u‖, whereu
is either a predicate or individual variable. Now, it is clear that (by LL* and defini-
tions)δAK ∈ K if and only if δ ∈ K. On the other hand, from the definition of VALA it
follows that VALA(δ)H〈 〉 if and only if δA ∈ K, for every assignmentA. Therefore,
VAL A

K (δ)H〈 〉 if and only if δ ∈ K. So AK satisfies
 in M K . Also every axiom
of 	-RRC* is true inM K and MP and UG preserve truth inM K . Restrict nowM K

to L . Weget, then, anRRC*-L-interpretation and assignmentAK which satisfies
.
�

4 System ≡RRC* and its set-theoretic semantics As noted in the introduction,
identity can not be reduced to indiscernibility (with respect to predicative concepts) as
long as we assume the philosophical framework of realist ramified constructive con-
ceptualism. This is because the only circumstance in which such a reduction could
be possible is that one in which every wff would stand for a predicative concept. But
such a circumstance can never obtain, since (according to the philosophical frame-
work of realist ramified constructive conceptualism) what motivates the transition
from one given stage of concept formation to the next one is, precisely that at that
given stage not every wff stands for a concept. Therefore, an identity free second-
order logical system (having realist ramified constructive conceptualism as its philo-
sophical background) would be a system in which identity could not be definitionally
introduced.

In this section, we introduce an axiomatic second-order logical system involving
indiscernibility with respect to predicative concepts (and having realist ramified con-
structive conceptualism as its philosophical background). We prove its relative con-
sistency. We also develop its set-theoretic semantics as well as prove a completeness
theorem for proper normal extensions of the system with respect to a certain notion
of validity, provided by the semantics.

Webegin by defining the set ofidentity free-RRC*-meaningful expressions of a
language L (in symbols,≡ME(L)) by the same clauses used in the definition, in Sec-
tion 2, of anRRC*-meaningful expression but without the clause for identity. Also,
we define a relative form of indiscernibility:

a ≡ j b =d f (∀ j F)(F(a) ↔ F(b))( j ∈ ω − {0})

that is intuitively,a is indiscernible fromb with respect to concepts formed at thej-
stage (of the potentially infinite hierarchy) of predicative concept formation. Related
to this sense of indiscernibility, there is the philosophical question whether two en-
tities belonging to different realms of being can fall under the same predicative con-
cepts. That is, for example, whether a constructible object of stagej (which is an
entity with intensional being) can fall under the same predicative concepts (of stage
j +1) under which an object with concrete existence falls. The answer to this particu-
lar problem is not an easy one, unless we take into account the possibility of concepts
(of stagej + 1) under which an object falls if and only if it is a constructible object
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of stagej, such as the concept of being a constructible object (of stagej) itself. In
this section we take into consideration this possibility. Therefore, we will assume
throughout that every object indiscernible from a constructible object of stagej must
also be a constructible object of the same stage. Also, we will suppose that concept
correlates are indiscernible from correlates of concepts of the same type only. Both
of these assumptions are the intuitive motivations for clause 10 of the semantics we
are developing in this section.

Given the above intuitions, we proceed now to describe the axiomatic system.
We call it system≡RRC*. In contradistinction toRRC*, ≡RRC* assumes every
singular term to denote, but not necessarily, a constructible object. So≡RRC* is not
“free of existential presuppositions” with respect to singular terms. However, it is
“free of existential presuppositions” with respect to predicate expressions.

Whereσ is a wff,a1, . . . , an are terms, the axioms of≡RRC* are the following.

1. Axioms(A0) – (A5) of systemRRC*.
2. For everyj ∈ ω − {0},

(≡ A7) (∀ jx)(∃y)(x ≡ j+1 y).

(≡ A9) (∀ j F)(∃ jG)(F ≡ j+1 G).

(≡ A10) (∀ jx)(∃ j y)(x ≡ j+1 y).

(≡ A11) (∀ j F)(∃ j y)(y ≡ j+1 F).

(≡ UI/ j/o) (∃ jx)(x ≡ j+1 t) → ((∀ jx)σ → σ(t/x)), providedt is free for
x in σ andx does not occur free int.

(≡ UI/ j) (∃ j F)(F≡ j+1 t) → ((∀ j F)σ → σ(t/F)) , providedt is free
for F in σ and is of the same type asF, andF does not occur
free in t.

(≡ UI/o) (∀x)σ → σ(t/x), providedt is free forx in σ.
(≡ A12) (∃ ju)(u ≡k t) → (∃ ju)(u ≡ j+1 t), for everyk ≤ j.

(λ-CONV) [λx1, . . . , xnσ](a1, . . . , an) ↔ σ(a1/x1, . . . , an/xn), provided
ai is free forxi in σ, for 0 < i ≤ n.)

.

(≡RRC!*) (∀ j y1), . . . ,(∀ j ym)(∀ j F1), . . . , (∀ j Fr)(∃ jG)(∀x1), . . . ,(∀xn)

(σ ↔ G(x1, . . . , xn)) where (1)σ is a wff in which no nonlog-
ical constants occur, (2)G is ann-place predicate variable not
occurring free inσ, (3) for all k ≥ j,“(∀k)” does not occur in
σ, and (4)F1, . . . , Fr are all of the pairwise distinct predicate
variables occurring free inσ andyl, . . . , ym, x1, . . . , xn are all
of the pairwise distinct individual variables occurring free in
σ.

Definition 4.1 δ comes fromτ by rewriting the bound occurrences of a variablew

in a subexpressionα of τ by a variablez if and only if there is an expressionα∗ such
that, for some wffσ, either

• α is (∀w)σ andα∗ is (∀z)σ(z/w) or
• α is (∀ jw)σ andα∗ is (∀ jz)σ(z/w) or
• α is [λx1, . . . , xnσ] , α∗ is [λy1, . . . , ynσ(y1/x1, . . . , yn/xn)],

whereyi = z , xi = w andx j = y j, for somei and everyj �= i such that 0< j, i ≤ n;
andδ is the result of replacing one or more occurrences ofα in τ by α∗.
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(Rw ) σ ↔ σ∗, whereσ∗ comes fromσ by rewriting the bound occurrences of one or
more variables in lambda abstracts, which are subexpressions ofσ, by variables
new toσ.

The rules of inference of≡RRC* are Modus Ponens (MP) and Universal General-
ization (UG) with respect to all types of variables.

Theorems

(Th1) 
≡RRC∗ (∃ku)(u ≡k+1 t) → (∃ ju)(u ≡k+1 t), k ≤ j (by A5, propo-
sitional logic, and definitions of quantifiers).

(Th2) 
≡RRC∗ [λx1, . . . , xnθ](t1, . . . , tn) ↔ θ∗(t1/x1, . . . , tn/xn), where
θ∗ comes fromθ by rewriting each variable occurring bound inθ

and free in someti by a variable new to{θ, t1, . . . , tn} (by (Rw) and
(λ-CONV)).

(Th3) 
≡RRC∗ (∀ jx)σ ↔ (∀ j y)σ(y/x), providedy does not occur free
and is free forx in σ (by (≡UI/o/ j), ≡A10, A4, and propositional
logic).

(Th4) 
≡RRC∗ (∀x)σ ↔ (∀y)σ(y/x), providedy does not occur free and
is free forx in σ (by UI, A3 and propositional logic).

(Th5) 
≡RRC∗ ((∀ j F)σ ↔ (∀ jG)σ(G/F), providedG does not occur
free and is free forF in σ (by (≡UI/ j), ≡A11, A4 and propositional
logic).

(Th6) 
≡RRC∗ σ ↔ σ∗, whereσ∗ comes fromσ by rewriting the bound
occurrences of a variable in a subexpression ofσ by a variable new
to σ (by induction over subwffsδ of σ).

The following notions are understood in a way similar to their analogues in Sec-
tion 2: proper normal extension of ≡RRC*, (in symbols	-≡RRC*), 	-≡RRC*-
consistent set 
, andmaximally 	-≡RRC*consistent 
. By an≡ ω-complete set 


we understand a set of wffs which satisfies the following conditions.

(1) If (∃x)σ ∈ 
, then there is a termt which is free forx in σ such thatσ(t/x) ∈ 
.

(2) If (∃ ju)σ ∈ 
, then there is a termt of the same type asu (in which u does not
occur free) and which is free foru in σ such thatσ(t/u) ∈ 
 and(∃ ju)(u ≡ j+1

t) ∈ 
 (whereu is either an individual or predicate variable).

4.1 Consistency of ≡RRC* As we show in the proof to the next metatheorem,
our new system≡RRC* turns out to be relatively consistent to Cocchiarella’s system
λT*+Ext* (see [2], pp. 220–225).

Theorem 4.2 (Metatheorem) If λT*+Ext* is consistent, then ≡RRC* is consis-
tent.

Proof: Assume the hypothesis of the theorem. Letf be the function with≡ME(L)
as domain and such that for everyσ ∈ ≡ME(L):

• if δ is a variable or constant, thenf (δ) = δ;

• if δ is of the formπ(t1, . . . , tn), then f (δ) = ( f (π)( f (t1), . . . , f (n)));
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• if δ is of the form¬σ, (σ → τ), (∀y)σ or [λx1, . . . , xnσ],
then f (δ) = ¬ f (σ), f (δ) = ( f (σ) → f (τ)), f (δ) = (∀y) f (σ), f (δ) =
[λx1, . . . , xn f (σ)], respectively;

• if δ is of the form(∀i y)σ, then f (δ) = (∀y) f (σ);
• if δ is of the form(∀ j Fm)σ, then f (δ) = (∀Fm)( f (σ)).

Clearly, f has the effect of erasing every superscript in the quantifiers of every ex-
pressionσ of ≡ME(L), turningσ into a formula ofλT*+Ext*, since identity does
not occur in any member of≡ME(L).

We show that if
≡RRC∗ σ, then
λT∗+Ext∗ f (σ), for everyσ ∈ ≡ME(L). So sup-
pose that
≡RRC∗ σ. Then, by definition, there is an-sequenceδ1, . . . , δn = σ of wffs
of ≡ME(L) every one of which is either an axiom of≡RRC* or is obtained from pre-
ceding wffs in the sequence by either modus ponens (MP) or universal generalization
(UG).

Let A = {i ∈ ω| 
λT∗+Ext∗ f (δi)}. Clearly A ⊆ ω. By strong induction we show
ω ⊆ A. So suppose for everyk < i, k ∈ A. Now we have to consider three cases.

Case 1: δi is an axiom.

(i) If δi is an instance of either A1 or A2, then clearlyf (δi) is an instance of axiom
A1 of λT*+Ext*. If an instance of A0, then alsof (δi) is also an axiom of
λT*+Ext*.

(ii) If δi is an instance of either A3 or A4, obviouslyf (δi) is an instance of axiom
A2 of λT*+Ext*.

(iii) If δi is an instance of A5 (i.e.,δi is “((∀ ju)σ → (∀ ju)σ)”, for someσ ∈
ME(L))), then f (δi) is “((∀u) f (σ) → (∀u) f (σ))”, which is a tautologous
formula inλT*+Ext* and thus an axiom ofλT*+Ext*.

(iv) If δi is either (∀ jx)(∃y)(x ≡ j+1 y) (i.e., an instance of≡A7) or
(∀ jx)(∃ j y)(x ≡ j+1 y) (i.e., an instance of≡A10), then f (δi) is
(∀x)(∃y)(x ≡ y) which is a theorem ofλT*+Ext*, since it follows, by
existential and universal generalization, fromx ≡ x, which (by proposi-
tional logic and universal generalization) can be shown to be a theorem of
λT*+Ext*.

(v) If δi is ((∀ j F)(∃ jG)(F ≡ j+1 G) (i.e., an instance of≡A9), then f (δi) is
(∀F)(∃G)(F ≡ G), which is a theorem ofλT*+Ext*, since it follows, by ex-
istential and universal generalization, from “F ≡ F”, a formula that can be
shown (by propositional logic and universal generalization) to be also a the-
orem ofλT*+Ext*.

(vi) If δi is (∀ j F)(∃ j y)(F ≡ j+1 y) (i.e., an instance of≡A11), then f (δi) is
(∀F)(∃y)(F ≡ y), which is a theorem ofλT*+Ext*, since in ([2], pp. 222–
227),(∀F)(∃y)(F = y) has been shown to be a theorem ofλT*+Ext*.

(vii) If δi is (∃ jx)(x ≡ j+1 t) → ((∀ jx)σ → σ(t/x)), where t is free for x
in σ and x does not occur free int, then f (δi) = (∃x)(x ≡ f (t)) →
((∀x) f (σ) → f (σ)( f (t)/x)), which easily follows, by propositional logic,
from (∀x) f (σ) → f (σ)( f (t)/x), which (in [2], p. 222) has been shown to be
a theorem ofλT*+Ext*.

(viii) If δi is either (≡UI/ j) or (UI/o), then f (δi) is a theorem ofλT*+Ext* by rea-
sons similar to those of (vii).
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(ix) If δi is (∃ ju)(u ≡k t) → (∃ ju)(u ≡ j+1 t) , for somek, j ∈ ω andk ≤ j (i.e.,
one of the axioms≡A12), then f (δi) = (∃u)(u ≡ f (t)) → (∃u)(u ≡ f (t)),
which is a tautologous formula ofλT*+Ext* and so an axiom ofλT*+Ext*.

(x) If δi is an instance of (λ-CONV), then clearly f (δi) is also an instance of the
axiom (λ-CONV) of λT*+Ext*.

(xi) If δi is (∀ j y1), . . . , (∀ j ym) (∀ j F1), . . . , (∀ j Fr) (∃ jG)(∀x1), . . . , (∀xn)(σ ↔
G(x1, . . . , xn)) for some wff σ satisfying conditions above specified
in ≡RRC!*, then f (δi) is (∀y1), . . . , (∀ym) (∀F1), . . . , (∀Fr)(∃G)

(∀x1), . . . , (∀xn) ( f (σ) ↔ G(x1, . . . , xn)) which is a theorem ofλT*+Ext*,
since it follows (by several applications of the rule of universal generalization
of λT*+Ext*), from (∃G)(∀x1)(∀xn)( f (σ) ↔ G(x1, . . . , xn)), a formula
which must be a theorem ofλT*+Ext*, by reasons stated in [2], pg. 225.

(xii) If δi is Rw, then f (δi) is f (α) ↔ f (α)∗ (where f (α)∗ satisfies the conditions
stated inRw). Now, f (δi) would be a special case of the more general principle
thatσ ↔ σ∗, whereσ∗ comes fromσ by rewriting any number of bound occur-
rences of any number of variables in subexpressions ofσ by variables new toσ.
Such general principle can be shown to be a theorem ofλT*+Ext*, by strong
induction on the complexity of wffs occurring inσ, using axioms A6, LL*, and
Ext* of λT*+Ext*.

Case 2: δi is obtained by Modus Ponens, i.e., there arek, l < i such thatδl = (δk →
δi). This case follows directly from the inductive hypothesis.

Case 3: δi is obtained by Universal Generalization, i.e., there isk < i such thatδi is
either(∀x)δk,(∀ jx)δk, or (∀ j F)δk. By the inductive hypothesis,f (δk) is a theorem
of λT*+Ext* and so, by the rule of universal generalization ofλT*+Ext* (which is
applicable to any variable) ,(∀x) f (δk) and(∀F) f (δk) are theorems ofλT*+Ext*.
But clearly f (δi) is either(∀x) f (δk) or (∀F) f (δk). �

4.2 Semantics for ≡RRC*systems By an S∗-structure for identity free realist
ramified constructive conceptualism (≡RRC*-S-structure) we understand a structure

S = 〈D, C j, X( j,n), Yn, H, f 〉n ∈ ω, j ∈ ω − {0}

where the setsD, C j, X( j,n),Yn, H, f satisfy conditions 3–10 on page 490. LetL be
alanguage andg afunction withL as domain such that: (a) for every individual con-
stantc ∈ L , g(c) ∈ D; (b) for everyn-place predicate constantPn ∈ L , g(Pn) ∈ Yn.
By an identity free-realist ramified constructive conceptualist model forL (≡RRC*-
L-model) we understand an ordered pairM = 〈S, g〉, where S is an≡RRC*-S-
structure. We define what an assignmentA in an≡RRC*-structure is similarly to
the way we did forRRC*-S-structures. Given an≡RRC*-L-modelM = 〈S, g〉, we
will say thatM is an≡RRC*-L-interpretation if there is a functionValM, defined
for each assignmentA in S, which satisfies the following clauses.

1. If δ is a variable, thenvalM,A(δ) = A(δ).
If δ is a constant inL , thenvalM,A(δ) = g(δ).
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2. If δ is π(a1, . . . , an) (whereπ ∈ MEn+1(L)) anda1, . . . , an ∈ ME0(L) then,
valM,A(δ)H〈 〉 if and only if 〈valM,A(π),〈 f (valM,A(a1)),. . . , f (valM,A(an))〉〉
∈ H.

3. If δ is [λx1, . . . , xnθ], then for alld1, . . . , dn ∈ D, valM,A(δ)H〈d1, . . . , dn〉 if
and only ifvalM,A(d1/x1, . . . , dn/xn)(θ)H〈 〉.

4. If δ is¬τ,thenvalM,A(δ)H〈 〉 if and only if it is not the case thatvalM,A(τ)H〈 〉.
5. If δ is (µ → τ), thenvalM,A(δ)H〈 〉 if and only if either it is not the case that

valM,A(µ)H〈 〉 or valM,A(τ)H〈 〉.
6. If δ is (∀x)µ, thenvalM,A(δ)H〈 〉 if and only if for everyd ∈ D, valM,A(d/x)

(µ)H〈 〉.
7. If δ is (∀mx)µ, thenvalM,A(δ)H〈 〉 if and only if for everyd ∈ Cm, valM,A(d/x)

(µ)H〈 〉.
8. If δ is (∀m Fn)µ, then valM,A(δ)H〈 〉 if and only if for every p ∈ X(m,n),

valM,A(p/F)(µ)H〈 〉.
9. If δ is [λµ], thenvalM,A(δ)H〈 〉 if and only if valM,A(µ)H〈 〉.

10. If valM,A((∃ jx)(x ≡ j+1 t)H〈 〉, then f (valM,A(t)) ∈ C j, providedx is not free
in t.

11. If valM,A((∃ j F)(F ≡ j+1 t)H〈 〉 andt is of the same type asF andF is not free
in t, then(valM,A(t)) ∈ X( j,n).

As noted above, clauses 10 and 11 are intuitively motivated by our assumptions that
(1) every object indiscernible from a constructible object of stagej must be also a
constructible object of the same stage; and (2) concept correlates are indiscernible
from correlates of concepts of the same type only.

The notions of satisfaction and truth are understood in a way similar to their ana-
logues in Section 2 . We also define a new notion. Let	-≡RRC* be a proper normal
extension of≡RRC*, thenδ is 	-≡RRC*-valid if and only if for all ≡RRC*-L-
interpretationsI in which every axiom of	-≡RRC* is true,δ is true in I. It can
easily be shown that for everyδ ∈ ME1(L),
	-≡RRC∗ δ only if δ is ≡RRC*-valid.
Weshow completeness of	-≡RRC* with respect to	-≡RRC*-validity.

Theorem 4.3 (Completeness) Let L be a countable language and 
 ⊆ ME1(L). If

 is 	-≡RRC*-consistent, then 
 is 	-≡RRC*-satisfiable.

Proof: WeextendL to a languageL+ by adding to it a denumerable set of distinct
constants for each typen ∈ ω. It can easily be shown that
 is 	-≡RRC*-consistent
in L+.

Weassume an enumerationδ1, . . . , δn, . . . of all the wffs ofL+ of either the form
“ (∃ ju)σ” or the form “(∃x)σ.” We define a chain
0, . . . , 
n, . . . by recursion, as
follows.

1. 
0 = 
.
2. If δn+1 is (∃ ju)σ, then
n+1 = 
n ∪{(∃ ju)σ → (σ(b/u) & (∃ ju)(b ≡ j+1 u))},

whereb is the first constant inL+ of the same type asu which is new to
n ∪
{δn+1}.

3. If δn+1 is of the form(∃x)σ, then
n+1 = 
n ∪ {(∃x)σ → σ(c/x)}, wherec is
the first individual constant which is new to
n ∪ {δn+1}.



SEMANTICS FOR SECOND-ORDER LOGIC 503

Since	-≡RRC* is a proper extension, then by (UG),≡A9–A10, A2–A5, and el-
ementary logical operations, it can be shown that
n+1 is 	-≡RRC* consistent, if

n is 	-≡RRC* consistent. On the other hand, by assumption,
0 is 	-≡RRC*-
consistent. So
∗ = ⋃

n∈ω 
n is 	-≡RRC*-consistent. By Lindenbaum’s method,
we extend
∗ to a maximally	-≡RRC*-consistent setK. Clearly, by construction,
K is ≡ ω-complete. LetSK be the structure

〈D, C j, X( j,n), Yn, H, f 〉n ∈ ω, j ∈ ω − {0}

where

1. D = ME0(L+).
2. C j = {t ∈ D | (∃ jx)(x ≡ j+1 t) ∈ K, x does not occur free int}.
3. Yn = {t ∈ D | t ∈ MEn+1(L+)}.
4. X( j,n) = {t ∈ Yn | (∃ j Fn)(F ≡ j+1 t) ∈ K, F does not occur free int and is of

the same type ast}.
5. f is the identity function onD, i.e., f (t) = t , for everyt ∈ D.
6. H = ⋃

n∈ω{〈π, 〈t1, . . . , tn〉〉 ∈ Yn × Dn | πt1, . . . , tn ∈ K}.
WeproveSK to be an≡RRC*-structure.

1. C j ⊆ D, X( j,n) ⊆ YnandH ⊆ ⋃
n∈ω{Yn × Dn}. (immediate from the defini-

tions).
2. D �= ∅ andYn �= ∅ (since MEn(L+) �= ∅, for everyn ∈ ω).
3. Yn ∩ Ym �= ∅ (since MEn+1(L+) ∩ MEm+1(L+) = ∅ ), for m �= n.
4. Ck ⊆ C j, if k ≤ j.

Proof: So supposeb ∈ Ck andk ≤ j. By assumption and definition ofCk,
there is at ∈ ME0(L+) such thatb = t and(∃kx)x ≡k+1 t ∈ K. Then, by (Th
1) and Modus Ponens,(∃ jx)x ≡k+1 t ∈ K. So, by≡A12 and Modus Ponens,
(∃ jx)x ≡ j+1 t ∈ K and thent = b ∈ C j. �

5. X(k,n) ⊆ X( j,n), if k ≤ j.

Proof: Similar to 4. �

6. Sincef is the identity function onD andYn ⊆ D (for everyn ∈ ω), only clause
(b) remains to be proved.

Proof: So supposez ∈ ⋃
n∈ω X( j,n). By assumption there is aπ ∈ MEn+1(L+) such

that z = π and(∃ j F)π ≡ j+1 F ∈ K. But by ≡ A11 and(≡ ∃/U.I. j), (∃ jx)π ≡ j+1

x ∈ K. Soz = π = f (π) ∈ C j.
Let g be the function withL+ as domain such that for everyc ∈ L+, g(c) = c.

Let MK = 〈SK , g〉. Clearly MK is an≡RRC*-L+-model, since we already showed
that SK is an≡RRC*-structure.

Let δ ∈ MEn(L+) (for somen ∈ ω), {d1, . . . , dn} the set of all variables occur-
ring free inδ and{b1, . . . , bn} the set of terms such thatA(di) = bi, whereA is an
assignment inMK . We defineδA as follows.

δA =d f δ∗(b1/d1, . . . , bn/dn)
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whereδ∗ comes fromδ by rewriting each variable occurring bound inδ and free in
bi, for somei such that 0< i ≤ n, by avariable new to{δ, b1, . . . , bn}.

Let A be an assignment and VALA afunction on≡ ME(L+) such that for every
δ ∈ ≡ ME(L+).

1. If δ is a variable, then VALA(δ) = A(δ).
If δ is a constant inL+, then VALA(δ) = g(δ).

2. If δ isπ(a1, . . . , an) ( whereπ ∈ MEn+1(L+)) anda1, . . . , an ∈ ME0(L+) then
VAL A(δ) = [λδ] A.

3. If δ is [λx1, . . . , xnθ] (whereθ ∈ ME1(L+)), then VALA(δ) = δA.
4. If δ is ¬τ, then VALA(δ) = [λδ] A.
5. If δ is (µ → τ), then VALA(δ) = [λδ] A.
6. If δ is (∀x)µ, then VALA(δ) = [λδ] A.
7. If δ is (∀mx)µ, then VALA(δ) = [λδ] A.
8. If δ is (∀m Fn)µ, then VALA(δ) = [λδ] A.
9. If δ is [λµ], then VALA(δ) = δA.

In a way analogous to Section 3, it can be shown (by induction over the set of mean-
ingful expressions ofL+) that VALA satisfies the conditions forvalM,A in the defi-
nition of an identity-freeL-interpretation. LetAK be the assignment inSK such that
AK (u) = u, whereu is either a predicate or individual variable. Now, from the defi-
nition of VAL A it follows that VALA(δ)H〈 〉 if and only if δA ∈ K, for every assign-
ment A. But, it is clear thatδAK = δ. So AK satisfies
 in MK . Restrict nowMK to
L . We get, then, an identity-freeL-interpretation and assignmentAK which satisfies

. Also, every axiom of	-≡RRC* is true inMK and MP and UG preserve truth in
MK . �
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NOTES

1. For details on different versions of conceptualism cf. Cocchiarella [2] Chapter 2 and [6],
and Freund [7].

2. For a detailed description of this philosophical theory cf. Cocchiarella [3] and [4], and
[7].

3. Such as the transformation of “human” into “humanity” and of “red” into “redness.”

4. For details on the nature of this correlation cf. [4] and [7] Chapter 1.

5. For details on this hierarchy and the mechanisms involved in its construction cf. [7] and
[4].

6. For details on the semantics for those systems cf. Simms [10] and [2], Chapters 4 and 6.
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7. Note that a predicate expression is allowed to occur in subject position in an atomic for-
mula, even when that expression is itself the predicate of the formula. This permits a
more accurate representation of the role of predicates in natural language, even though
it does not comply with the grammar of the theory of simple logical types as originally
conceived. But, for reasons noted by Cocchiarella in [1] and [3], the gramatical stratifi-
cation of the original form of the theory of simple logical types is unnecessary and based
on a confusion between the concepts predicates stand for in their role as predicates and
the objects which their nominalized forms denote as singular terms.

8. For an intuitive explanation of this system cf. [4].

9. As we have already noted, this semantics is an adaptation of the sort of models formu-
lated firstly, by John Simms, for Cocchiarella’s systemT and later adapted, by Coc-
chiarella, for normal extensions of his systemM*. The semantics is Fregean (in the sense
understood, for example, in [2]), that is, it interprets nominalized predicates as denoting
certain individuals (viz. concept correlates).

10. For details concerning the way such theories condition predication see [2].
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