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Toward the Limits of the
Tennenbaum Phenomenon

PAOLA D’AQUINO

Abstract Weconsider the theory PA# and its weak fragments in the language
of arithmetic expanded with the functional symbol #. We prove that PA# and
its weak fragments, down to∀E#

1(N) andI E−#
1 , are subject to the Tennenbaum

phenomenon with respect to+, · , and #. For the last two theories it is still
unknown if they may have nonstandard recursive models in the usual language
of arithmetic.

1 Introduction LetL = {0, S,+, · ,<} be the usual language of Peano Arithmetic
(PA), and letN denote the standard model forL . Tennenbaum showed in [14] that in
any nonstandard model of PA the operations of+ and · cannot be recursive. Anal-
ogous results have also been obtained for weak fragments of PA. McAloon showed
in [10] that the+ and · of any nonstandard models ofI�0 are not recursive, and
Wilmers proved the same result for nonstandard models ofI E1 (see [16]). On the
other hand, Shepherdson [13] constructed recursive nonstandard models ofI Open
and more recently recursive models ofI Open + normality have been constructed
(see [2]).

Definition 1.1 A theoryT in a language containingL has the Tennenbaum phe-
nomenon for the operations+ and · if for every nonstandard modelM of T there is
no isomorphism betweenM andω such that the operations of+ and · of M corre-
spond to recursive operations onω.

A very natural question is: How weak can a fragment of arithmetic be and still have
the Tennenbaum phenomenon? Kaye in [7] considered, as a possible candidate, the
theory I E−

1 , where induction is applied only toE1-formulas with no parameters. He
proved the following relations betweenI E−

1 and the theory∀E1(N), the universal
existentially bounded true sentences.

Theorem 1.2 (i) ∀E1(N) � I E−
1 ; (ii) For every σ ∈ ∀E1(N) if M |= I E−

1 +
¬σ then M is not recursive.
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So the problem is shifted to studying the Tennenbaum phenomenon for the theory
∀E1(N). It is easy to construct a recursive nonstandard model of the theory∀1(N),
the set of true∀1-sentences. Addx > N and consider the ring of polynomials inx
overN. This is a recursive nonstandard model of∀1(N).

In [7] i t is left open if∀E1(N) has nonstandard recursive models. A positive
answer is given under the hypothesis that there exists a function of exponential growth
and whose graph isE1-definable inL . But this is still an open problem.

In recent work on fragments of PA the function # has played an important role
(see [4], [11], [15]). Recall that # is defined by #(x, y) = x[log2 y] , and it is a poly-
nomial time computable function. It has been relevant both for coding of syntax
([15]) and for some proofs of elementary number theory, such as cofinality of primes
[12] and Lagrange’s Theorem [3]. Sometimes we will use the equivalent notation
#(x, y) = x|y|, where|y| denotes the length ofy in basis 2. In this paper we will con-
sider the Tennenbaum phenomenon for various fragments of PA involving #, and re-
late this to [8]. Many of Kaye’s results on the relative strength of some fragments of
PA proved in [8] are purely formal and hence can be easily extended to the relative
theories in the languageL#.

Wewill work in the languageL# = L ∪ {#} and all the theories we will consider
will have some basic obvious axioms about # (see also [5]). Two different results are
proved. On the one hand we show that the # of a nonstandard model of PA# is not
recursive, thus sharpening the classical result of Tennenbaum. On the other hand, we
show that+, · , and # of any nonstandard model of the theories of universal existen-
tially bounded sentences ofL# true inN—which we will denote by∀E#

1(N)—and of
existentially bounded parameter free induction—which we will denote byI E−#

1 —are
never recursive operations, a result currently unknown for∀E1(N) and I E−

1 in L . It
seems to us that these are the weakest fragments of PA for which this phenomenon
has been proved.

Notice that if we add to the language a symbol for the exponential functionexp
then the theory∀Eexp

1 (N) is subject to the Tennenbaum phenomenon for+ and · (this
is implicit in [8]).

Remark 1.3 In order to prove thatI�0 (or I E1) satisfies the Tennenbaum phe-
nomenon it is sufficient to construct in any nonstandard modelM of I�0 (or I E1)
a nonstandard initial segmentI, such thatI |= PA. Let A, B be two disjoint recur-
sively inseparable r.e. sets and define the following type

τ(v) = {pn|v : if n ∈ A} ∪ {pn � |v : if n ∈ B}
wherepn denotes thenth prime. Clearly,τ(v) is an r.e. set, and by Craig’s trick there
is a recursive set of formulas generating the same type. So without loss of generality
we can assumeτ(v) to be a recursive set. It is finitely satisfiable inI and of bounded
complexity, hence realized inI, say by somea ∈ I. Define

n ∈ C iff ∃q(a = q + q + · · · + q︸ ︷︷ ︸
pn times

)

n �∈ C iff ∃r < pn∃q(r �= 0∧ a = q + q + · · · + q︸ ︷︷ ︸
pn times

+r).
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So the formulas definingC and the complement ofC are the same inI andM . So if
+ of M was recursive thenC also would be recursive which is a contradiction since
A andB are recursively inseparable. To show that the product ofM is not recursive
asimilar argument is used.

We will also use these results to prove that the function # of any nonstandard
model of the corresponding fragments in the languageL# is never recursive. Since
the initial segmentI is a model of PA, the function(x, y) �→ x[log2 y] is total overI in
a suitable sense. We will have to show that this function coincides with the function
#, and this will imply thatI is closed under #, and hence # cannot be recursive. A
slightly more delicate argument will be used for the theory∀E#

1(N).

Notice that there are recursive binary functions which may be recursive over
nonstandard models of arithmetic. For example, consider the function defined as fol-
lows:

f (x, y) =
{

1 if x ≤ y
0 if x > y

.

Since< can always be chosen recursive, thenf also is recursive.

2 The nonrecursiveness of # We will show that the Tennenbaum phenomenon
holds for the function # in all of the theories for which the classical Tennenbaum phe-
nomenon has been established for+ and · . Our proof will also work for any function
whose graph is�0-definable and which satisfies some basic properties of #. It is easy
to define in a simple way the graph of+ and · from xy:

a · b = c iff (xa)b = xc,

a + b = c iff xa · xb = xc.

This implies the Tennenbaum phenomenon forxy. The same argument does not seem
to adapt straightfowardly to #: it seems to us that there is not an easy definition of+
and/or · in terms of #.

One can easily define+ from · and 2x via 2a+b = (2a) · (2b). Semenov showed
that · cannot be defined from+ and 2x, and in fact the 2x of a nonstandard model
of PA may be recursive (see Remark3.6). Recall that the graph of the exponential
function

(x, y) �→ xy

is �0-definable, and the recursion laws of exponentiation are provable inI�0 (see
[1], [6]). Let θ(x, y, z) be such a formula. Actually, for the purposes of this section it
is not necessary to work with a formula of low complexity since induction is allowed
to all formulas, but we prefer to refer to the�0-definition of exponentiation since it
will be used also in the next section. Via the formulaθ we can also define the length
of an element in basis 2:

|x| = n iff ∃z ≤ x(θ(2, n, z) ∧ x < 2z).

Wewill use the standard notation enriched with the superscript # for formulas, theo-
ries, and so on, in the languageL#. While an axiomatization for+ and · is obvious,
it is less obvious which axioms we need to choose for the function #. The recursion
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equations for # are not so immediate as for+ and · . We have chosen the following
axioms:

1. ∀x > 0∀y(#(x,0) = #(x,1) = #(0, y) = 0),

2. ∀x > 0∀y > 0((Pow2(y + 1) ∧ #(x, y + 1)

= x#(x, y))∨ (¬Pow2(y + 1) ∧ #(x, y + 1) = #(x, y))),

wherePow2(y) stands for∀x ≤ y(x|y → 2|x). Notice that axioms 1 and 2 are of
the type∀ followed by a�0-formula. We will denote by PA# the theory axiomatized
by the usual axioms of PA with induction applied toL#-formulas and by the above
axioms for #. With standard techniques it is easy to show that PA# is a conservative
extension of PA. In fact, via the�0-formula defining the graph of exponentiation we
can give ameaning to x[log2 y] in any model of PA. The graph of

(x, y) �→ x[log2 y]

is defined as

∃n < y∃v ≤ y(θ(2, n, v) ∧ v ≤ y < 2v ∧ θ(x, n, z)).

It can be proved in PA# that such a definition satisfies the axioms of # (see also
Lemma3.1).

Theorem 2.1 Let M be a nonstandard model of PA#. Then #of M is not recursive.

Proof: The proof proceeds as in the classical case. LetA andB be recursively in-
separable r.e. sets, and letpn denote thenth prime ofM . Construct the following
type as before:

τ(v) = {pn|v : n ∈ A} ∪ {pn � |v : n ∈ B}.
τ(v) is an r.e. set and there is a recursive set of formulas generating the same type,
so without loss of generality we can assumeτ(v) to be a recursive set. It is finitely
satisfiable and of bounded complexity, hence it is realized inM , sayby a. Let X =
{n ∈ N : pn|a}. Obviously A ⊆ X and B ∩ X = ∅. We will show that bothX and
N − X are r.e. in #. First of all notice that ifx is a power of 2 then

#(x, y) = #(2, z) iff |x||y| = |z|.
As recalled in Remark1.3we have

n ∈ X iff ∃u(u + · · · + u︸ ︷︷ ︸
pn times

) = a ,

and if we use the fix element 2a we have thatX is r.e. in ·

n ∈ X i f f ∃v(v · · · · · v︸ ︷︷ ︸
pn times

) = 2a

(think of v as 2u). Now using the fix element 22
a

we can show thatX is r.e. in #.
Consider the exponential version of

v · · · · · v︸ ︷︷ ︸
pn times

= 2a : that is, 2
v · · · · · v︸ ︷︷ ︸

pn = 22a
.
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Wecan express this equality in terms of # as follows:

#(#· · ·#(#︸ ︷︷ ︸
pn times

(2,2v),2v), . . . ,2v) = #(2,22a
).

Hence we have that

n ∈ X iff ∃w(#(#· · ·#︸ ︷︷ ︸
pn times

(2,w),w), . . . , w) = #(2,22a
).

In an analogous way it can be shown thatN − X is r.e. in #. We have in fact

n ∈ N − X iff
pn−1∨
j=1

∃s(#(#· · · (#︸ ︷︷ ︸
pn times

(s,22 j
), s), . . . , s) = #(2,22a

).

�

Remark 2.2 Notice that the above proof can be reproduced in any nonstandard ini-
tial segment [0, α] of M since in a model of PA all initial segments determined by an
element are recursively saturated. We can in fact realize the type in [0, α], for α arbi-
trarily small and nonstandard inM : that is, of the order double length|| · || and still
nonstandard. In the above proof takeα = ||b|| for some small nonstandardb, and| · |
computed inM . The existential quantifiers in the definition of bothX andN − X can
be bounded by 22

a
. So if 22a

< α then # restricted to [0, α] is not recursive.

Weare now concerned about fragments of PA#. By I�#
0 we denote the theory axiom-

atized by induction on bounded formulas ofL# and axioms 1 and 2 for #. In [5] we
showed thatI�#

0 is bi-interpretable with the more familiar theoryI�0 + �1.
It is more complex to find a natural axiomatization for the theoryI E#

1. The pre-
vious axioms for # are not suitable anymore since they have a higher complexity with
respect to the induction we allow. Later we will use the axiomatization ofI E#

1 given
in [5] since all the axioms are true∀#

1. They describe the basic properties of the func-
tion #. We will discuss this theory in more detail in the next section.

3 The Tennenbaum phenomenon for weak fragments of PA# McAloon showed
in [10] that any nonstandard modelM of I�0 has a nonstandard initial segmentI
which is a model of PA. Using McAloon’s result we can prove that ifM is a model
of I�#

0 also the operation # is not recursive, but this requires an argument.
Recall that the graph of the exponential function is�0-definable, and the recur-

sion laws of exponentiation are provable inI�0 (see [1], [6]). Let θ(x, y, z) be a for-
mula defining it with the above properties. IfM is a model ofI�#

0, in particularM is
amodel ofI�0, and by McAloon’s result it has a nonstandard initial segmentI which
is a model of PA. InI the exponential function is total and via the formulaθ we can
define the graph of the function

(x, y) �→ x[log2 y]

as follows
∃n < y∃v ≤ y(θ(2, n, v) ∧ v ≤ y < 2v ∧ θ(x, n, z)).
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Denote such a formula byψ(x, y, z). In order to prove the nonrecursiveness of # it
is enough to show that the function defined byψ coincides with the function # thatI
inherits fromM . This is proved in the following lemma.

Lemma 3.1 M |= ∀x > 1, y, z(ψ(x, y, z) → #(x, y) = z).

Proof: Fix x > 1and apply�0-induction onn = y + z. Suppose the implication has
been proved for allm < n. Assumeψ(x, y + 1, z) with y + 1+ z = n. Wedistinguish
two cases.

Case 1: If Pow2(y + 1) then #(x, y + 1) = #(x, y) · x, and|y + 1| = |y| + 1. So
fromψ(x, y, z) and the recursion properties of exponentiation it followsψ(x, y, z/x).
By inductive hypothesis, #(x, y) = z/x and so #(x, y + 1) = z.

Case 2: If ¬Pow2(y + 1), then #(x, y + 1) = #(x, y), and|y + 1| = |y|. So from
ψ(x, y + 1, z) it follows ψ(x, y, z) and by inductive hypothesis #(x, y) = z and so
#(x, y + 1) = z. �

Now using Theorem2.1we can deduce that # ofI, and so also ofM , is not recursive.
The situation becomes more complex for the theoryI E#

1 and weaker fragments.
Werecall that the theoryI E#

1 is the theory introduced in [5] and axiomatized by induc-
tion on E#

1-formulas and the twelve axioms listed below which describe the complex
recursion laws of the function # in asimple way: that is, using only formulas of the
type universal followed by an open formula.

1. ∀x(#(x,0) = 1∧ #(x,1) = 1);
2. ∀x∀y > 0#(x,2x) = x#(x, y));
3. ∀x∀y > 1(#(x, y)/x = #(x, [y/2]));
4. ∀x(#(2,2x) > x);
5. ∀x > 0(#(2x, x) ≤ x#(x, x));
6. ∀x∀y > 0∀z > 0(#(x, yz) ≥ #(x, y)#(x, z));
7. ∀x∀y ≤ x(#(2x, y) < #(2x − 1,2y));
8. ∀x∀y∀z(#(2, z) < y + 1 < #(2, z + 1) → #(x, y + 1) = #(x, y));
9. ∀x∀y∀z(#(2, z) = y + 1 → #(x, y + 1) = x#(x, y));

10. ∀x∀y∀z(y ≤ z → #(x, y) ≤ #(x, z));
11. ∀x∀y∀z(#(xz, y) = #(x, y)#(z, y));
12. ∀x > 1∀y∀z(#(x, y) = #(x, z) → ∀w(#(w, y) = #(w, z))).

In [5] an E#
1-formula which defines the graph of exponentiation is found. At the mo-

ment this is the formula of lowest complexity which defines the exponential function
(at the cost of adding the polynomial time computable function # to the language).
The theoryI E#

1 has been introduced as an adequate fragment in which the obvious
recursion laws of exponentiation can be proved for theE#

1-formula defining it. We
refer to [5] for more details.

Werecall also that Matijasevic showed that the graph of exponentiation is exis-
tentially definable. This is the key step in the proof that every r.e. set is existentially
definable. In [9], the following definition ofan = m is obtained:

an = m iff m =
[

yn+1(Na)

yn+1(N)

]
,
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whereyn+1(Na) is the(n + 1)st solution of the Pell equationx2 − (N2a2 − 1)y2 = 1
andyn+1(N) is the(n + 1)st solution of the Pell equationx2 − (N2 − 1)y2 = 1, for
N > nm2. This definition is clearly existential. We will denote the formula defining
the relationxy = z by ∃w̄ϕ(x, y, z, w̄) whereϕ(x, y, z, w̄) is quantifier free, and̄w
denotes a finite sequence. Using the properties of the solutions of a Pell equation it
is easy to see that the above definition satisfies the recursion laws of the exponential
function in PA.

Wilmers showed in [16] that any nonstandard model ofI E1 has a nonstandard
initial segment which is a model of PA. So if we work in a modelM of I E#

1 we have
anonstandard initial segment I which is a model of PA, and onI the function

(∗) (x, y) �→ x[log2 y]

is total. As in the case ofI�#
0, in order to show that # ofM is not recursive it will

be enough to show that the function (∗) coincides with the function # thatI carries
inherited fromM . This will be shown in the following theorem.

Theorem 3.2 If M is a nonstandard model of I E#
1 then the operations +, · , and

# are each nonrecursive.

Proof: Let I be a nonstandard initial segment ofM which is a model of PA. Our
main goal is to show that the function

(x, y) �→ x[log2 y]

coincides with the function # onI inherited fromM . Weneed to show this formally:
hence, we need to express formally what we mean byx[log2 y] to coincide with #(x, y).
This time we cannot use the�0-formula defining exponentiation since inM we have
available only induction on existentially bounded formulas. We will use the Mati-
jasevic definition of exponentiation which we denoted by∃w̄ϕ(x, y, z, w̄). The idea
now is to show that for every instance of thew̄’s which makesϕ true for somea, b, c,
then the #-version of it is also true: that is, #(a, b) = c. We do not attempt to show
that this is true in the whole model, but it will be sufficient to show the implication
low in the model.

Consider the formulaξ(s) defined as follows:

∀a, b, d, c < s∀ū < s∀w̄ < s(a + b + d + c + ū + w̄ =
s ∧ ϕ(2, n, d, ū) ∧ d ≤ b < 2d ∧ ϕ(a, n, c, w̄) → #(a, b) = c).

ξ(s) says that ifn, b, a, c, ū, w̄ are belows andn = |b| andan = c in the Matijasevic
sense, then #(a, b) = c. Notice thatξ(s) is a universally bounded formula, andξ(m)

is true for allm ∈ N. Notice also that no #-term appears in the bounded quantifiers.
Weneed to distinguish various cases.

Case 1: For alls ∈ M we haveM |= ξ(s). In this case we have that over the whole
modelM the Matijasevic definition ofa|b| coincides with #(a, b), and this implies
that # is not recursive.

Case 2: There iss ∈ M such thatM |= ¬ξ(s). By the least number principle ap-
plied to¬ξ(s) ∈ E#

1 (see [8]) there iss0 such thatM |= ¬ξ(s0) ∧ ∀s < s0ξ(s).
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Subcase 1: If I < s0, then overI we have the same situation as in Case 1 and hence
also in this case # is not recursive.

Subcase 2: If s0 ∈ I, then I |= ∀s < s0ξ(s). One first shows that there is a non-
standardα ∈ I such that whenever̄δ are the first witnesses ofu|v|, for u, v < α then
u|v| < s0, 22α

< s0 andδ̄ + u + v + |v| + u|v| < s0. The existence of suchα can be
obtained by applying overspill (inI) to aformalization of the above sentence. Now
chooseb < α such that 22

b
< α, and the result is that, in the initial segment [0,22b

],
the functionsx|y| and #(x, y) coincide. From Remark1.3 it follows that # is not re-
cursive. �

We now consider the fragmentI E−
1 which was suggested by Kaye in [8] as apos-

sible candidate to be the weakest fragment of PA to be subject to the Tennenbaum
phenomenon. As we have already recalled in Section 1, he showed strong connec-
tions between the theoriesI E−

1 and∀E1(N) (see Theorem1.2). More precisely, he
proved that ifM is a model ofI E−

1 but not a model of∀E1(N) then+ and · of M
are not recursive and left open the problem whetherM is a model of∀E1(N). We
will consider the theoriesI E−#

1 and∀E#
1(N) in the languageL# and we will show

that the operations+, · , and # of any nonstandard model of either theory cannot be
recursive.

Theorem 3.3 Let M be a nonstandard model of I E−#
1 and assume M is not a

model of ∀E1(N). Then the operations +, · , and # of M are not recursive.

Proof: Kaye proved that ifM is a model ofI E−
1 but not a model of∀E1(N) then

there is a nonstandard initial segment ofM which is a model of PA. We can now
easily adapt the proof of the previous theorem to this case, simply taking care in Case
2. If M |= ∃s¬ξ(s), we can no longer appeal to the least number principle forE#

1-
formulas since it is not equivalent to parameter free induction, but we can still be sure
that there is a nonstandards0 such thatM |= ξ(s0) ∧ ¬ξ(s0 + 1.) Otherwise byU−#

1 -
induction (recall thatI E−#

1 � IU−#
1 , see [8]) we would haveM |= ∀sξ(s)—notice

that we have used only thats0 is nonstandard. Now just repeat the same proof as in
Theorem3.2. �
It is left to show that the theory∀E#

1(N) is subject to the Tennenbaum phenomenon
for the functions+, · , and #. Kaye in [8] sketched a proof of the nonrecursive-
ness of+ and · of any nonstandard model of∀E1(N) assuming the existence of a
function growing at least as fast as exponentiation and whose graph isE1-definable.
The existence of such a function is still an open problem. In [5] we showed that the
graph of exponentiation is definable inL# using only existentially bounded quan-
tifiers. We will denote such a formula by�(x, y, z), and it is of the form∃t̄ <

τ(x, y, z)G(x, y, z, t̄), with G quantifier free andτ a term of the languageL#. For
any modelM of ∀E#

1(N) we define

N0 = M and Ni+1 = {a ∈ M : ∃c ∈ Ni, M |= �(a, a, c)}.

Notice that theNi’s are initial segments ofM . In fact, inN it is true that if�(n, n, m)

for somen, m then�(n′, n′, k) for all n′ < n and somek < m, and this sentence is of
the form∀E#

1.
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Kaye in [8] attached to any modelM of I E−
1 asequence of initial segments de-

fined as follows:

M0 = M and Mi+1 = {a ∈ M : ∃b ∈ Mi, M |= χ(a, b)},
whereχ(a, b) is anE1-formula,∃ū < t(a, b)F(a, b, ū), with F quantifier free andt a
term, saying thatb is a solution of the Pell equationx2 − ((a + 1)2 − 1)y2 = 1, andb
is in the equivalence class 0 moduloa + 1 and is greater than or equal to(a + 1)a+1.

(In N for fixed a the leastb satisfyingχ is the (a + 1)st solution of the equation.)
Notice thatχ is not functional. The following estimates on the size of the(n + 1)st
solution of the Pell equationx2 − (a2 − 1)y2 = 1 will be useful later (see [9]):

(2a − 1)n ≤ yn+1(a) ≤ (2a)n.

Kaye showed that
Mexp =

⋂
i∈ω

Mi

is a model ofI�0 + exp. Notice that both sequences ofNi’s and of Mi’s may be
constant.

It is easily seen that∀E#
1(N) � I E−#

1 . So Kaye’s construction of theMi’s can be
reproduced in any model of∀E#

1(N). Wewill, in fact, show thatNi = Mi for all i.

Lemma 3.4 Let M be a model of ∀E#
1(N). Then Ni = Mi for all i.

Proof: Weprove the lemma fori = 1 since the general case can be treated in a sim-
ilar way. We want to show that wheneverχ(a, b) is true then also�(a, a, c) is true
for somec, and vice versa. Obviously, this is always the case inN, but since we work
in M model of∀E#

1(N) we need to express the above implications in the appropri-
ate complexity in order to have them satisfied also inM . There is a further problem
thatχ is not functional, and this also needs to be taken into account. We will use the
estimates given in [9] on the size of thenth solution and the Matijasevic definition
of exponentiation in order to identify the smallestb > 0 satisfyingχ(a, b). Consider
the∀E#

1-sentence:

∀a, b, ū, w̄((F(a, b, ū) ∧ ϕ(2a + 1, a, b, w̄)) → ∃c < b�(a, a, c)).

It says that wheneverχ(a, b) andb < (2a + 1)a (that is,b is the(a + 1)st solution
of the equationx2 − ((a + 1)2 − 1)y2 = 1) then�(a, a, c) for c < b. This implies
M1 ⊆ N1.

To prove the reverse direction consider the following∀E#
1-sentence:

∀a, c, t̄(G(a, a, c, t̄) → ∃b < c3χ(a, b)).

This says that whenever�(a, a, c) then we can findb < c3 satisfyingχ(a, b), and
it implies N1 ⊆ M1. Notice that the inequalityb < c3 is an easy consequence of the
inequalities of [9]. In fact, ya+1(a + 1) ≤ (2(a + 1))a < (aa)3. There is no problem
in guaranteeing the existence of these objects since we work inN.

The proof thatMi+1 = Ni+1, assumingMi = Ni is very similar to the one shown
above except that the∀E#

1-sentences become longer since they have to say thatb andc
are inMi andNi, respectively, and this can be expressed without increasing the com-
plexity of the sentences. �
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We can then extend many of the properties of theMi’s proved by Kaye to theNi’s
(e.g.,

⋂
i∈ω Ni = Nexp is a model ofI�0 + exp) and we will use them in the proof of

our last theorem.

Theorem 3.5 If M is a nonstandard model of ∀E#
1(N) then the operations +, · ,

and # are not recursive.

Proof: Let Ni’s be as above. IfNi = Ni+1 for all i, thenM is a model ofI�0 + exp
and hence+, · , and # are not recursive. For the nonrecursiveness of # just notice
thatM being a model ofI�0 + exp it has a nonstandard initial segmentI which is a
model of PA. It is not difficult to adapt the proof done forI�#

0 to this case.
If Ni �= Ni+1 for all i then Proposition 6.3 of [8] and Lemma3.4guarantee that

the initial segmentNexp is nonstandard and this is enough to deduce that the three
operations onM are not recursive. Notice that only these two cases are possible. In
fact, suppose thatN1 ⊂ N0 andN1 = N2 =, . . . , and leta ∈ N0 − N1. Consider the
following ∀E#

1-sentence:

∀a, b∀ū(G(2, b, a, ū) → ∃c < #(a, a)�(b, b, c)).

It says that ifb = log2 a thenbb = c < #(a, a). This is obviously true inN, and hence
also inM . Clearly,a < bb = (log2 a)log2 a. FromN1 = N2 andb ∈ N1 it follows that
b ∈ N2 and sobb ∈ N1, but this gives a contradiction sincea < bb anda �∈ N1 (here
we have used the functionality of�). �
Wehave shown that in the languageL# the Tennenbaum phenomenon holds also for
the fragment of existentially bounded free induction, a result which is still unknown
for L .

Remark 3.6 Wecan extend this result to manyunary functions f in the following
sense: there are nonstandard models of PA where the functionf is recursive. Letf
be a unary function satisfying the following conditions:

1. f is 1− 1,

2. range(f ) is coinfinite, and
3. f has no cycles.

We assume thatf is a computable function over the integers. It will be clear later
why we need the last hypothesis. Examples of such functions include 2x andx|x|, or
|x|.

The idea is to find a recursively saturated model ofTh(N, f ) and impose
+, · ,< to make this a nonstandard model of PA. First of all we try to understand
what a countable model(M, g) of the theory of f looks like. Given an elementa of
amodel of f we define the orbitOa of a as follows:

Oa = { f k(a) : k ∈ ω} ∪ { f −k(a) : k ∈ ω}.

Clearly, distinct orbits are disjoint. For anya there are two possibilities:

1. Oa ∩ M − range( f ) = ∅, and this happens ifa ∈ ⋂
k∈ω range( f k) (Z-orbits);

2. Oa ∩ M − range( f ) �= ∅ and this is a singleton{a}, and this happens if
a ∈ ⋂

k≤k0
range( f k) anda �∈ range( f k0+1) (N-orbits).
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Obviously, a model off is completely determined by the number ofZ-orbits, n∞,
and the number ofN-orbits,n1. From the hypothesis that the range off is coinfinite
it follows thatn1 is always infinite. It is easy to show that the theory off is complete.
This is implied by the following lemma.

Lemma 3.7 For any given model (M, f ), there is an elementary extension
(M∗, f ∗) such that n∞ is infinite.

Proof: It is a simple compactness argument applied to the elementary diagram of
(M, f ) together with the following set of sentences in an expanded language with
new constant symbolsdi for eachi ∈ ω.

{di �= d j : i, j ∈ ω, i �= j} ∪ { f l(di) �= f m(d j) : m, l, i, j ∈ ω, m �= l}∪
{∃x f k(x) = di : for all k, i ∈ ω}.

Eachdi generates aZ-orbit. Any finite subset of the above set of sentences has a
model, since it is true in(M, f ). �
Two models of f with bothn∞ andn1 infinite are obviously isomorphic and hence
elementary equivalent. Via the previous lemma the theory off is complete. It is also
clear that the model withn∞ andn1 both infinite is recursive and can be represented
as the union of countably many copies ofN and countably many copies ofZ. De-
note such a model by(N, f ). Wecan always find an elementary extension of(N, f )
which is recursively saturated, and without loss of generality the model so obtained
has countably manyZ-orbits. If not, letOα1, . . . , Oαn be the onlyZ-orbits of(N, f ).
Consider the following type:

{v �= f k(αi) : k ∈ ω,1 ≤ i ≤ n} ∪ {αi �= f k(v) : k ∈ ω,1 ≤ i ≤ n}∪
{∃x f k(x) = v : k ∈ ω}.

This type is finitely satisfiable in(N, f ) and hence by recursive saturation is realized
in the model. In fact,n∞ is infinite if and only if(N, f ) is recursively saturated. The
last step is to expand(N, f ) to a model of PA, and this is obtained via resplendency of
(N, f ). First expand the language with the relational symbols for+, · ,0, c (0 andc
are just constant symbols). Consider the formulaθ(x, y) defining the graph off over
N (θ ∈ �1 ∩ �1, using the hypothesis thatf is computable). LetT be the theory in
the expanded language containing the axioms of PA, the definition off , andthe set of
sentences{∃x f (x) = c, c �= f k(0) : k ∈ ω}. T is consistent withTh(N, f ) sinceN is
amodel of any finite fragment ofT , and hence by resplendency there is an expansion
of (N, f ) to a model ofT . The model we get is a nonstandard model of PA where the
function f is recursive. So functions such as 2n, n!, pn nth prime may be recursive
functions over nonstandard models of PA. We believe that with minor adjustments
this result can be expanded to most unary recursive functions and may consider this
in a later paper.

If we consider functions of two variables such asxy and x[log2 y] they are not
recursive in any nonstandard model of PA, even if they are definable from 2x and
x[log2 x] , respectively. The complexity of the defining formula is higher than�0, and
so the recursiveness of 2x andx[log2 x] cannot be transferred toxy andx[log2 y] , respec-
tively.
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