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Who’s Afraid of Impossible Worlds?
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Abstract A theory of ersatz impossible worlds is developed to deal with the
problem of counterpossible conditionals. Using only tools standardly in the
toolbox of possible worlds theorists, it is shown that we can construct a model
for counterpossibles. This model is a natural extension of Lewis’s semantics for
counterfactuals, but instead of using classical logic as its base, it uses the logic
LP.

1 Introduction The semantics of relevant logics and strong paraconsistent logics
contain worlds in which contradictions and other impossibilities come true. The use
of impossible worlds has provided a barrier to understanding these logics especially
for philosophers trained in classical logic and traditional metaphysics. In this paper, I
present a semantics for a paraconsistent logic using only the entities that have become
standard in traditional semantics: possible worlds, relations, individuals, and sets.
This semantics contains inconsistent worlds, but they are set-theoretic constructs. It
is hoped that this construction will help to give classically-minded philosophers a way
to understand at least some nonclassical logics.

The construction is fairly simple. Given a set of relations, a set of individuals,
and little bit of set theory, I construct a set of states of affairs. The worlds of my se-
mantics are just sets of states of affairs. These, of course, are “ersatz worlds” in the
sense of Lewis [8]. We can distinguish among these ersatz worlds, possible and im-
possible worlds. A possible (ersatz) world is such that all of its states of affairs are
true in some “real possible world.”

I then take this set of worlds and, applying some plausible metaphysical prin-
ciples, impose upon it a relation of comparative similarity. Abstracting the formal
features of the set of ersatz worlds and this similarity relation, I construct a formal
semantics for a logic of counterfactuals. As Fuhrmann and I argue in [10] and [9],
there is a particular need for a paraconsistent logic for counterfactuals and I briefly
repeat our reasons in Section 2 below.

The semantics I create is a natural extension of Lewis’s semantics for counter-
factuals. As I argue in Sections 2 and 3 below, the logic captures some rather strong
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intuitions about counterpossible conditionals and does so in a natural way. This se-
mantics of Section 4 is presented to show that impossible worlds are useful elements
in our semantics, and the construction of Section 3 is presented to show that there is
no good reason not to include them in our semantics.

The logic of this semantics, viewed proof-theoretically,1 is an extension of
Priest’s logic,LP. LP is a particularly useful logic; one might even call it “a labo-
ratory for the paraconsistent logician.” It has a simple three-valued semantics, it cap-
tures many of the inferences we want to capture, even if it does not capture everything
we want.LP lacks some important connectives, such as a vertebrate implication, but
this is part of what makes it simple and useful.

I do not axiomatize the logic that is complete over this semantics. That is not my
interest in the present paper. Although this logic might be interesting in its own right,
my eventual target (to be reached elsewhere) is to provide an understanding of other
nonclassical logics, in particular relevant logics. I do not now extend the construction
to provide a semantics for relevant logics because I want only to discuss the issue of
impossible worlds here. The need to understand the other elements of the semantics
of relevant logics will cloud this issue. The simple semantics and metaphysical con-
struction here is sufficient to show that a good deal can be gained in semantics with
no ontological cost by adding impossible worlds.

2 Semantics and metaphysics There seems to be a need in our model theory for
impossible worlds. For consider the following pair of counterfactuals.

(1) If Sally were to square the circle, we would be surprised.
(2) If Sally were to square the circle, we would not be surprised.

As we have suggested elsewhere (Mares and Fuhrman [10]), the first of these coun-
terfacutals seems true and the second false. The problem is that, on Stalnaker’s and
Lewis’s semantics, both of these statements must be given the same value (on some
translations false and on other translations they are both taken to be true). We find
similar problems with

(3) If water were an element, it could not be broken down into hydrogen
and oxygen,

and

(4) If water were an element, it could be broken down into hydrogen and
oxygen.

Like (1) and (2), (3) and (4) both have metaphysically impossible antecedents but
seem to have different truth values. In this paper, I will provide a theory that allows
pairs of counterpossibles to have different truth values. The theory does this by al-
lowing impossible worlds (or indices as I will call them) into the model.

Wecan go even further. Consider the following pair of “counterlogicals.”

If Sally were to prove thatA, wewould be surprised.

and

If Sally were to prove thatA, wewould not be surprised.
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where A is some long truth-functional contradiction. We have the same intuitions
about this pair as in (1), (2), (3), and (4). Here then, we even have a need nontriv-
ially to treat counterpossibles with antecedents that are contradictions according to
the classical propositional calculus.

The need for an adequate theory of counterpossibles has also been felt outside
philosophical semantics. For example, Field says:

It is doubtless true that nothing sensible can be said about how things would be
different if there were no number 17; that is largely because the antecedent of
this counterfactual gives us no hints as to what alternative mathematics is to be
regarded as true in the counterfactual situation in question. If one changes the
example to ‘nothing sensible can be said about how things would be different
if the axiom of choice were false’, it seems wrong . . . : if theaxiom of choice
were false, the cardinals wouldn’t be linearly ordered, the Banach-Tarski theo-
rem would fail and so forth. ([5], pp. 237f)

Field says that the need for nontrivial truth conditions for these sorts of counterpossi-
bles shows that we should treat mathematical necessity as a more restrictive modality
than metaphysical necessity ([5], p. 236). That is, he says that we should hold that
mathematical truths are not true in all metaphysically possible worlds. Another ap-
proach to this problem is to hold that all mathematical truths are metaphysically nec-
essary, but that metaphysical necessity is not determined by all the worlds that there
are.

Lewis has suggested that we should deal with the apparent semantical difference
between counterpossible conditionals as pragmatic differences ([6], p. 24). I agree in
general with Dowty, Wall, and Peters when they say that a semantic theory should ac-
count for native speakers’ “judgments of synonymy, entailment, contradiction, and so
on” ([3], p. 2). Although there may be cases in which we should toss out our seman-
tic intuitions, for the most part they are our best guides to semantic theory, and there
must be some severe pressure from other sources to force us to deny intuition. I sug-
gest that the need to violate our intuitions about counterpossibles is felt only if we
also feel horror at the thought of allowing impossible worlds into our semantics.

This horror should not force us to cower in the apparent safety of a semantics
that includes only possible worlds. In the theory that I set out below, impossible
worlds have a very different status than possible worlds. This special status of possi-
ble worlds is entailed by the theory I present below in connection with the theory of
possible worlds that one chooses. If we pick, say, Lewis’s theory of possible worlds,
then the difference between possible and impossible worlds is that the former are ver-
tebrate real worlds (or copies of real worlds—see Section 3 below) and impossible
worlds are ersatz constructions.

Far from violating our ontological intuitions, the existence of these impossible
worlds is supported by our metaphysical theories. They are made from common-or-
garden varieties of entities found in possible worlds semantics—relations, individu-
als, and sets. Impossible worlds are “made from consistent stuff” available in possi-
ble worlds. Thus, in a very real sense, the present theory does not violate our meta-
physical intuitions; for all “real” things are consistent and obey all the other laws of
metaphysics. Even impossible worlds, although they make impossibilities true, do
not themselves have any impossible properties. Thus, I claim to have saved both our
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semantical and metaphysical intuitions.

3 Constructing impossible worlds I begin by assuming that there is a set of all pos-
sible worlds. It doesn’t matter whether these worlds are space-time continua like the
actual world, or ersatz constructs of some sort. I also assume that there are individu-
als in these worlds and that we can collect all of these individuals into a set. Clearly,
I also assume that there are sets.

An index is a set of states of affairs. I borrow, more or less, from [1], Barwise
and Perry’s treatment of states of affairs. A state of affairs (SOA) is a structure of the
form

< R, a1, . . . , an, π >

whereR is ann-place relation,a1, . . . , an are individuals, andπ is either 1 or 0.π is
called ‘a polarity’. The structure itself might just be a set-theoretic construct (such as
a sequence) or something more vertebrate, perhaps evensui generis. An index i is a
set of SOAs such that for eachn-place relationR and each sequence< a1, . . . , an >

of individuals, either< R, a1, . . . , an,1 > or < R, a1, . . . , an,0 > is in i. Note that
this disjunction is inclusive; it might be that both are ini.

With regard to relations, like my attitude toward possible worlds and SOA, I
try to stay as ontologically neutral as possible. I do not assume any particular the-
ory of relations here. As far as my current purpose is concerned, relations can be
Armstrongean universals, Platonic forms, or even functions from worlds to sets of
n-tuples of individuals. My aim is to convince a possible worlds theorist to adopt im-
possible indices. As far as possible, I do not want to tell her that she also needs to
adopt other bits and pieces that she does not already accept for other reasons. (Of
course, someone who rejects relations altogether will be hard to please.)

We also need a relation between indices and worlds—the relation of an index’s
representing a world. If for all SOA,< R, a1, . . . , an,1 > and< R, a1, . . . , an,0 >,

< R, a1, . . . , an,1 >∈ i iff
< a1, . . . , an > is in the extension ofR atw

and

< R, a1, . . . , an,0 >∈ i iff
< a1, . . . , an > is not in the extension ofR atw

theni is said torepresent w. If an index i represents some possible world, theni is
called ‘a possible index’.

A classical logician looking at the second of the two conditions defining the
representation relation might accuse me of assuming the classical meaning of nega-
tion. For a negative state of affairs holds at a world if and only if the corresponding
positive state of affairs does not. This sounds pretty much like an encapsulation of a
classical notion of negation. The correctness of this accusation depends on the way
we choose to understand states of affairs and indices. The following interpretation is
taken from [2] and [1] and I think it will help avoid this difficulty. We can think of
states of affairs as basic pieces of information.< R, a1, . . . , an,1 > is the informa-
tion thatR holds betweena1, . . . , an and< R, a1, . . . , an,0 > is the information that
R fails to hold between those objects. Negative information, moreover, does not just
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reduce to the absence of positive information. Having the information that it is not
raining in Auckland right now does not reduce to not having the information that it is
raining in Auckland right now. We can take an SOA to be a basic piece of informa-
tion. Some of these pieces are positive and others are negative, and neither is to be
explicated in terms of the other.

Thus, an index is a complete information state. It always contains either the in-
formation that a relation holds between a sequence of objects or the information that
it does not hold between them. One might wonder why I do not also include partial
information states in the semantics; for we are always in partial information states. I
want to leave the subject of how properly to represent partial information to other pa-
pers. At any rate, we can represent partial information in the present model by taking
sets of indices to represent the information state of a person, a computer, and so on.

One might also wonder why I have included all individuals in the domain of ev-
ery index. This was just to have an easy way to ensure the completeness of all indices,
to ensure that they all satisfy the principle of bivalence. Of course this does not imply
that all individuals exist at every index. But how we limit domains of quantification
at indices is not a topic I want to discuss here. I just want to talk about propositional
logic.

In order for our set of indices to constitute a Lewisian model for counterfacutals,
we must impose a comparative similarity relation on these worlds. For the purpose
of the present construction, I accept Lewis’s doctrine ofHumean supervenience. The
relevant version of this position is the following:

Humean Supervenience: If two worlds are identical in the matters of particu-
lar fact that they support, they are also identical in their modal and counterfac-
tual properties. (See [7], p. 111.)

In terms of our ontology, Humean supervenience says that the SOA contained by each
world determines which worlds are closer and more distant from other worlds. Thus,
as in Lewis’s theory of counterfactuals, given a particular context of utterance (in-
cluding the purpose of the utterance and other parameters of the conversation), there
will be a similarity relation (or more likely a family of similarity relations) on all in-
dices.

Given this construction of indices, one might wonder why we need possible
worlds as well as indices. The job that possible worlds (other than the actual world)
do in the construction is to determine which indices are possible and which are impos-
sible. In [8], Lewis argues that theories that contain only ersatz worlds are somehow
defective, in particular, that they require a primitive notion of possibility. If Lewis
is right, then we can avail ourselves of Lewis-style vertebrate worlds to determine
which indices are possible, and we do not require a primitive notion of possibility
any more than he does. If, on the other hand, some ersatzist construction allows us
to get the right notion of possibility “on the cheap,” then we can avail ourselves of
that construction. Now, for those who do not mind taking possibility to be primitive
or think that it can be determined somehow by the internal properties of indices, we
can dispense with possible worlds altogether (apart, of course, from the actual one).

We can now see how the present techniques allow us to construct a model that
will satisfy the linguistic intuitions discussed in Section 2 above. We can construct
indices in which Sally squares the circle and in which we are surprised and some of
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these will be closer than any index in which Sally squares the circle and we are not
surprised. Similarly, we can construct indices in which water is an element and cannot
be broken down into hydrogen and oxygen, and in which there is a universe of pure
sets in which the axiom of choice does not hold.

4 The formal model To put the intended model to use in a theory of counterfac-
tuals, we need a model theory. That is, we need a theory of how worlds satisfy state-
ments. To this end, I shall abstract certain features of the intended model (and make
certain assumptions about the intended model) and create a frame theory. In addition
to this frame theory, we will add a theory of truth from an appropriate language and
then show that the resulting model theory has some important virtues.

4.1 Frame theory To make our proofs easier, I will describe the frames using
Lewis’s notion of “spheres.” A sphere around an indexi is a set of indices that are
at most a particular “distance” fromi; that is to say, the worlds in this sphere are all
of those indices that do not differ fromi by any more than some particular degree of
dissimilarity.2

My frame theory is based closely on Lewis’s theory of centered frames (see [6],
§1.3).3 A f rame is a triple< I, P,$ > whereI is the set of indices,P is the set of
possible indices, and $ assigns to each index a set of spheres. In addition, all frames
satisfy the following postulates. Wherei is an arbitrary index,

1. If i ∈ P, thenP ∈ $(i). (Poss1)
2. {i} ∈ $(i). (Strong Centering)
3. If ϕ andψ are both in $(i), then eitherϕ ⊆ ψ or ψ ⊂ ϕ. (Nesting)
4. $(i) is closed under unions and nonempty intersections. (Closure)

The first of these postulates is special to this semantics, whereas the latter three are
standard, if sometimes controversial, postulates used in theory of counterfactuals.
The closure postulate is a useful housekeeping postulate. The first four postulates
are easiest to understand in terms of relative similarity. To motivate Poss1, let us first
discuss Poss2 stated below. Poss2 says that, for any given possible indexi, every
possible index is closer toi than is any impossible index. I’m not sure how to ar-
gue for Poss2 other than saying that it seems reasonable. Poss1 says that the set of
possible indices makes up a sphere around any possible index. Given Poss2, Poss1
also seems reasonable. For, if all possible worlds are closer toi than any impossible
index, partitioning the possible index from the impossible indices marks a real dis-
tinction in terms of comparative similarity. Nesting says that comparative similarity
is a linear ordering, which seems right. Strong centering says, in effect, that no index
is as similar toi asi itself. If all indices are distinguished by what states of affairs
they satisfy (as we have assumed in adopting Humean supervenience), then strong
centering holds. Although most philosophers of logic have now rejected the idea that
the similarity relation used in the theory of counterfactuals is an intuitive similarity
relation, these motivations still seem to hold for the notion of similarity that they have
adopted. From the postulates presented above, we can derive the following.

1. If i ∈ P andϕ ∈ $(i), then eitherϕ ⊆ P or P ⊂ ϕ. (Poss2)
2. If ϕ ∈ $(i), theni ∈ ϕ. (Weak Centering)
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As we have said above, Poss2 says that, for any given possible indexi, every possible
index is closer toi than is any impossible index. Weak centering says that no world
is closer toi thani.

4.2 Theory of truth and falsity Now that we have a class of frames, we need a lan-
guage and a theory of truth in order to have a model theory. The language is a stan-
dard propositional counterfactual language with propositional variablesp, q, r, . . . ,
connectives∼, ∧, ∨, and�→, and parentheses. Standard formation rules apply.
A model is a quadruple< I, P,$, v > where< I, P,$ > is a frame,v is a function
from propositional variables and worlds into the set{t, b, f }, such that, for all propo-
sitional variablesp, and alli ∈ P, v(p, i) �= b. Intuitively, t is the valuetrue, f is the
valuefalse, andb is the valueboth true and false.

Given a model we can define two relations between indices and well-formed for-
mulas:|= and =| . Weunderstand|= to be a satisfaction relation, that is, wheni |= A,
A is true ati. =| , on the other hand, is a dissatisfaction relation, that is, wheni =| A,

A is false ati. (Note that�|= just means “not|=”—it implies but is not equivalent to=| .
Similarly, �=| is just the negation of=| .) Since, on this semantics, well-formed for-
mulas are sometimes both true and false at worlds, we cannot treat falsehood merely
as failing to be true. I borrow my presentation of the truth conditions from [4] and
[14].

Since, as we have said, we cannot merely treat falsity as the absence of truth, we
must state both truth and falsity conditions for propositional variables and the various
connectives. For propositional variables, the conditions are quite straightforward:

i |= p iff (v(p, i) = t or v(p, i) = b).

In words,i satisfiesp if and only if p gets the value true or the value both true and
false ati. Similarly,

i =| p iff (v(p, i) = f or v(p, i) = b).

So, p is false ati if and only if p gets the value false or the value both true and false
at i.

Weextend the theory of truth and falsity to the other connectives as follows:

i |= A ∧ B iff i |= A and i |= B.
i =| A ∧ B iff i =| A or i =| B.

i |= A ∨ B iff i |= A or i |= B.
i =| A ∨ B iff i =| A and i =| B.

i |= ∼ A iff i =| A.
i =| ∼ A iff i |= A.

The truth condition for counterfactual implication is the same as it is in Lewis [6],
namely,

i |= A �→ B iff

∃S(S ∈ $(i) & ∃ j ∈ S( j |= A) & ∀k ∈ S(k =|A or k |= B))

or ¬∃S∃ j(S ∈ $(i) & ∃ j ∈ S & j |= A)
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The falsity conditions, however, are more complicated. There are two conditions un-
der which a counterfactual implication is false. First, it can fail to be true. Second,
there can be a counterexample to it. That is, a world in which the antecedent of the
counterfactual is true and the consequent false. Putting these two conditions together
we get the following:

i =| A �→ B iff either:

(i) i �|= A �→ B

or
(ii) i |= A andi =| B.

Now we need a concept of validity on models. The most obvious one is to define all
and only well-formed formulas true at all indices in all models to be valid. And this is
the definition that I will set for the purposes of this paper. Yet, following Kripke’s se-
mantics for nonnormal modal logics and Routley and Meyer’s semantics for relevant
logic, we could take the possible indices to be the determiners of validity. That is, we
could define all and only those well-formed formulas true in all possible indices in all
models to be valid. I am not sure about the relative merits of each of these proposals
at this time, but I choose the first, perhaps arbitrarily.

5 Some theorems Nesting makes the following inference hold throughout all
models:

i |= A �→ B
i |= A �→ C

�→ ∧.

∴ i |= A �→ (B ∧ C)

Weak centering gives us i |= A �→ B
i |= A

M P �→ .

∴ i |= B

And strong centering yields i |= A ∧ B
∴ i |= A �→ B.

The following isnot valid: (A∧ ∼ A) �→ B.

But, its “contrapositive” is valid: B �→ (A∨ ∼ A).

6 Some other theorems One property that we want to hold of possible indices is
that they are consistent. The theorem below shows that they are.

Theorem 6.1 If i is a possible index, then for all well-formed formulas A, it is never
the case that both i |= A and i =| A.

Proof:

Case 1: A is atomic. This follows directly from the definitions ofv and the theory
of truth and falsity.
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Case 2: A is a conjunction, for example,B ∧ C. This follows from the truth and
falsity conditions for conjunction and inductive hypothesis.

Case 3: A is a disjunction, for example,B ∨ C. This follows from the truth and
falsity conditions for disjunction and inductive hypothesis.

Case 4: A is a negation, for example,∼ B. This follows from the truth and falsity
conditions for negation and inductive hypothesis.

Case 5: A is a counterfactual implication, for example,B �→ C. Suppose thati |=
B �→ C. Weshow thati �=| B �→ C. Suppose otherwise. Then, by the hypothesis
of this case and the falsity conditions for negation,i |= B andi =| C. But, by weak
centering, andi |= B �→ C, if i |= B, theni |= C. So,i |= C andi =| C, contrary to
the inductive hypothesis. This concludes the proof of Theorem6.1. �

Corollary 6.2 For any possible index i and any well-formed formula A, i |=∼ A
if and only if i �|= A.

The above theorem and corollary together with the truth and falsity conditions for
∼, ∧, and∨ show that these extensional connectives act classically at possible
worlds. Now we will turn to the behavior of the counterfactual at possible indices.

We do so by constructing an “inner model.” Where< I, P,$, v > is a model,
let us call< P, ($ � P), (v � P) > “the Lewis model embedded in< I, P,$, v >.”
(v � P) determines a satisfaction relation|=′ such that the following hold.

1. i |=′ p iff (v � P)(p, i) = t.
2. i |=′ A ∧ B iff i |=′ A andi |=′ B.

3. i |=′ A ∨ B iff i |=′ A or i |=′ B.

4. i |=′
∼ A iff i �|=′ A.

5. i |=′ A �→ B iff ∃S(S ∈ ($ � P)(i) & ∀ j ∈ s( j �|=′ A or j |=′

B)) or ¬∃S∃ j(S ∈ $(i) & j ∈ S & j |= A).

These are just Lewis’s own truth conditions for the various connectives.
The following theorem shows that the counterfactual conditional saves much (in

fact, I would say all) of what is good about Lewis’s counterfactual. In order to under-
stand it, we need one more definition. A formulaA is impossible on a Lewis model
< P, ($ � P), (v � P) > if and only if there is no indexi ∈ P such thati |=′ A.

Theorem 6.3 Where < I, P,$, v > is a model, if A contains no subformulas im-
possible on < P, ($ � P), (v � P) >, then for all i ∈ P, i |= A if and only if i |=′ A.

Proof:

Case 1: A = p. Then,i |= p if and only if i |=′ p by the definitions of|= and|=′.

Case 2: A = B ∧ C.

i |= B ∧ C ⇐⇒ (i |= B & i |= C)

⇐⇒ (i |=′ B & i |=′ C) by inductive hypothesis
⇐⇒ i |=′ B ∧ C

Case 3: A = B ∨ C. Similar to Case 2.
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Case 4: A = ∼ B.

i |=∼ B ⇐⇒ i �|= B Corollary6.2
⇐⇒ i �|=′ B by inductive hypothesis
⇐⇒ i |=′∼ B

Case 5: A = B �→ C.

Suppose first thati |= B �→ C. SinceB is possible on< P, ($ � P), (v � P) >, there
is somei′ ∈ P such thati′ |=′ B. By the inductive hypothesis,i′ |= B. So, B �→ C
is not vacuously true ati. Then there is someϕ ∈ $(i) such thati′ ∈ ϕ, i′ |= B and
i′ |= C, and for alli′′ ∈ ϕ, if i′′ |= B, i′′ |= C. Now by nesting, eitherϕ ⊆ P or P ⊂ ϕ.

Suppose thatP ⊂ ϕ. Then for all j ∈ P, if j |= B, j |= C. But as we have said,i′ ∈ P,
i′ |= B andi′ |= C. So by the inductive hypothesis, for allj ∈ P, if j |=′ B, j |=′ C
and there is ani′ ∈ P, i′ |=′ B andi′ |=′ C. So, sinceP ∈ ($ � P)(i), i |=′ B �→ C.

On the other hand, suppose thatϕ ⊆ P. Then it follows straightforwardly from
the inductive hypothesis thati |=′ B �→ C.

Now suppose thati |=′ B �→ C . It follows directly from the construction of
the models and the inductive hypothesis thati |= B �→ C. �

7 Comments If we pay for ideology in the coin of ontology, then the doctrine of
impossible worlds can be bought with loose change lying around the house of almost
any possible worlds theorist. As we have seen, all we need are relations (of whatever
brand), individuals, and a little set theory to construct impossible worlds. Adding im-
possible worlds to our semantics gives us the tools with which to deal systematically
and nontrivially with counterpossible conditionals. Thus, there seems no reason why
we should stop at the limits of the possible and not accept also the impossible.

That is not to say that I find the logic characterized by the present semantics per-
fect. As I said in the introduction, my ultimate goal is to provide a philosophical basis
from which to understand relevant logic. In future papers I will argue that not much
more is needed to provide a philosophically acceptable semantics for relevant logic.
But arguing for the acceptability of impossible worlds is an important first step toward
that goal.
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NOTES

1. Viewed as a Hilbert-style axiom system, this logic is an extension of classical proposi-
tional logic. But, likeLP and unlike classical logic, the present logic rejects the inference
from a contradiction to anything.
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2. In this presentation of the formal material, I use classical first-order logic as my meta-
language. Because I am trying to sell paraconsistent logic and nonnormal worlds to clas-
sical logicians, I thought that I had better speak their language.

3. Note that, as Lewis points out in [6], §1.4, this semantics is neutral with regard to the
limit assumption. These frame conditions allow that there be an infinitely descending
sequence of spheres aroundi in which some index satisfies the antecedent in question.
Then again, the frame conditions do not demand that there be such as sequence.
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