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The 3-Stratifiable Theorems of NFU co

MARCEL CRABBE

Abstract Itis shown that the 3-stratifiable sentences are equivalddE

to truth-functional combinations of sentences about objects, sets of objects, sets
of sets of objects, and sentences stating that there are at lg@¢ments. This

is then used to characterize the closed 3-stratifiable theoreMEWfwith an
externally infinite number of urelements, as those that can be nearly proved in
TTU with an externally infinite number of urelements. As a byproduct we ob-
tain a rather simple demonstration of the consistency of 3-stratifiable extensions
of NFU.

1 Introduction  NFU is Quine’sNF with the axiom of extensionality weakened to
allow urelements (see Jens@&j), [Forster [5], Holmes [7], and Crabk [3]). We will
suppose for convenience that the languagdéfif (language of set theory) includes a
constantz and that besides the specific axiomdNsfU (stratifiable comprehension

and extensionality for nonempty objects) we have the axiom ¢ &. Similarly,

TTU, the corresponding theory of types will be formulated with constartsz?,

and so on, and axiom&® x° ¢ ot VxI x! ¢ @2 and so on. This is harmless since
these new theories are conservative extensions of the previous ones. We will employ
subsequently the standard notatieh to denote the result of raising the type super-
scripts by 1 in the expressida

2 The 3-dtratifiable sentencesof NFU It will be necessary in this section to deal
with the 3-stratifiable sentencesMiFU not directly but via the associated type theory
TTU or betterTTU3, that is, the fragment of TU reduced to the first three types.

The following simple observation can serve as a guideline for understanding the
definitions and proofs below. We can distinguish in a moddridf; three parts that
are somehow glued together. First a modeT©§ (TTU3 with full extensionality)
constituted by the objects of type 0, the sets of objects of type 0, and the sets of sets
of objects of type 0. Then a structure (a model, if there is an urelement in type 1) for
TT,, constituted by the urelements in type 1 and the sets of those urelements. Finally,
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a gructure (a model, if there is an urelement in type 2)fdg, constituted by the ure-
lements in type 2. The objects in types 0 and 1 of the original structure all come from
the substructures. The objects of type 2 are either already in the substructures or are
unions of objects of type 2 from the first and of type 1 from the second substructure.
Conversely, this paper will make it apparent that, given modelsTef TT, (or
an empty structure), antit; (or an empty structure), we can amalgamate them to-
gether in the same way and obtain a moderof ;.
Wewill investigate this phenomenon at the level of sentences thus showing that
a £ntence about the universeldiUs is equivalent to a truth-functional combination
of sentences each of which is about one of the three parts inditated.

2.1 Redtricted formulas Let us use the following abbreviations.

1. Set'(x}) for 3% e xt v xt = @1, that is, x! is a set in type 1;

2. Set?(x?) for Il vl € x2 v x2 = @2, which isSet' (x})*, that is, x? is a set in
type 2;

3. HSet?(x?) for Set?(x2) A Vvl (v! € X2 — Set(v1)), that is, X2 is a hereditary
setin type 2;

4. Ut(x) for —=Set'(x1), that is, x! is an urelement in type 1;

U?(x?) for —=Set?(x?), that is, X? is an urelement in type 2;

6. USet?(x?) for Set?(x%) A Vvl (v! € X2 — Ul(v1)), thatis, X2 is a set of urele-
ments in type 2.

o

Definition 2.1 A restricted quantification of a formulag is a formula of the form

IX (Y(X) A @) or VX (Y(X) — ), wherey(X') is eitherSet(x!), HSet?(x?),
ulx), U2(x?), or USet?(x?). The class ofestricted formulas is the smallest class
containing the atomic formulas and closed under truth-functional operations and re-
stricted quantification.

Lemma2.2 InTTUg, every formulais equivalent to a restricted formula without
new free variables or new types.

Proof: (@) We suppose that the notions of “restricted quantification over type 2” and
of “formula with quantification over type 2 restricted” are defined in the obvious way
and show first, by induction, that every formulali§Us-equivalent to a formula in
which all quantification over type 2 is restricted.

Suppose thaiix? ¢ is a formula such that ip quantification over type 2 is re-
stricted. Sinceset?(x%) v U?(x?) is an instance of the excluded middix2 ¢ is
equivalent to

X2 (U2(X®) A @) Vv 3K (Set?(XP) A @).

We are thus left with the task of proving thak? (Set?(x?) A ¢), which is not re-
stricted, is equivalent to a formula with restricted quantification over type 2.
This part of the proof will be based on the fact that an object of type 2 that is not
an urelement is the union of a set of sets of objects of type 0 and of a set of urelements.
Let X2 = v2 U w? abbreviaterz! (22 € X2 «— 7zt € v2 v Zt € w?). Then,

VX2 (Set?(x?) «—> Fv?qw? (HSet?(v?) A USet?(w?) A X2 = v2 U w?)
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is provable inTTUs.
Now, consider the formula

Ix? (Fv? (HSet? (v?) A Fw? (USet?(w?) A X2 = v> U w? A 9))).

This formula—which contains still an unrestricted quantification over type 2—is thus
proved equivalent tax? (Set?(x?) A ¢) by using the axioms of TUs.
Finally, it is also equivalent to

2 (HSet?(v?) A Fw? (USet?(w?) A ¢*))

whereg* is obtained fromy, by replacing atomic subformulas of the kind € x?

by y! € v? v y! € w?, and atomic formulas of the kin# = y? or y> = x? by

y? = v> U w?. So our initial formula3x? ¢ is equivalent to a formula in which all
guantifications over type 2 are restricted. The case of the universal quantifier is han-
dled in a analogous way and the remaining cases are trivial.

(b) We conclude in showing, by induction again, that a formula with quantifications
over type 2 restricted i§TUs-equivalent to a restricted formula. Suppose thety

is a formula such that is a restricted formula. Using the fact thgt (x) v Ut (x})

is provable, we see that

vxt (Sett(xh) = @) AVXE U (X — @)

satisfies our requirements. The other cases are similar or trivial. O

2.2 Meaningful formulas The metasymbolset!, HSet?, U, U2, USet? will be
calledsorts. A sort assignment to the variablgss a conjunction of formulas of the
kind Sett(x1), HSet?(x?), UL(x1), U2(x?), or USet?(x?), where eaclk-variable oc-
curs in exactly one such formula.

If Sis a sortassignmentto the free variables of arestricted formuwa saythat,
relatively toS, a freevariablex has soriSif and only if S(x) is one of the conjuncts of
S; that a bound variable ip has soriSif and only if its binding quantifier is restricted
to S(X).

Formally, the sorts are assigned to variables only. On an informal level, how-
ever, we may think of! as having sorset! and of@? as havingoth sortHSet?and
USet?.

Definition 2.3  An atomic formulaA is calledmeaningful relatively to a sort as-
signment if and only if

1. AisX° e y! andy! has sorset!; or
2. Aisx! e y? andx! andy? have either sortset! andHSet?, or U andUSet?;
or

Ais 21 € x2 andx? has sorHSet?; or

Aisx =y andx andy' have same sort; or

Ais x! = o1 or ! = x! andx! has sorSet'; or

Ais x2 = @2 or @2 = x2 andx? has sorHSet? or USet?.

o0k w
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A formula of TTU3 is meaningful relatively to a sort assignment if and only if it is
restricted and all its atomic subformulas are meaningful relatively to the sort assign-
ment. A sentence (afTU3) is meaningful if and only if it is meaningful relatively to

the empty conjunction.

Lemma24 Let Sbeasortassignment tothefreevariables of arestricted formula
@, then there is a meaningful formula i relatively to S such that

TTUzF S— (¢ «— ¥).
Moreover, the free variables and typesin v already occur in ¢.

Proof: The inductive proof consists in replacing the meaningless atomic subformu-
las in¢ with equivalent meaningful ones. ¢fis x! € y? andx! has soru* andy?
has sorHSet?, wereplace it by—x! = x!. Wehave

TTUs - UL(xY) AHSet? (Y?) — (XL e y2 «— —xt = xb)
by definition oful(x!) andHSet?(y?), and the result follows.
If g isx! = y! andx! has sort! andy! has sorset?, wereplace it by-x! = x*.
We have
TTU3 - UL A sett(yh) — (k= vt «— =xt = xb).
The atomic sentences! € @2, o1 = o1, and@? = @2 are replaced byx! (Set! (x)
A =xt = xb), vxt (Sett(xl) — xt = x1), andVx2 (HSet?(x3) — x2 = x2), respec-
tively.
If ¢ is x2 = y? andx? has sortHSet? and y? has sortUSet?, we replace it by
x? = @2 A y? = 2. This again works because

TTUs - HSet?(x%) A USet?(y?) —» (= y? «— X2 = @2 A Y2 = 7).

In the remaining cases we replace similarly the meaningless atomic formulas by false
meaningful ones with no new variable or new type.

The induction step is an exercise in predicate calculus. For examppeisif
Ix (S(X') A x), with i # 0, then, by the inductive hypothesis, we have

TTUz - SA S(K) = (x <> 1).
Therefore,

TTUs F S— @AX (S(X) A x) «— IX (S(X) A w)).

Combining Lemm&.2land2.4] we obtain the following corollary.

Corollary 25 Every sentenceisequivalent in TTU3 to a meaningful sentence.
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2.3 Connected formulas Let us say that two variables in a formula, in which no
two quantifiers bind a same variable, am@mediately connected if and only if they
occur in the same atomic subformula and define the relation of connection among
variables in a formula as the transitive closure of this relation of immediate connec-
tion. A formula is said to be connected if and only if any two variables (free or bound
in it) are connected. The technique of renaming bound variables allows us to extend
the definition to arbitrary formulas.

The following, less appealing but more handy, equivalent definition will also be
used. | take it from Cralib[2].

Definition 2.6 gAY [ A Y, @ VY, ¢ — Y, ¢ <— Y] is aconnected conjunction
[disjunction, implication, equivalence] if and only if there is at least a common free
variable in bothy and. Ix¢ [VX¢] is aconnected quantification if and only xf
occurs free inp. The class of connected formulas is the smallest class containing the
atomic formulas and closed under negation, connected conjunction, connected dis-
junction . . . andconnected quantification.

One of the fundamental properties of connected formulas is contained in this propo-
sition.

Proposition 2.7  Every formula is equivalent to a truth-functional combination of
connected formulas without new free variables or new types.

Proof: | adapt the inductive proof ofg]. The only nontrivial cases ar@x ¢ and

vx' ¢ whereg is assumed to be a truth-functional combination of the connected for-
mulasgs, ..., ¢n. Welimit ourselves to the existential case. Wrgtas a disjunction

of conjunctions of the, . . ., ¢, or their negations. It is then clear that, distributing
3x within the disjunction3x' ¢ is equivalent to a disjunction of conjunctions pre-
fixed with3ax'. We arange these conjunctions so that the conjuncts with occurrences
of X' are grouped together. We may then maxginside each conjunction as far as
possible or remove it when quantification is vacuous. We thus rewrite the prefixed
conjunction as a conjunction of connected formulas in whictioes not occur free
and of a connected quantification that has the form of a prefixed conjunction of for-
mulas in whichx' occurs free. a

Lemma2.8 Every meaningful formula is equivalent to a truth-functional combi-
nation of connected meaningful formulas without new free variables or new types.

Proof: We can almost reproduce the proof of the proposition with restricted quan-
tification in place of usual quantification without losing meaningfulness. The only
difference being that of “vacuous quantification” in cadés not free iny, we are

not allowed to replaca@x (S(x') A x) by 3x S(x') A x because it is not restricted.
However, we may usex (S(x') A X = x) A x instead. O

Corollaryl2Z.5land Lemm#&_8Sentail the following.

Corollary 29 Every sentence is equivalent in TTU3 to a truth-functional combi-
nation of connected meaningful sentences.
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Definition 2.10 A sentence on setsis a meaningful sentence with type 1 and type 2
quantification restricted t8et(. . .) andHSet?(. . .). Urq, Ury, ... Ur,, ... denote the
(typed with 0 and 1) sentences stating that there are at ledst.1n... urelements

in type 1. We may write these without the constamits @2: Ur, is taken to say that
there are at least+ 1 empty objects of type 1, since we do not consider the emptyset
as an urelement.

Lemma2.11 A connected meaningful sentence is either a sentence on sets, or a
restricted sentence (typed at most with 1, 2) with quantifiers restricted to U(...) or
to USet?(...), or a restricted sentence (typed with 2) with quantifiers restricted to
U2(...).

Proof: In a meaningful sentence a variable of type 0, or with Sett or HSet?,

can only be immediately connected with a variable of type 0, a variable obedtt

or a variable of sorHSet?. This property of the relation of immediate connection
extends directly to the general relation of connection. Similarly, a variable with sort
U? or Uset? can only be connected with variables of dottor USet?; and a variable

with sortU? is only connected with variables of the same sort. O

Lemma?2.12 Everyconnected meaningful sentenceisprovably equivalentin TTU3
to a sentence on sets or to a truth-functional combination of the Ur, or Ur;.

Proof: Inview of Lemmd2.11] it will be sufficient to show that a connected formula
that is not on sets i$TUs-equivalent to a truth-functional combination of tte, or
Urt. Itiseasy to show for sentences restrictet)?q. . .). Lazy readers can deduce
it from the remainder anyway.

Sentences with quantifiers restrictedfft. . .) orUSet?(. ..) can be seen as sen-
tences about atomic Boolean algebras. The result follows then from the well-known
quantifier elimination result of Tarski for Boolean algebras, namely, that a closed the-
orem of the theory of atomic Boolean algebras is equivalent to a truth-functional com-
bination of sentences saying that there are at lratdms. O

Definition 2.13 We useEX as an abbreviation foE*+t, where the type raising
operation is iterated times. EX is termedE raised by k. Being careful with respect
to bound variables, an expressibrof type theory becomes a stratifiable expression
denotedE by omitting the type superscripts. ThiSand E+ are identical up to the
names of bound variables. Accordingly, we may defisentence on setsin NFU as

a £ntencey for ¢ a £ntence on sets iNTUs.

Weare now in a position to sum up and to import the results obtainediidg within
TTU andNFU.

Theorem 2.14  In TTU3, every sentence is equivalent to a truth-functional combi-
nation of the Ury, Urt and of sentences on sets. In TTU, every sentence, typed with
k, k+1, k+2 at most, is equivalent to a truth-functional combination of the UrK, urk+?
and of sentences on setsraised by k. In NFU, every 3-stratifiable sentence is equiv-
alent to a truth-functional combination of the Ur,, and of sentences on sets.
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3 The 3-gtratifiable theorems of NFUoo

Definition 3.1 NFUoo is NFU plus Ur, for everyn. TTUcc is TTU plus Urll for
everyn, m> 0.

Warning: TTUoo isnot TTU plus an externally infinite number of objects of type 0
nor isNFUoo the theoryNFU plus an externally infinite number of objects, which is
in fact NFU.

Lemma3.2 Everysentence, typed withk, k+ 1, k+ 2 at most, is provably equiva-
lent in TTUoo to a sentence on setsraised by k. Every 3-stratifiable sentenceis prov-
ably equivalent in NFUoo to a sentence on sets.

Proof: This is a corollary to Theorefa. 14 since TTUoco proves eachur™ and
NFUoo proves eaclur,,. O

Theorem 3.3 Let ¢ be a sentence in the language of TTU3. Then

NFUoo -3 iff TTUook \X/¢'  for somek.
O<i<k

Let X, ¢ be a set of sentencesin the language of TTU3. Then

NFUoo+ T kg iff TTUoo+X+Z"-- \/¢'  for somek.
O<i<k

Proof:  Asthe second part of the theorem derives immediately from the first, we will
be concerned only with this one. Forgetting the types, a prodfigf ¢' in TTUoo
0<i<k
translates into a proof ofX/ ¢'; thatis, ofg v - -- v, in NFU. Thus we concentrate
0<i<k
on the “only if” part.
Lemma3.2lenables us to suppose thais a sentence on sets. By well-known
theorems of Specker and Grishifi@, [E], see alsd]), if NFUoco + @, then

TTUs00 + Y1 <— ¥, ..., ¥n<— Y o

for some sentenceg,, ..., ¥n, in the language of TU3. Let us again assume that
theseys; are about sets.

Now, suppose that the conclusion of the lemma is false. Then there is a model
M of TTUoo + =@+ =@t +—¢tt +... +=¢?" .. .. Since there are exactly 2on-
junctions ofn sentences and whogé conjunct is eithety; or =, wemay apply the
pigeonhole principeand obtain numbers andq such thak < ¢ < 2" and thatM
satisfiesyk «— v, ..., YK <« yi.

Define, as in Boﬁdﬂ, a relationeyq betweenMy and Mg as follows:

X€kgy  Iff X teg 1y
andy is a set of(q — k — 1)-fold singletons of elements &fy.

Then the substructures of

< Mk’ €k, Mk-i-lv €k+1» Mk+2> and ( Mka e|(q’ Mq’ EQ? Mq+1>
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constituted by the objects, the sets, and the sets of sets are isomorphic. Therefore, the
structure

(Mg, €kg> Mg, €g, Mgt1, €g+1, Mg12)

extracted fromfM is a model ofTTU400 4+ —¢ 4+ —¢ T + 1 «— wf, e, Un —
Vit Hence TTU 00 + Y1 <— ¥, ..., ¥n <— ¥ I/ ¢ and the hypothesis of our
reductio is false. O

Corollary 3.4 ThetheoriesNFUoo + = and TTUoo + = + £+ - .- areequiconsis-
tent whenever X is a set of sentences of the language of TTU .

4 Concluding remarks It is easy to realize that Theordin3lis false withNFU
in place ofNFUoco. The reason for this is thadF is NFU + —Ur. Indeed, by the
celebrated refutation of the axiom of choio&Q) in NF (Specker[]), we have

NFU - —Ur; — —AC.

But, for nok, TTU \X/ —-Ur' — =AC'.
O<i<k

We will now indicate why Theorerf® 2ls false when the restriction to 3 types
is dropped. In[f], Boffa shows how to obtain a model bIF from a model ofNFU
verifying the axiom of infinity @I) and the sentencdJ* (the set of urelements) can
be mapped injectively inty \ U".

His proof, combined with the fact th&C is refutable inNF, shows also that the
4-stratifiable sentence

Al AU s finite— —AC

is provable inNFU, whence inNFUoco. On the other hand, starting with a model of
TT containing a nonstandard natural number and verifydh@nd AC at each level,
itis not very hard to build a model @GTUoco whereAl, AC, and ‘U is finite” are all
true at every level.

NOTES

1. The general frame of the proof will be very close to the one used by Dzierzgd#§ski [
in establishing a totally different result.

2. Readers acquainted with Jen€grof Boffa [1 will observe that we do not use Ramsey’s
theorem at this point, so that we will obtain a very simple proof of the consistency of
NFU as a corollary.
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