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The 3-Stratifiable Theorems of NFU∞

MARCEL CRABBÉ

Abstract It is shown that the 3-stratifiable sentences are equivalent inNFU
to truth-functional combinations of sentences about objects, sets of objects, sets
of sets of objects, and sentences stating that there are at leastn urelements. This
is then used to characterize the closed 3-stratifiable theorems ofNFU with an
externally infinite number of urelements, as those that can be nearly proved in
TTU with an externally infinite number of urelements. As a byproduct we ob-
tain a rather simple demonstration of the consistency of 3-stratifiable extensions
of NFU.

1 Introduction NFU is Quine’sNF with the axiom of extensionality weakened to
allow urelements (see Jensen [8], Forster [5], Holmes [7], and Crabb́e [3]). We will
suppose for convenience that the language ofNFU (language of set theory) includes a
constant∅ and that besides the specific axioms ofNFU (stratifiable comprehension
and extensionality for nonempty objects) we have the axiom∀x x /∈ ∅. Similarly,
TTU, the corresponding theory of types will be formulated with constants∅

1, ∅
2,

and so on, and axioms∀x0 x0 /∈ ∅
1, ∀x1 x1 /∈ ∅

2, and so on. This is harmless since
these new theories are conservative extensions of the previous ones. We will employ
subsequently the standard notationE+ to denote the result of raising the type super-
scripts by 1 in the expressionE.

2 The 3-stratifiable sentences of NFU It will be necessary in this section to deal
with the 3-stratifiable sentences ofNFU not directly but via the associated type theory
TTU or betterTTU3, that is, the fragment ofTTU reduced to the first three types.

The following simple observation can serve as a guideline for understanding the
definitions and proofs below. We can distinguish in a model ofTTU3 three parts that
are somehow glued together. First a model ofTT3 (TTU3 with full extensionality)
constituted by the objects of type 0, the sets of objects of type 0, and the sets of sets
of objects of type 0. Then a structure (a model, if there is an urelement in type 1) for
TT2, constituted by the urelements in type 1 and the sets of those urelements. Finally,
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a structure (a model, if there is an urelement in type 2) forTT1, constituted by the ure-
lements in type 2. The objects in types 0 and 1 of the original structure all come from
the substructures. The objects of type 2 are either already in the substructures or are
unions of objects of type 2 from the first and of type 1 from the second substructure.

Conversely, this paper will make it apparent that, given models ofTT3, TT2 (or
an empty structure), andTT1 (or an empty structure), we can amalgamate them to-
gether in the same way and obtain a model ofTTU3.

Wewill investigate this phenomenon at the level of sentences thus showing that
a sentence about the universe ofTTU3 is equivalent to a truth-functional combination
of sentences each of which is about one of the three parts indicated.1

2.1 Restricted formulas Let us use the following abbreviations.

1. Set1(x1) for ∃v0 v0 ∈ x1 ∨ x1 = ∅
1, that is, x1 is a set in type 1;

2. Set2(x2) for ∃v1 v1 ∈ x2 ∨ x2 = ∅
2, which isSet1(x1)+, that is, x2 is a set in

type 2;
3. HSet2(x2) for Set2(x2) ∧ ∀v1 (v1 ∈ x2 → Set1(v1)), that is, x2 is a hereditary

set in type 2;
4. U1(x1) for ¬Set1(x1), that is, x1 is an urelement in type 1;
5. U2(x2) for ¬Set2(x2), that is, x2 is an urelement in type 2;
6. USet2(x2) for Set2(x2) ∧ ∀v1 (v1 ∈ x2 → U1(v1)), that is, x2 is a set of urele-

ments in type 2.

Definition 2.1 A restricted quantification of a formulaϕ is a formula of the form
∃xi (ψ(xi) ∧ ϕ) or ∀xi (ψ(xi) → ϕ), whereψ(xi) is eitherSet1(x1), HSet2(x2),
U1(x1), U2(x2), or USet2(x2). The class ofrestricted formulas is the smallest class
containing the atomic formulas and closed under truth-functional operations and re-
stricted quantification.

Lemma 2.2 In TTU3, every formula is equivalent to a restricted formula without
new free variables or new types.

Proof: (a) We suppose that the notions of “restricted quantification over type 2” and
of “formula with quantification over type 2 restricted” are defined in the obvious way
and show first, by induction, that every formula isTTU3-equivalent to a formula in
which all quantification over type 2 is restricted.

Suppose that∃x2 ϕ is a formula such that inϕ quantification over type 2 is re-
stricted. SinceSet2(x2) ∨ U2(x2) is an instance of the excluded middle,∃x2 ϕ is
equivalent to

∃x2 (U2(x2) ∧ ϕ) ∨ ∃x2 (Set2(x2) ∧ ϕ).

We are thus left with the task of proving that∃x2 (Set2(x2) ∧ ϕ), which is not re-
stricted, is equivalent to a formula with restricted quantification over type 2.

This part of the proof will be based on the fact that an object of type 2 that is not
an urelement is the union of a set of sets of objects of type 0 and of a set of urelements.

Let x2 = v2 ∪ w2 abbreviate∀z1 (z1 ∈ x2 ←→ z1 ∈ v2 ∨ z1 ∈ w2). Then,

∀x2 (Set2(x2) ←→ ∃v2∃w2 (HSet2(v2) ∧ USet2(w2) ∧ x2 = v2 ∪ w2)
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is provable inTTU3.
Now, consider the formula

∃x2 (∃v2 (HSet2(v2) ∧ ∃w2 (USet2(w2) ∧ x2 = v2 ∪ w2 ∧ ϕ))).

This formula—which contains still an unrestricted quantification over type 2—is thus
proved equivalent to∃x2 (Set2(x2) ∧ ϕ) by using the axioms ofTTU3.

Finally, it is also equivalent to

∃v2 (HSet2(v2) ∧ ∃w2 (USet2(w2) ∧ ϕ∗))

whereϕ∗ is obtained fromϕ, by replacing atomic subformulas of the kindy1 ∈ x2

by y1 ∈ v2 ∨ y1 ∈ w2, and atomic formulas of the kindx2 = y2 or y2 = x2 by
y2 = v2 ∪ w2. So our initial formula∃x2 ϕ is equivalent to a formula in which all
quantifications over type 2 are restricted. The case of the universal quantifier is han-
dled in a analogous way and the remaining cases are trivial.

(b) We conclude in showing, by induction again, that a formula with quantifications
over type 2 restricted isTTU3-equivalent to a restricted formula. Suppose that∀x1 ϕ

is a formula such thatϕ is a restricted formula. Using the fact thatSet1(x1) ∨ U1(x1)

is provable, we see that

∀x1 (Set1(x1) → ϕ) ∧ ∀x1 (U1(x1) → ϕ)

satisfies our requirements. The other cases are similar or trivial. �

2.2 Meaningful formulas The metasymbolsSet1, HSet2, U1, U2, USet2 will be
calledsorts. A sort assignment to the variables�x is a conjunction of formulas of the
kind Set1(x1), HSet2(x2), U1(x1), U2(x2), or USet2(x2), where each�x-variable oc-
curs in exactly one such formula.

If S is a sort assignment to the free variables of a restricted formulaϕ, we saythat,
relatively toS, a freevariablex has sortS if and only if S(x) is one of the conjuncts of
S; that a bound variable inϕ has sortS if and only if its binding quantifier is restricted
to S(x).

Formally, the sorts are assigned to variables only. On an informal level, how-
ever, we may think of∅1 as having sortSet1 and of∅2 as havingboth sortHSet2and
USet2.

Definition 2.3 An atomic formulaA is calledmeaningful relatively to a sort as-
signment if and only if

1. A is x0 ∈ y1 andy1 has sortSet1; or
2. A is x1 ∈ y2 andx1 andy2 have either sortsSet1 andHSet2, or U1 andUSet2;

or
3. A is ∅

1 ∈ x2 andx2 has sortHSet2; or
4. A is xi = yi andxi andyi have same sort; or
5. A is x1 = ∅

1 or ∅
1 = x1 andx1 has sortSet1; or

6. A is x2 = ∅
2 or ∅

2 = x2 andx2 has sortHSet2 or USet2.
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A formula ofTTU3 is meaningful relatively to a sort assignment if and only if it is
restricted and all its atomic subformulas are meaningful relatively to the sort assign-
ment. A sentence (ofTTU3) is meaningful if and only if it is meaningful relatively to
the empty conjunction.

Lemma 2.4 Let S be a sort assignment to the free variables of a restricted formula
ϕ, then there is a meaningful formula ψ relatively to S such that

TTU3 � S → (ϕ ←→ ψ).

Moreover, the free variables and types in ψ already occur in ϕ.

Proof: The inductive proof consists in replacing the meaningless atomic subformu-
las inϕ with equivalent meaningful ones. Ifϕ is x1 ∈ y2 andx1 has sortU1 and y2

has sortHSet2, we replace it by¬x1 = x1. Wehave

TTU3 � U1(x1) ∧ HSet2(y2) → (x1 ∈ y2 ←→ ¬x1 = x1)

by definition ofU1(x1) andHSet2(y2), and the result follows.
If ϕ is x1 = y1 andx1 has sortU1 andy1 has sortSet1, wereplace it by¬x1 = x1.

Wehave

TTU3 � U1(x1) ∧ Set1(y1) → (x1 = y1 ←→ ¬x1 = x1).

The atomic sentences∅1 ∈ ∅
2,∅

1 = ∅
1, and∅

2 = ∅
2 are replaced by∃x1 (Set1(x1)

∧ ¬x1 = x1),∀x1 (Set1(x1) → x1 = x1), and∀x2 (HSet2(x2) → x2 = x2), respec-
tively.

If ϕ is x2 = y2 andx2 has sortHSet2 and y2 has sortUSet2, we replace it by
x2 = ∅

2 ∧ y2 = ∅
2. This again works because

TTU3 � HSet2(x2) ∧ USet2(y2) → (x2 = y2 ←→ x2 = ∅
2 ∧ y2 = ∅

2).

In the remaining cases we replace similarly the meaningless atomic formulas by false
meaningful ones with no new variable or new type.

The induction step is an exercise in predicate calculus. For example, ifϕ is
∃xi (S(xi) ∧ χ), with i = 0, then, by the inductive hypothesis, we have

TTU3 � S ∧ S(xi) → (χ ←→ µ).

Therefore,

TTU3 � S → (∃xi (S(xi) ∧ χ) ←→ ∃xi (S(xi) ∧ µ)).

�
Combining Lemma2.2and2.4, weobtain the following corollary.

Corollary 2.5 Every sentence is equivalent in TTU3 to a meaningful sentence.
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2.3 Connected formulas Let us say that two variables in a formula, in which no
two quantifiers bind a same variable, areimmediately connected if and only if they
occur in the same atomic subformula and define the relation of connection among
variables in a formula as the transitive closure of this relation of immediate connec-
tion. A formula is said to be connected if and only if any two variables (free or bound
in it) are connected. The technique of renaming bound variables allows us to extend
the definition to arbitrary formulas.

The following, less appealing but more handy, equivalent definition will also be
used. I take it from Crabb́e [2].

Definition 2.6 ϕ ∧ ψ [ϕ ∧ ψ,ϕ ∨ ψ,ϕ → ψ,ϕ ←→ ψ] is aconnected conjunction
[disjunction, implication, equivalence] if and only if there is at least a common free
variable in bothϕ andψ. ∃x ϕ [∀x ϕ] is aconnected quantification if and only ifx
occurs free inϕ. The class of connected formulas is the smallest class containing the
atomic formulas and closed under negation, connected conjunction, connected dis-
junction, . . . andconnected quantification.

One of the fundamental properties of connected formulas is contained in this propo-
sition.

Proposition 2.7 Every formula is equivalent to a truth-functional combination of
connected formulas without new free variables or new types.

Proof: I adapt the inductive proof of [2]. The only nontrivial cases are∃xi ϕ and
∀xi ϕ whereϕ is assumed to be a truth-functional combination of the connected for-
mulasϕ1, . . . , ϕn. Welimit ourselves to the existential case. Writeϕ as a disjunction
of conjunctions of theϕ1, . . . , ϕn or their negations. It is then clear that, distributing
∃xi within the disjunction,∃xi ϕ is equivalent to a disjunction of conjunctions pre-
fixed with∃xi. We arrange these conjunctions so that the conjuncts with occurrences
of xi are grouped together. We may then move∃xi inside each conjunction as far as
possible or remove it when quantification is vacuous. We thus rewrite the prefixed
conjunction as a conjunction of connected formulas in whichxi does not occur free
and of a connected quantification that has the form of a prefixed conjunction of for-
mulas in whichxi occurs free. �

Lemma 2.8 Every meaningful formula is equivalent to a truth-functional combi-
nation of connected meaningful formulas without new free variables or new types.

Proof: We can almost reproduce the proof of the proposition with restricted quan-
tification in place of usual quantification without losing meaningfulness. The only
difference being that of “vacuous quantification” in casexi is not free inχ, we are
not allowed to replace∃xi (S(xi) ∧ χ) by ∃xi S(xi) ∧ χ because it is not restricted.
However, we may use∃xi (S(xi) ∧ xi = xi) ∧ χ instead. �

Corollary2.5and Lemma2.8entail the following.

Corollary 2.9 Every sentence is equivalent in TTU3 to a truth-functional combi-
nation of connected meaningful sentences.
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Definition 2.10 A sentence on sets is a meaningful sentence with type 1 and type 2
quantification restricted toSet1(. . .) andHSet2(. . .). Ur1, Ur2, . . . Urn, . . . denote the
(typed with 0 and 1) sentences stating that there are at least 1,2, . . . n . . . urelements
in type 1. We may write these without the constants∅

1,∅
2: Urn is taken to say that

there are at leastn + 1 empty objects of type 1, since we do not consider the emptyset
as an urelement.

Lemma 2.11 A connected meaningful sentence is either a sentence on sets, or a
restricted sentence (typed at most with 1, 2) with quantifiers restricted to U1(. . .) or
to USet2(. . .), or a restricted sentence (typed with 2) with quantifiers restricted to
U2(. . .).

Proof: In a meaningful sentence a variable of type 0, or with sortSet1 or HSet2,
can only be immediately connected with a variable of type 0, a variable of sortSet1,
or a variable of sortHSet2. This property of the relation of immediate connection
extends directly to the general relation of connection. Similarly, a variable with sort
U1 or USet2 can only be connected with variables of sortU1 or USet2; and a variable
with sortU2 is only connected with variables of the same sort. �

Lemma 2.12 Every connected meaningful sentence is provably equivalent in TTU3

to a sentence on sets or to a truth-functional combination of the Urn or Ur+n .

Proof: In view of Lemma2.11, it will be sufficient to show that a connected formula
that is not on sets isTTU3-equivalent to a truth-functional combination of theUrn or
Ur+n . It is easy to show for sentences restricted toU2(. . .). Lazy readers can deduce
it from the remainder anyway.

Sentences with quantifiers restricted toU1(. . .) orUSet2(. . .) can be seen as sen-
tences about atomic Boolean algebras. The result follows then from the well-known
quantifier elimination result of Tarski for Boolean algebras, namely, that a closed the-
orem of the theory of atomic Boolean algebras is equivalent to a truth-functional com-
bination of sentences saying that there are at leastn atoms. �

Definition 2.13 We useEk as an abbreviation forE++···+, where the type raising
operation is iteratedk times. Ek is termedE raised by k. Being careful with respect
to bound variables, an expressionE of type theory becomes a stratifiable expression
denotedE by omitting the type superscripts. Thus,E andE+ are identical up to the
names of bound variables. Accordingly, we may define asentence on sets in NFU as
a sentenceϕ for ϕ a sentence on sets inTTU3.

Weare now in a position to sum up and to import the results obtained forTTU3 within
TTU andNFU.

Theorem 2.14 In TTU3, every sentence is equivalent to a truth-functional combi-
nation of the Urn, Ur+n and of sentences on sets. In TTU, every sentence, typed with
k, k+1, k+2 at most, is equivalent to a truth-functional combination of the Urk

n, Urk+1
n

and of sentences on sets raised by k. In NFU, every 3-stratifiable sentence is equiv-
alent to a truth-functional combination of the Urn and of sentences on sets.
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3 The 3-stratifiable theorems of NFU∞
Definition 3.1 NFU∞ is NFU plusUrn for everyn. TTU∞ is TTU plusUrm

n for
everyn, m ≥ 0.

Warning: TTU∞ is not TTU plus an externally infinite number of objects of type 0
nor isNFU∞ the theoryNFU plus an externally infinite number of objects, which is
in fact NFU.

Lemma 3.2 Every sentence, typed with k, k + 1, k + 2 at most, is provably equiva-
lent in TTU∞ to a sentence on sets raised by k. Every 3-stratifiable sentence is prov-
ably equivalent in NFU∞ to a sentence on sets.

Proof: This is a corollary to Theorem2.14 since TTU∞ proves eachUrm
n and

NFU∞ proves eachUrn. �

Theorem 3.3 Let ϕ be a sentence in the language of TTU3. Then

NFU∞ � ϕ iff TTU∞ �
∨∨

0≤i<k

ϕi for some k.

Let �,ϕ be a set of sentences in the language of TTU3. Then

NFU∞ + � � ϕ iff TTU∞ + � + �+ · · · �
∨∨

0≤i<k

ϕi for some k.

Proof: As the second part of the theorem derives immediately from the first, we will
be concerned only with this one. Forgetting the types, a proof of

∨∨

0≤i<k

ϕi in TTU∞

translates into a proof of
∨∨

0≤i<k

ϕi; that is, ofϕ ∨ · · · ∨ ϕ, in NFU. Thus we concentrate

on the “only if” part.
Lemma3.2 enables us to suppose thatϕ is a sentence on sets. By well-known

theorems of Specker and Grishin ([10], [6], see also [5]), if NFU∞ � ϕ, then

TTU4∞ + ψ1 ←→ ψ+
1 , . . . , ψn ←→ ψ+

n � ϕ

for some sentencesψ1, . . . , ψn, in the language ofTTU3. Let us again assume that
theseψi are about sets.

Now, suppose that the conclusion of the lemma is false. Then there is a model
M of TTU∞+¬ϕ +¬ϕ+ +¬ϕ++ + · · ·+¬ϕ2n

. . .. Since there are exactly 2n con-
junctions ofn sentences and whoseith conjunct is eitherψi or¬ψi, wemay apply the
pigeonhole principle2 and obtain numbersk andq such thatk < q ≤ 2n and thatM
satisfiesψk

1 ←→ ψ
q
1, . . . , ψ

k
n ←→ ψ

q
n.

Define, as in Boffa [1], a relation∈kq betweenMk andMq as follows:

x ∈kq y iff {x}q−k−1 ∈q−1 y

andy is a set of(q − k − 1)-fold singletons of elements ofMk.

Then the substructures of

〈 Mk,∈k, Mk+1,∈k+1, Mk+2 〉 and 〈 Mk,∈kq, Mq,∈q, Mq+1 〉
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constituted by the objects, the sets, and the sets of sets are isomorphic. Therefore, the
structure

〈 Mk,∈kq, Mq,∈q, Mq+1,∈q+1, Mq+2 〉
extracted fromM is a model ofTTU4∞ + ¬ϕ + ¬ϕ+ + ψ1 ←→ ψ+

1 , . . . , ψn ←→
ψ+

n . Hence,TTU4∞ + ψ1 ←→ ψ+
1 , . . . , ψn ←→ ψ+

n � ϕ and the hypothesis of our
reductio is false. �

Corollary 3.4 The theories NFU∞+� and TTU∞+�+�+ · · · are equiconsis-
tent whenever � is a set of sentences of the language of TTU3.

4 Concluding remarks It is easy to realize that Theorem3.3 is false withNFU
in place ofNFU∞. The reason for this is thatNF is NFU + ¬Ur1. Indeed, by the
celebrated refutation of the axiom of choice (AC) in NF (Specker [9]), we have

NFU � ¬Ur1 → ¬AC.

But, for nok, TTU �
∨∨

0≤i<k

¬Ur1
i → ¬ACi.

We will now indicate why Theorem3.3 is false when the restriction to 3 types
is dropped. In [1], Boffa shows how to obtain a model ofNF from a model ofNFU
verifying the axiom of infinity (AI) and the sentence “U (the set of urelements) can
be mapped injectively intoV \ U”.

His proof, combined with the fact thatAC is refutable inNF, shows also that the
4-stratifiable sentence

AI ∧ U is finite→ ¬AC

is provable inNFU, whence inNFU∞. On the other hand, starting with a model of
TT containing a nonstandard natural number and verifyingAI andAC at each level,
it is not very hard to build a model ofTTU∞ whereAI, AC, and “U is finite” are all
true at every level.

NOTES

1. The general frame of the proof will be very close to the one used by Dzierzgowski [4]
in establishing a totally different result.

2. Readers acquainted with Jensen [8] or Boffa [1] will observe that we do not use Ramsey’s
theorem at this point, so that we will obtain a very simple proof of the consistency of
NFU as a corollary.
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