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COMPLEXITY OF THE r-QUERY TAUTOLOGIES
IN THE PRESENCE OF A GENERIC ORACLE

TOSHIO SUZUKI

Abstract Extending techniques of Dowd and those of Poizat, we study compu-
tational complexity of rTAUT[A] in the case when A is a generic oracle, where r is
a positive integer, and rTAUT[A] denotes the collection of all r -query tautologies
with respect to an oracle A. We introduce the notion of ceiling-generic oracles, as
a generalization of Dowd’s notion of t-generic oracles to arbitrary finitely testable
arithmetical predicates. We study how existence of ceiling-generic oracles affects
behavior of a generic oracle, by which we show that {X : coNP[X] is not a subset
of NP[rTAUT[X]] } is comeager in the Cantor space. Moreover, using ceiling-
generic oracles, we present an alternative proof of the fact (Dowd) that the class
of all t-generic oracles has Lebesgue measure zero.

1. Introduction

Arithmetical forcing was introduced by Feferman [12] soon after Cohen’s indepen-
dence proofs in set theory (Cohen [8, 9]). Since Hinman’s work [13], arithmetical
forcing has been studied in recursion theory. For example, see Jockusch [14] or
Odifreddi [17]. Later, arithmetical forcing and its variations were used as tools to
study the P = ?NP question by some people. Typical examples are Dowd [10, 11],
Ambos-Spies et al. [1], Poizat [18], and Blum and Impagliazzo [6]. Among them,
Dowd investigated the relationship between uniform machines and the NP = ?coNP
question. For this purpose, he studied the relativized propositional calculus by in-
troducing the notion of t-generic oracles. Extending techniques in [11] and those in
[18], we study computational complexity of rTAUT [A], the collection of all r -query
tautologies with respect to an oracle A. In particular, we investigate the case where
A is a Cohen-Feferman generic oracle. Although we shall present precise definitions
in the next section, let us review the definition of rTAUT[A] in an informal manner.
The relativized propositional calculus is an extension of the propositional calculus.
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We get the former by adding a countable set {ξ n(q1, . . . , qn) : n ≥ 1} of connectives
to the latter. Roughly speaking, ξ n(q1, . . . , qn) asserts that a certain binary sequence,
of length less than n, associated to the given bit string q1, . . . , qn belongs to the oracle
that we are considering. Suppose that r is a positive integer. A relativized formula is
called an r -query formula if it has just r -many occurrences of additional connectives.
For each oracle A, rTAUT[A] denotes the collection of all (binary representations
of) r -query formulas that are tautologies with respect to A.

An oracle G is called t-generic [11] if every relativized tautology with respect to G
is forced by a polynomial-sized portion of G. More formally, G is t-generic if there
exists a polynomial p such that for each formula F of the relativized propositional
calculus such that F is a tautology with respect to G, there exists a function S that
satisfies the following three requirements.

1. dom(S) ⊆ dom(G), ran(S) ⊆ {0, 1}, and S(u) = G(u) for all u ∈ dom(S),
where we identify an oracle with its characteristic function: we denote this
statement by “S v G”.

2. Card(dom(S)) ≤ p(|F|), where Card(X) denotes the cardinality of X and
|F| denotes the length of (the binary representation of) F .

3. For any oracle A such that S v A, F is a tautology with respect to A: we
denote this statement by “S forces F ∈ TAUT[X]”.

The above requirement (2) asserts nothing about the length of the elements of dom(S),
but the length of these elements are clearly bounded by the number of variables
appearing in F .

According to [11, Lemma 7], t-generic oracles do not exist. Thus, in particular,
we have the following.

Fact 1.1 (A corollary of [11], Lemma 7) The class of all t-generic oracles has
Lebesgue measure zero in the Cantor space.

Dowd proved his Lemma 7 of [11] by using the following lemma. His expression
M X is, in our notation, M[X]. Similarly, N is {0, 1}∗: we denote the collection
of all bit strings of finite length by {0, 1}∗, as in Balcázar et al. [4]. (On the other
hand, Kunen [15] denotes this collection by <ω2.) For each natural number n, {0, 1}n

(= n2) and {0, 1}≤n (= ≤n2) are similarly defined. It is easily verified that the
cardinality of {0, 1}≤n is 2n+1 − 1 for each natural number n. Recall that a language
A is called sparse if there exists a polynomial p such that for each natural number n,
Card(A ∩ {0, 1}≤n) ≤ p(n).

Lemma 6 If a deterministic polynomial time oracle machine M X accepts
all its inputs with respect to a t-generic oracle G, then it is forced to do so by
a sparse set of queries. That is, there is a partial function Y from N to {0, 1}

satisfying Y v G whose domain is sparse, which forces ∀x M X (x).

Proof. The relativized formula asserting that “on all inputs of length ≤ n the
machine M accepts” is a tautology with respect to the oracle G for every n,
and its length is bounded by a polynomial in n. Therefore the nth is forced
by a set Wn of queries to G of size polynomial in n. Let W =

⋃

{Wn : n is a
power of 2}. Then W is sparse, and forces the statement. ([11], Lemma 6) �

Careful readers may hesitate, because the following assertion is false, by a counterex-
ample below.
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Proposition 1.2 (false) Suppose that p is a polynomial and that for each pos-
itive integer n, Dn is a subset of {0, 1}≤p(n) such that Card(Dn) ≤ p(n). Let
D =

⋃

{Dn : n is a power of 2}. Then D is sparse.

Example 1.3 For each natural number n ≥ 2, let k(n) be the largest natural number
k such that 2k+1 − 1 ≤ n. For each n, let Dn = {0, 1}≤k(n). Let D =

⋃

{Dn : n is
a power of 2}. Then, for each n ≥ 2, Dn is a subset of {0, 1}≤n and Card(Dn) is at
most n. However, we have D = {0, 1}∗.

Nevertheless, Fact 1.1 is right. In Section 3, we shall present a direct alternative proof
of Fact 1.1 by introducing the notion of ceiling-generic oracles (c-generic oracles, for
short).

Next, we shall investigate how the existence of c-generic oracles affects the be-
havior of a Cohen-Feferman generic oracle. By using Fact 1.1 and the method of
Baker et al. [2], we shall strengthen the well-known result (Mehlhorn [16], [18], and
[11]) that the following class of oracles is comeager: {X : P[X] 6= NP[X]}. More
precisely, in Section 4, we shall show that the following is comeager where r is an
arbitrary positive integer: {X : coNP[X] * NP[rTAUT[X]]}.

By the way, Dowd also introduced weak versions of the notion of t-generic oracles.
Suppose that r is a positive integer. An oracle G is called an r -generic oracle (in
Dowd’s sense), if it satisfies the definition of a t-generic oracle with r -query tautology
in place of tautology.

Fact 1.4 (Section 4 of [11]) The class of all r -generic oracles (in Dowd’s sense)
is meager and has Lebesgue measure one in the Cantor space. Further, this class is
closed under finite changes; that is, if A is r -generic and B(u) = A(u) for all but
finitely many bit strings u then B is also r -generic.

Extending Dowd’s work about r -generic oracles, the following was shown in Suzuki
[20].

Fact 1.5 The following two assertions are equivalent.

1. The class of all A such that 1TAUT [A] /∈ P[A] has Lebesgue measure one.
2. The unrelativized classes R and NP are not identical.

Recall that P ⊆ R ⊆ NP. For the definition of the computational complexity class
R, see [4].

2. Notation and Definitions

The set of all natural numbers is denoted by N = {0, 1, 2, . . .}. For a function f and
a set D ⊆ dom( f ), f � D denotes the restriction of f to D. A subset of {0, 1}∗ is
called an oracle or a language, according to the context. We identify an oracle with
its characteristic function; thus, an oracle is a function from {0, 1}∗ to {0, 1}. Suppose
that A and B are oracles. A ⊕ B denotes the join of A and B. The only one important
property of the join is that its polynomial time many-one degree is a supremum of those
of A and B. According to [4], we adopt the language {u0 : u ∈ A} ∪ {v1 : v ∈ B}

as a formal definition of the join; of course, there are different ways to define the
join (see, for example, Rogers [19]). P[A] denotes the set of all oracles which are
polynomial time Turing reducible to A. “A≡P

T B” means that A and B are polynomial
time Turing equivalent. “A ≡ B (mod. finite)” means that the following set is finite
: {x ∈ {0, 1}∗ : A(x) 6= B(x)}. Suppose that M[X] is an oracle Turing machine and
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that A is an oracle. Then, Lang(M[A]) denotes the language accepted by the machine
M[X] with the oracle A. For each oracle A, Book [7] introduced the computational
complexity class NPQUERY [A] as follows. A language B belongs to NPQUERY [A]

if B = Lang(M[A]) for some nondeterministic oracle machine M[X] such that M[X]

uses a polynomial amount of work space and makes a polynomial number of queries
to an associated oracle in each computation. It was shown in Balcázar et al. [3]
that for any oracle A, NPQUERY [A] = NP[QBF ⊕ A] where QBF is a well-known
PSPACE-complete set.

By adding a countable set {ξ n(q1, . . . , qn) : n ≥ 1} of connectives to the
propositional calculus, we get the relativized propositional calculus. If A is
an oracle and n is a positive integer, we define an n-ary Boolean function An

as follows, and we interpret the connective ξ n as the Boolean function An.
Let λ be the empty string. We order all bit strings in lexicographic order :
λ(= z(0)), 0(= z(1)), 1(= z(2)), 00(= z(3)), 01(= z(4)), . . ..

Now, suppose that u is a bit string whose length is n. Say, u = z(2n − 1 + j)
where j ≤ 2n − 1. Then we set An(u1, u2, . . . , un) to be equal to A(z( j)). That is,
An(0, . . . , 0, 0) = A(λ), An(0, . . . , 0, 1) = A(0), An(0, . . . , 1, 0) = A(1), . . ., and
An(1, . . . , 1, 1) = A(0n). This rather obscure definition of An is forced on us in place
of the more direct An(u1, . . . , un) = A(u)because we want the information contained
in An to be preserved in An+1, and also because a predicate in a tautology must have
a definite number of arguments. In fact, An(u1, . . . , un) denotes membership to A of
the string corresponding to u by the bijection between {0, 1}n and {0, 1}≤n−1 ∪ {0 n}

which respects the lexicographic order. The corresponding string z( j) is very simply
obtained from u: if u is 0 n then z( j) = λ; otherwise, first, delete from u the first 1
from the left and all the 0s at its left, then the resulting string is z( j − 1) and z( j) is
easily obtained.

TAUT[A] denotes the set of all (binary representations of) relativized formulas
which are tautologies with respect to the oracle A. Suppose that r is a positive integer.
We consider a relativized formula with r occurrences of additional connectives; at
the expense of adding dummy variables, it can be put in the form

(

(a(1) ⇔ ξ i1 (q(1)1 , . . . , q(1)i1
)) ∧ · · · ∧ (a(r) ⇔ ξ ir (q(r)1 , . . . , q(r)ir

))
)

⇒ H,

where H is a query-free formula. According to the terminology of [11], we call a
relativized formula of the above form an r -query formula. Note that it is only the
number r of queries which is relevant to this definition, not their length i1, . . . , ir .
A relativized formula F is called an r -query tautology with respect to A if F is an
r -query formula and F is a tautology with respect to A. rTAUT[A] denotes the set
of all (binary representations of) r -query tautologies with respect to A. Moreover, by
TAUT , we denote the collection of all (binary representations of) tautologies of the
usual propositional calculus. Let X be a unary predicate symbol denoting membership
to a given oracle and y be a variable for a bit string. Membership to the set TAUT [X]

is expressed by an arithmetical predicate that we denote TAUT(X)(y). For each
r , a predicate rTAUT(X)(y) is similarly defined. As is well known, TAUT[X] is
uniformly coNP[X]-complete [11, p. 68]: that is, for any polynomial time-bounded
nondeterministic oracle Turing machine M[X], there exists a function f such that f
is polynomial time computable (without an oracle) and for any oracle A and for any
bit string u, M[A] rejects u if and only if f (u) belongs to TAUT [A].
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A function S is called a forcing condition (condition, for short) if dom(S) is a finite
subset of {0, 1}∗ and ran(S) ⊆ {0, 1}. A collection D of conditions is called dense if
for every condition S, there exists a condition T ∈ D such that S v T . An oracle G
is called a Cohen-Feferman generic oracle (or a generic oracle) if for any collection
D of conditions such that D is arithmetical and dense, there exists a condition S
such that S ∈ D and S v G. Such definitions of dense sets and generic oracles
appear, for example, in Definition 1.1 of [6]. It is well known that the collection of all
Cohen-Feferman generic oracles form a comeager set in the Cantor space (Hinman
[13]; Dowd [10]). Note that 1-generic oracles in Dowd’s sense and Feferman’s generic
oracles are completely different concepts. In fact, any Cohen-Feferman generic oracle
is not 1-generic in Dowd’s sense [11, Theorem 12].

3. Ceiling-Generic Oracles

We begin by presenting an alternative proof of Fact 1.1.

Definition 3.1 Suppose that ϕ(X)(y) is an arithmetical predicate where X is a
unary symbol denoting membership to a given oracle and y is a variable for a bit
string.

1. ϕ(X)(y) is finitely testable (or test fini) if there exists a function f : N → N

such that for every oracle A and every bit string u, ϕ(A)(u) holds if and only if
ϕ(A � ({0, 1}≤ f (|u|)))(u) holds where we identify a condition A � ({0, 1}≤n)

with an oracle B defined as follows: A � ({0, 1}≤n) v B, and B(u) = 0 for
all u such that |u| > n. Moreover, for each oracle A, ϕ[A] denotes the set
{u ∈ {0, 1}∗ : ϕ(A)(u)}. ([18]; see also Tanaka and Kudoh [21])

2. We say “a condition S forcesϕ(X)(u)” where u is a given bit string if ϕ(A)(u)
holds for any oracle A such that S v A.

3. Suppose that ϕ(X)(y) is finitely testable, G is an oracle, and f is a function
from N to N. G is f -ceiling-generic forϕ(X)(y) ( f -c-generic forϕ(X)(y), for
short) if for any bit string u for which ϕ(G)(u) holds, there exists a condition
S v G such that Card(dom(S)) ≤ f (|u|) and S forces ϕ(X)(u). G is
ceiling-generic for ϕ(X)(y) (c-generic for ϕ(X)(y), for short) if there exists
a polynomial p such that G is p-c-generic for ϕ(X)(y).

Alternative Proof of Fact 1.1: The oracle-dependent language CORANGE[X]

is well known to the reader of Bennett and Gill [5]. We express membership to
this language by a predicate CORANGE(X)(y). More precisely, CORANGE(X)(y)
denotes the following assertion:

“¬∃u such that y = X (u1)X (u10)X (u100), . . . , X (u10|u|−1).”

Note that y and u in the above assertion have the same length and hence the above
assertion is finitely testable. Recall that TAUT[X] is uniformly coNP[X]-complete.
Thus, there exists a function f such that f is computable (without an oracle) in
polynomial time, and for any oracle A and any bit stringw,CORANGE(A)(w) holds if
and only if we have f (w) ∈ TAUT[A]. Therefore, if A is t-generic, then A is c-generic
for CORANGE(X)(y). Hence CORANGE[A] is a finite set; indeed, letting p be a
polynomial for which A is p-c-generic, whenever 2n is sufficiently larger than p(n),
CORANGE[A]does not contain any y of length n, since a condition of size p(n) cannot
force all the us of size n so that y 6= X (u1)X (u10)X (u100), . . . , X (u10|u|−1). Thus,
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all t-generic oracles belong to the following class: {X : CORANGE[X] ∈ NP[X]}.
However, by [5], this class has Lebesgue measure zero. �

4. Application of Ceiling-Generic Oracles

In this section, we study how existence of ceiling-generic oracles affects behavior
of a generic oracle and strengthen the well-known result that the following class of
oracles is comeager: {X : P[X] 6= NP[X]}.

Theorem 4.1 Suppose thatϕ(X)(y) andψ(X)(y) are finitely testable arithmetical
predicates, G1 is an oracle, and suppose that the following three hypotheses hold for
every oracle A such that A ≡ G1 (mod. finite).

1. A is c-generic for ϕ(X)(y).
2. A is c-generic for ¬ϕ(X)(y).
3. A is not c-generic for ψ(X)(y).

Then, for every Cohen-Feferman generic oracle G2, we have

ψ[G2] /∈ NP[ϕ[G2]].

Proof: Suppose that M[X] is a polynomial time-bounded nondeterministic ora-
cle Turing machine and suppose that S0 is an arbitrary condition. We shall show
the existence of a condition T such that T is an extension of S0 and T forces
ψ[X] 6= Lang(M[ϕ[X]]).

Let A be an oracle such that A ≡ G1 (mod. finite) and A is an extension of S0
(i.e., S0 v A). Assume that p is a polynomial such that A is p-c-generic for ϕ(X)(y)
and A is p-c-generic for ¬ϕ(X)(y). By hypotheses (1) and (2) of Theorem 4.1, such
a p surely exists. Let t be a polynomial that is a time-bounding function of M[X].
We may assume n ≤ t (n) < t (n +1), for all natural numbers n, and may assume that
the same thing holds with p in place of t . Let us define a polynomial q as follows:

q(x) = t (x) · p(t (x))+ Card(dom(S0)).

By hypothesis (3) of Theorem 4.1, A is not q-c-generic for ψ(X)(y). Moreover, the
predicateψ(X)(y) is finitely testable. Hence, there exists a bit string u for which the
following holds: “ψ(A)(u) is true, and for each condition S such that S v A and
Card(dom(S)) ≤ q(|u|), there exists a condition T such that S v T and T forces
¬ψ(X)(u).” We fix such a u.

In the case where M[ϕ[A]] accepts u, we consider a fixed accepting computa-
tion of M . Since in the course of the computation M asks at most t (|u|) questions
of size at most t (|u|) to the oracle, there exists a condition S1 such that S1 v A,
Card(dom(S1)) ≤ t (|u|) · p(t (|u|)) and S1 forces that M[ϕ[X]] accepts the bit string
u. Since S0 and S1 are compatible, there exists a condition S2 such that S2 is a com-
mon extension of them (that is, S0 v S2 and S1 v S2) and Card(dom(S2)) ≤ q(|u|).
Hence, by our choice of the bit string u, there exists a condition T such that S2 v T
and T forces ¬ψ(X)(u). We fix such a T .

Otherwise, we consider the arithmetical predicate ψ0(X)(y) defined by the fol-
lowing assertion: “ψ(X)(y) is true, and M[ϕ[X]] rejects y.” Since the predicate
ψ0(X)(y) is finitely testable and ψ0(A)(u) is true, there exists a condition S3 v A
such that S3 forces ψ0(X)(u). Let T be a common extension of S0 and S3. In either
case, S0 v T , and T forces ψ[X] 6= Lang(M[ϕ[X]]). �
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Corollary 4.2 Suppose that r is a positive integer. Then, the following class of
oracles is comeager:

{X : coNP[X] * NP[rTAUT[X]]}.

Proof: Note that one counterexample is sufficient to refute a tautology. Thus, any
oracle is p-c-generic for ¬rTAUT(X)(y) with p(n) =def r (for each n ∈ N). Let G1
be an r -generic oracle in Dowd’s sense such that G1 is not t-generic. By Fact 1.1 and
Fact 1.4, we know that such a G1 surely exists and that the following triple satisfies
hypotheses (1), (2), and (3) of Theorem 4.1:

(rTAUT(X)(y), TAUT(X)(y),G1).

Hence, by Theorem 4.1, for each Cohen-Feferman generic oracle G2, we have
TAUT [G2] /∈ NP[rTAUT [G2]]. �

Remark 4.3 Since NPQUERY [A] = NP[QBF ⊕ A] for any oracle A, it is easily
seen that the statements of Theorem 4.1 and Corollary 4.2 hold with NPQUERY[ ] in
place of NP[ ].

Let LBGS[X] be the oracle-dependent tally set defined as follows.

LBGS[X] = {0n : ¬∃y ∈ X (|y| = n)}.

It is well known that Baker, Gill, and Solovay used (the complement of) the above
tally set in [2] to show the existence of an oracle A such that P[A] 6= NP[A].
Later, some people interpreted their method as a forcing method, and they showed
that P[G2] 6= NP[G2] for every Cohen-Feferman generic oracle G2 (for example,
[10], [11], and [6]). However, the polynomial time many-one degree of the tally set
LBGS[X] is so low that LBGS[X] is useless to separate TAUT[X] from rTAUT[X],
that is, useless to show Corollary 4.2. To see this, let us prove an example by using
LBGS[X]. Suppose that G2 is a Cohen-Feferman generic oracle. Then, the following
holds:

1TAUT[G2] /∈ NP[QBF ⊕ G2]. (1)

Moreover, as a special case of (1), we have the following:

1TAUT[G2] /∈ P[TAUT ⊕ G2]. (2)

A proof of (1) by using LBGS[X] is as follows. Suppose that M[X] is a polynomial
time-bounded nondeterministic oracle Turing machine. Let DM be the set of all
conditions that force the following assertion (3).

LBGS[X] 6= Lang(M[QB F ⊕ X]) (3)

By the method of the proofs of Theorems 3 and 4 of [2], it is verified that DM is dense,
and hence every Cohen-Feferman generic oracle X satisfies (3). Therefore, for each
Cohen-Feferman generic oracle G2, we have LBGS[G2] /∈ NP[QBF ⊕ G2]. Since
the above tally set LBGS[A] is polynomial time many-one reducible to 1TAUT[A] for
each oracle A, we have (1).

Of course, we can show (1) without using LBGS[X]. First, note the following.

Claim 4.4 Suppose ψ(X)(y) is a finitely testable arithmetical predicate and G1
is an oracle. And, suppose that hypothesis (3) of Theorem 4.1 holds for every oracle
A such that A ≡ G1 (mod. finite). Then, for every Cohen-Feferman generic oracle
G2, we have

ψ[G2] /∈ NP[QBF ⊕ G2].
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Proof: We consider the predicate ϕ(X)(y) defined by “y ∈ X .” Clearly, any oracle
is c-generic for ϕ(X)(y) and c-generic for ¬ϕ(X)(y). And, for any oracle A, the
language ϕ[A] is just A itself. Hence, by Theorem 4.1 and Remark 4.3 after the proof
of Corollary 4.2, we get Claim 4.4. �

Let F be the class of all oracles which are not 1-generic in Dowd’s sense. By
Fact 1.4, F is comeager in the Cantor space and is closed under finite changes;
indeed, F contains all Cohen-Feferman generic oracles [11, Theorem 12]. Take an
oracle G1 ∈ F , and let ψ(X)(y) be the predicate 1TAUT(X)(y). Then, we get (1)
by Claim 4.4.

By the way, in the statement of Theorem 4.1, it is essential that hypotheses (1),
(2), and (3) hold not only for A = G1 but also for any A such that A ≡ G1 (mod.
finite). Compare Claim 4.4 with the following.

Example 4.5 There exists a pair (ψ0(X)(y),G1) that satisfies all of the following
three requirements.

1. ψ0(X)(y) is a finitely testable arithmetical predicate and G1 is an oracle.
2. G1 is not c-generic for ψ0(X)(y).
3. For each Cohen-Feferman generic oracle G2, we have ψ0[G2] ∈ P[G2].

Proof: For each positive integer i and for each query-free formula H , we denote
the following 1-query formula by \〈1, i, H 〉 :

(a ⇔ ξ i(q1, . . . , qi)) ⇒ H.

Let G1 be a 1-generic oracle in Dowd’s sense with respect to a polynomial p. We may
assume n ≤ p(n) ≤ p(n+1), for all natural numbers n. We consider the arithmetical
predicate ψ0(X)(y) defined by the following assertion: “for some n ∈ N, y = 0n ,
and for each i ≤ n and for each query-free formula H , if \〈1, i, H 〉 is a tautology
with respect to X then there exists a condition S v X such that Card(dom(S)) is at
most p(|\〈1, i, H 〉|) and S forces \〈1, i, H 〉 ∈ TAUT [X].”

We show that G1 is not c-generic for ψ0(X)(y). Assume for a contradiction
that G1 is q-c-generic for ψ0(X)(y) where q is a polynomial. We may assume
n ≤ q(n) ≤ q(n + 1), for all natural numbers n. Let c be a sufficiently large natural
number and let m be a natural number satisfying the following inequality:

c · p(c · q(m)c + c) < 2m − 1. (4)

Since G1 is 1-generic in Dowd’s sense with respect to the polynomial p, we have
ψ0(G1)(0m). Therefore, by our assumption for a contradiction, there exists a con-
dition S v G1 such that Card(dom(S)) is at most q(m) and S forces ψ0(X)(0m).
Let {v(1), . . . , v(d)} be an enumeration of all bit strings v such that v ∈ dom(S) and
S(v) = 1. Of course, we have the following:

d ≤ q(m).

Let H0 be a query-free formula such that for each oracle X , the 1-query formula
\〈1,m, H0〉 is a tautology with respect to X if and only if the following assertion
holds:

(∀u ∈ X ∩ {0, 1}≤m−1)(u = v(1) or · · · or u = v(d)). (5)

We choose H0 so that its length |H0| would be as short as possible. We define
an oracle A as follows: S v A, and A(u) = 0 for all u /∈ dom(S). Then, we
have \〈1,m, H0〉 ∈ 1TAUT[A]. On the other hand, ψ0(A)(0m) holds, since this
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predicate is forced by S. Hence, by our definition of ψ0(X)(y), there exists a con-
dition T v A such that Card(dom(T )) is at most p(|\〈1,m, H0〉|) and T forces
\〈1,m, H0〉 ∈ TAUT [X]. Thus, T forces the assertion (5). However, by the inequality
(4) and by our choice of the formula H0, we may assume Card(dom(T )) < (2m−1)/c.
Recall that the cardinality of {0, 1}≤m−1 is 2m − 1. Hence, there exists an oracle X
such that the assertion (5) fails but T v X , a contradiction.

Finally, let G2 be a Cohen-Feferman generic oracle; let us showψ0[G2] ∈ P[G2].
Then, G2 is not a 1-generic oracle in Dowd’s sense [11, Theorem 12]. Therefore,
ψ0[G2] is a finite set. �
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