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Abstract. We study some linear eigenvalue problems for the Laplacian

operator with singular absorption or/and source coefficients arising in the

linearization around positive solutions to some quasilinear degenerate par-
abolic equations and singular semilinear parabolic problems as well. We

show that the linearization process applies even if the coefficients behave

singularly with the distance to the boundary to the exponent two. This
improves previous references in the literature. Applications to the above

mentioned nonlinear problems are also presented.

1. Introduction

In this paper we study some linear eigenvalue problems with singular coeffi-

cients arising in the linearization around positive solutions to some quasilinear

degenerate parabolic equations and singular semilinear parabolic problems as
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well. More precisely, we consider problems of the form

(1.1)

−∆w + c(x)w = λb(x)w in Ω,

w = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN and b(x) and c(x) are unbounded

coefficients tending to infinity close to the boundary. As we will explain be-

low, interesting examples arise when linearizing singular problems are (modulo

positive constants)

(1.2) (P±) ≡

−∆w ± kw

d(x)β
=

λw

d(x)γ
in Ω,

w = 0 on ∂Ω,

where 0 ≤ β, γ ≤ 2, k > 0 and d(x) = d(x, ∂Ω). In fact, the exact value of the

coefficient k is not too relevant except for the limit case γ = 2, so in the other

cases we shall assume k = 1.

Such problems were studied by many authors in the last thirty years and

many references will be indicated below. In particular, the motivation to study

problem (1.1), in the paper by Bertsch and Rostamian [9], was to obtain line-

arized stability results for positive solutions to the degenerate quasilinear para-

bolic problem

(1.3)


β(u)t −∆u = f(u) in Ω× (0,+∞),

u = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) on Ω.

Here β(s) is smooth with β(s) ≥ 0 for s > 0, β(0) = 0, β′(0) = +∞ and

β′(s) > 0 for s > 0. Moreover, f(s) can be either a smooth function, with

f(0) = 0 and such that f ◦ β−1 is locally Lipschitz continuous for s ≥ 0, as

for instance β(s) = s1/m, m > 1 and f(s) = sp/m with 1 < p < m already

considered in [9], or a singular function as for instance β(s) = s1/m, m > 1

and f(s) = sp/m with −m < p < m already considered in the literature (see

references in Remark 4.2 below). We point out that the results on the stationary

problem in [9] are obtained for classical solutions (at least with u ∈ C2,δ(Ω)),

0 < δ < 1) such that not only u > 0 in Ω but also

(1.4)
∂u

∂n
< 0 on ∂Ω,

where n denotes the outward normal unit vector (i.e., that are interior points of

the positive cone in C1
0 (Ω)). Solutions u > 0 in Ω such that

(1.5)
∂u

∂n
= 0 on ∂Ω,
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or with compact support in Ω raise interesting problems (see Section 5 in [9] and

below). Among the many improvements of the results of [9] we mention specially

the papers by Brezis and Marcus [13] and Brezis, Marcus and Shafrir [14].

In what follows by a “flat solution” we mean any solution of the corresponding

partial differential equation such that

u =
∂u

∂n
= 0 on ∂Ω and u > 0 in Ω.

If u > 0 is a stationary solution to (1.3), the corresponding linearized para-

bolic problem can be rewritten as

β′(u)wt −∆w − f ′(u)w = 0

or equivalently as

wt −
1

β′(u)
(∆w + f ′(u)w) = 0

since β′ > 0. The associated linear eigenvalue problem is

(1.6)

−∆w − f ′(u)w = λβ′(u)w in Ω

w = 0 on ∂Ω,

which is a problem of type (1.1).

In [9] under suitable assumptions the authors obtained some interesting re-

sults concerning existence and properties of eigenvalues for (1.1) by working in

the usual Sobolev space H1
0 (Ω) and the weighted Sobolev space H1

0 (Ω, b). Then

these results are applied in order to prove (in a nontrivial way) linearized stabil-

ity for positive stationary solutions to (1.3) in the sense that the sign of the first

eigenvalue gives the asymptotic stability (or instability) of the solution.

Linear eigenvalue problems as (1.1) also arise when studying linearized sta-

bility for positive solutions to the semilinear singular equation

(1.7)


ut −∆u = f(u) in Ω× (0,+∞),

u = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) on Ω,

corresponding to β(s) = s but where now f : (0,∞) → R is a smooth function

such that f(s) −→
s↘0
±∞. Two model problems are f(s) = s−α and f(s) = −s−α

with α > 0 (see [58], [62], [63]). In the case of f(s) = −s−α with α > 0 it may

arise solutions with compact support and then the equation is only well-defined

by replacing f(s) = −s−α by f(s) = −s−αχ{s>0}, see [76], [28], [24] and their

references. Moreover, since there is global quenching in finite time the stability

question we shall consider in this paper is only relevant for perturbations of the

form f(s) = −s−αχ{s>0} + γsθ for some θ ∈ R, see, e.g. [27], [28], [63], [59]

and [24]. One of the main goals of this paper is to see if the linearization process
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is well defined for problems in which there are compact support solutions or

when the linearization is applied near a flat solution.

Problem (1.1) was studied in [63] for a much more general class of problems

including second order linear differential operators not necessarily in divergence

form and rather general nonlinear terms f(x, u) but this time not in the frame-

work of Sobolev spaces but in Hölder continuous function spaces and C1
0 (Ω).

Most of the well-known theorems for continuous (on Ω) coefficients b and c were

extended to this more general situation and then it was proved that linearized

stability implies stability in the sense of Lyapunov (something that we shall

consider in a companion but separate paper [38]). Applications to a variety of

singular problems were given in [64] (see also [62]). All results in [63] are re-

stricted to the case 0 < α < 1 for the above model example and to solutions

u > 0 satisfying (1.4) as well. This means that the case α ≥ 1 (where stationary

solutions to (1.7) are not in C1
0 (Ω) but only in Cγ(Ω) for some γ ∈ (0, 1)) is

excluded. We point out that this low regularity of the gradient of solutions oc-

curs in a large class of nonlinear partial differential equations (see, e.g. [21], [44]

and [52]). But it is also useful to have linearized stability results for 0 < α < 1

(and even −1 < α < 1) in the Hilbert space H1
0 (Ω), now we have a sequence of

eigenvalues. This is useful if we want to show that λ = 0 is not an eigenvalue

of the linearized operator, which allows to apply the Implicit Function Theo-

rem in [63] to functions at the interior of the positive cone in C1
0 (Ω) (see [39],

[40]). The variational characterization is a useful tool when applying this kind

of results. Moreover, we emphasize that results in [9] are obtained for stationary

solutions u ∈ C2,γ(Ω) with γ ∈ [0, 1), a condition which is never satisfied for

stationary solutions to (1.7) when f(u) is singular. In this sense, we improve all

results in [9].

An interesting application of the linearization procedure along a singular

solution of an ODE associated to some singular BVP can be found in [12]. A nice

application of the results in [63] was considered in [29] in order to study the

existence and smoothness of the solution branch to some singular problems with

super exponential growth in R2 by bifurcation arguments.

Most of the results on the corresponding linear problem after linearization

in this paper have been extended to the analogous quasilinear problem for the

p-Laplacian in [49]. But the linearization process, such as it is presented here,

is not directly applicable to the linearization of p-Laplacian type quasilinear

equations since the diffusion coefficients are extremely singular.

The general idea of linearization, or linear approximation, plays a funda-

mental role in all what concerns differential calculus and in many more places

in mathematics. In the field of ordinary differential equations the basic results

by Poincaré and Lyapunov are, together with the use of Lyapunov functions,
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the main tool in order to study stability in the finite-dimensional case. These

ideas were extended to the infinite-dimensional situation not only for nonlinear

parabolic equations ([78], [73]) but also for other relevant nonlinear evolution

equations as, e.g. Navier–Stokes system [79], [72], and the classical bifurcation

problems of Bénard and Taylor in Fluid Mechanics [67], or very relevant prob-

lems arising in magneto-hydrodynamics [70]. A general theory was elaborated

by Henry [61], actually the results in [63] (see [64]) are obtained as an applica-

tion of [61]. We also mention that the linearization process was also applied to

several problems in combustion theory (see, e.g. the many references presented

in the monograph [51]). See [1], [65] for related results concerning linearization

of some other sublinear problems. We point out that in the reference [11] the

linearization procedure is done in weighted continuous functions spaces and in

the reference [29] the linearization concerns the nonlinear operator −∆u− 1/uδ.

These two approaches allow to consider more singular cases regarding the former

results.

In this paper we shall only consider the linearization process in a formal

way, paying special attention to the singular linear problems originated in such

process. So, we shall use the expression that a stationary solution u(x) of a non-

linear parabolic equation containing nonlinear terms as β(u(x, t))t and f(u(x, t))

is linearly stable if the first eigenvalue λ1 of the associated linear problem (con-

taining now terms of the form β′(u) and f ′(u)) [as explained by means of (1.6)]

is positive. The techniques needed to prove that any linearly stable solution

u(x) is stable in the Lyapunov sense have a very different nature and will be

the object of a separate paper by the authors [38]. See also [39]–[41] for other

stability results concerning stationary ground state solutions.

In Section 2 we study the linear problem (1.1) giving a more complete and

unified version of the results in [9]. Even the simple model example given above

for singular problems (f(s) = s−α with 0 < α < 1) does not fall under the scope

of [9]. Our results allow to deal with the case not considered before α > 1. We

devote some attention to the “critical case” β = 2 and/or γ = 2 below corre-

sponding to α > 1. The results concerning the boundary behaviour of positive

eigenfunctions that are based in recent work by the first author ([30], [31]: see

also [33]–[35]) are new. Section 3 deals with applications to semilinear singu-

lar equations studied in [58], [62]–[64]). Section 4 is devoted to applications to

stationary solutions to degenerate quasilinear parabolic equations studied in [9]

and some linearized stability results are improved. Some remarks on the cases of

“flat” positive solutions and compact support solutions are developed. Finally,

some variants of methods used in Section 2 are given in an Appendix at the end

in order to show the flexibility of this kind of arguments. In particular, we use

a version of the Hardy’s inequality in [66] to improve an argument used in [2].
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2. The singular linearized eigenvalue problem

In this section we study the linear eigenvalue problem (1.1)

(2.1)

−∆w − c(x)w = λb(x)w in Ω,

w = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN . This problem was studied in [9],

where the existence of an infinite sequence of eigenvalues was proved under the

assumptions

b, c ∈ L∞loc(Ω), b(x) ≥ b0 > 0,(2.2)

|c(x)| ≤ kb(x), k > 0,(2.3)

where

(2.4) d(x) := d(x, ∂Ω),

a function which plays an important role in all this theory. As a matter of fact,

in some results of [9] they assume the additional condition

(2.5) b(x)d(x)2 d(x)→0−−−−−→ 0

but, as we shall indicate below, this assumption is not needed in some cases. We

point out that our results could be also stated for the general formulation by

assumming conditions of the type

(2.6)

0 < lim inf |c(x)| d(x)β ≤ lim sup |c(x)| d(x)β < +∞
0 < lim inf b(x)d(x)γ ≤ lim sup b(x)d(x)γ < +∞

for some 0 ≤ β, γ ≤ 2, but we shall not follow this presentation. Concerning the

constant k in (2.3) we shall see that the exact value of the coefficient k is not

too relevant except for the limit case γ = 2 (see Subsection 2.3), so in the other

cases we shall assume k = 1.

It is claimed in [9] that the exponent 2 “is the critical growth condition for b

and c”. We can see immediately that assumption (2.3) is only satisfied if β < γ.

This means that γ < β, which is precisely the condition arising in our intended

applications (in the model example β = 1 + α > 0, 0 < α < 1, and γ = 0) is not

included in [9].

2.1. Case 0 ≤ β ≤ 2 and γ = 0. In order to illustrate the method of proof

we start by showing that the case β = 2 in (P+) is not actually “critical”. We

deal first with the case γ = 0.

We first prove some auxiliary results. In all which follows we use the notation

‖u‖ = ‖u‖H1
0 (Ω) =

(∫
Ω

|∇u|2
)1/2

.
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Lemma 2.1. For any h ∈ H−1(Ω), there is a unique solution w ∈ H1
0 (Ω) of

the linear problem

(2.7)

−∆w +
w

d(x)β
= h ∈ H−1(Ω),

w = 0 on ∂Ω,

for 0 < β ≤ 2. Moreover, if h ≥ 0, then w ≥ 0.

Proof. For β = 2 the associated bilinear form in H1
0 (Ω) is well-defined,

continuous and coercive. Indeed, for

a(u, v) =

∫
Ω

∇u · ∇v +

∫
Ω

uv

d(x)2

we have, by using Hardy’s inequality (see e.g. [75])

a(u, v) ≤ ‖u‖ ‖v‖+

∫
Ω

∣∣∣∣ u

d(x)

∣∣∣∣∣∣∣∣ v

d(x)

∣∣∣∣ ≤ (1 + C) ‖u‖ ‖v‖ ,

for some C > 0. Moreover, from the weak maximum principle it follows that

w ≥ 0 if h ≥ 0. The proof is similar if 0 < β < 2. �

Lemma 2.2. The solution operator P : H−1(Ω)→ H1
0 (Ω) defined by w = Ph

is continuous, and Ph ≥ 0 if h ≥ 0. Then the linear operator T = i ◦ P ◦ j,
where j : L2(Ω) ↪→ H−1(Ω) is the standard embedding and i : H1

0 (Ω) ↪→ L2(Ω) is

a compact injection, is a self-adjoint compact linear operator T : L2(Ω)→ L2(Ω).

Proof. The first part is contained in Lemma 2.1. The second one follows

from the continuity of j and Rellich’s theorem. It is very easy to show that T is

self-adjoint. �

Theorem 2.3. If 0 ≤ β ≤ 2 and γ = 0 there is an infinite sequence λ1 ≤
λ2 ≤ . . . ≤ λn ≤ . . . of eigenvalues to (P+) such that limλn = +∞, with

eigenfunctions ϕn ∈ H1
0 (Ω). The first eigenvalue λ1 > 0 has an associated

eigenfunction ϕ1 ≥ 0.

Proof. It is clear that λ is an eigenvalue with eigenfunction u if and only

if u = λTu. The existence of the infinite sequence λn of eigenvalues such that

lim
n→+∞

λn = +∞ follows from the well-known spectral theory for compact self-

adjoint linear operators in Hilbert spaces. From the variational characterization

λ1 = inf
w 6=0

∫
Ω

|∇w|2 +

∫
Ω

w2

d(x)β∫
Ω

w2
,

for 0 ≤ β ≤ 2, it follows λ1 > 0. If u1 is an associated minimizing function

for λ1, |u1| is also suitable and hence u1 ≥ 0. �
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Remark 2.4. Much more general existence results can be obtained outside

of the energy space H1
0 (Ω) when, for instance, it is merely assumed that h ∈

L1(Ω, d) even for β > 2 (see e.g. [34], [33] and [35] and its many references).

2.2. Case 0 ≤ β ≤ 2 and 0 ≤ γ < 2. Next we deal with the case γ > 0,

more precisely we study the case 0 < γ < β ≤ 2. The case 0 < β < γ < 2 follows

in a completely similar way, and the “critical” case γ = 2 will be considered at

the end of the section.

We study the eigenvalue problem (corresponding to the problem (P+) in the

formulation (P±))

(2.8)

−∆w +
w

d(x)β
=

λw

d(x)γ
in Ω,

w = 0 on ∂Ω,

where 0 < γ < β < 2. The case 0 < γ < β = 2 is, once again, very similar. The

same for 0 < β < γ < 2.

Now we should use the weighted L2(Ω, b) space of functions u such that∫
Ω

u2(x)b(x) dx < +∞.

We need an auxiliary result in [9], namely

Lemma 2.5. If b(x) = 1/d(x)δ with 0 < δ < 2, then the embedding i : H1
0 (Ω) ↪→

L2(Ω, b) is compact.

Now we “factorize” the operator T in a similar way:

L2(Ω, b)
F−→ H−1(Ω)

P−→ H1
0 (Ω)

i−→ L2(Ω, b)

where b(x) = 1/d(x)δ for some 0 < δ < 2 and F (w) = w/d(x)γ .

First we prove the

Lemma 2.6. The mapping F : L2(Ω, b) → H−1(Ω), where b(x) = 1/d(x)γ ,

defined as F (w) = w/d(x)γ , is linear continuous for any 0 < γ < 2.

Proof. We should show first that F is well defined, i.e. that if w ∈ L2(Ω, b)

then w/d(x)γ ∈ H−1(Ω). Indeed, if z ∈ H1
0 (Ω) we have∣∣∣∣〈 w

d(x)γ
, z

〉∣∣∣∣ =

∣∣∣∣ ∫
Ω

wz

d(x)γ

∣∣∣∣ ≤ ∫
Ω

∣∣∣∣ z

d(x)

∣∣∣∣∣∣wd(x)1−γ∣∣
and since we have∥∥wd(x)1−γ∥∥2

L2(Ω)
=

∫
Ω

w2d(x)2(1−γ) =

∫
Ω

w2

d(x)γ
d(x)2−γ ≤ C‖w‖2L2(Ω,b)

for some C > 0, by the Hardy inequality∣∣∣∣〈 w

d(x)γ
, z

〉∣∣∣∣ ≤ C‖w‖L2(Ω,b)‖z‖,

which gives the result. �
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As above, the linear operator T : L2(Ω, b) → L2(Ω, b) is compact (by Lem-

ma 2.5) and self-adjoint and we reason as for Theorem 2.3. We have thus proved

the following

Theorem 2.7. If 0 ≤ γ < 2 and β ∈ [0, 2], there is an infinite sequence

λ1 ≤ . . . ≤ λn ≤ . . . of eigenvalues to (P+) such that limλn = +∞, with

eigenfunctions ϕn ∈ H1
0 (Ω). The first eigenvalue λ1 > 0 has an associated

eigenfunction ϕ1 ≥ 0.

It is well known that if both the domain and the coefficients b and c are

smooth enough then the first eigenvalue λ1 is simple and has an eigenfunction

ϕ1 > 0 with ∂ϕ1/∂n < 0 on ∂Ω; moreover, λ1 is the only eigenvalue with this

property. These results follow in some cases from the classical version of the

Krein–Rutman theorem applied to the positive cone in C1
0 (Ω) by invoking the

Strong Maximum Principle, now the eigenfunction ϕ1 belongs to the interior

of this cone. When the positive cone of the corresponding space has an empty

interior (as for Lp(Ω), 1 < p < +∞) an alternative version of the Krein–Rutman

theorem holds (see [22]) and can be applied: in this case ϕ1 is a quasi-interior

point of the cone, i.e. ϕ1 > 0 almost everywhere in Ω (see [55] for an application

of this idea when b, c ∈ Lr(Ω), r > N/2).

In [9] the authors prove that if b, c ∈ Cδ(Ω) for some 0 < δ < 1, γ = 1,

β < 2, then ϕn ∈ C2,δ(Ω) ∩ C1(Ω). Again, by using an extension of the Strong

Maximum Principle, they obtain that ϕ1 > 0 in Ω, ∂ϕ1/∂n < 0 on ∂Ω. These

questions remain open in [9] not only for the “critical” case β = 2 but also for

1 < γ ≤ 2. We greatly improve all these results here.

The problem was settled for 0 ≤ β, γ < 2 in [63] in the framework of classical

solutions by showing that ϕ1 ∈ C2(Ω)∩C1,δ
0 (Ω) for some 0 < δ < 1, ∂ϕ1/∂n < 0

on ∂Ω and λ1 is a simple eigenvalue by applying an extension of the classical

Strong Maximum Principle (see also [80]) and the Krein–Rutman theorem.

We can try to apply both versions of the Krein–Rutman theorem in our

case if (some suitable version of) the theorem holds (see [20] for this kind of

results). However, we prefer to follow a different approach. First we state that

ϕ1 ∈ L∞(Ω) and this will allow to show that ϕ1 > 0 and its interior regularity.

Theorem 2.8. The eigenfunction ϕ1 to (P±) (corresponding to the first

eigenvalue λ1) is bounded for any 0 ≤ γ < 2 and β ∈ [0, 2]. Moreover, for

β = 2 and 0 ≤ γ < 2, any eigenfunction ϕn to (P+) is a flat solution of the

equation.

Proof. The proof consists in a variant of the general iterative technique

presented in [50] (see also [48] for another application of these arguments). Actu-

ally this is a particular version of more general results, namely Theorem 2.3 in [49]

for the p-Laplacian. That the eigenfunctions ϕn to (P+) are flat solutions was
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shown in [31] for β = 2 and γ = 0 but the same method of proof applies if

0 ≤ γ < 2. �

Remark 2.9. If γ = 2 the eigenfunction ϕ1 to (P±) is unbounded (see [25]).

Corollary 2.10. Under the conditions of Theorem 2.7, if ϕ1 ≥ 0 is an

eigenfunction to (P±) corresponding to λ1, then ϕ1 > 0 and ϕ1 ∈ W 2,p
loc (Ω) for

any p ∈ (1,∞) and ϕ1 ∈ C1,δ
loc (Ω) for any 0 < δ < 1.

Proof. Since ϕ1 is bounded we can apply the interior Lp regularity (see [60])

and then the conclusions follow from well-known embedding theorems and Bony’s

Maximum Principle [10]. �

Theorem 2.11. Under the conditions of Theorem 2.7, the first eigenvalue

λ1 to (P±) is simple and it is the only eigenvalue having positive eigenfunction.

Proof. The second part follows immediately from the fact that eigenfunc-

tions corresponding to different eigenvalues of a self-adjoint operator are orthog-

onal. For the first one can reason as in [5] following the ideas in [56]. We sketch

the proof for the reader’s convenience. The first eigenvalue is given by

λ1 = inf∫
Ω
w2/d(x)γ=1

∫
Ω

|∇w|2 +

∫
Ω

w2

d(x)β
.

Assume that u, v > 0 are eigenfunctions associated to λ1 such that∫
Ω

u2

d(x)γ
=

∫
Ω

v2

d(x)γ
= 1.

Consider the function w = η1/2, where η = (u2 +v2)/2. Now w is a test function

since ∫
Ω

w2

d(x)γ
=

1

2

(∫
Ω

u2

d(x)γ
+

∫
Ω

v2

d(x)γ

)
= 1.

We have, by convexity,

|∇w|2 = η−1

∣∣∣∣12(u∇v + v∇u)

∣∣∣∣2
= η

∣∣∣∣t(x)
∇u
u

+ (1− t(x)
∇v
v

∣∣∣∣2 ≤ η(t(x)

∣∣∣∣∇uu
∣∣∣∣2 + (1− t(x)

∣∣∣∣∇vv
∣∣∣∣2)

)
=

1

2

(
u2

∣∣∣∣∇uu
∣∣∣∣2 + v2

∣∣∣∣∇vv
∣∣∣∣2) =

1

2

(
|∇u|2 + |∇v|2

)
,

where t(x) = u2/(u2 + v2). Hence∫
Ω

|∇w|2 ≤ 1

2

(∫
Ω

|∇u|2 +

∫
Ω

|∇v|2
)

and equality should follow since u and v are solutions. Then ∇u/u = ∇v/v and

u = Cv for some C > 0. �
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Remark 2.12. The results in [5] and [56] are actually valid for the p-Laplacian

operator with p > 1: see [16] (for p = 2) and [45] for related ideas. The same

argument is applicable to “sublinear” problems for the p-Laplacian operator giv-

ing a simple proof of the uniqueness of positive solutions: see [48] for previous

results using the L∞ estimate as in Theorem 2.11.

Corollary 2.10 yields the best regularity of ϕ1 if 0 < β, γ < 2. Indeed, since

λ1 is the only eigenvalue having an eigenfunction ϕ1 > 0, it should coincide with

the principal eigenvalue obtained in [63] (see also [63] for more details on these

points). The results in [63] are only valid if β < 2. We have thus proved the

Corollary 2.13. Under the conditions of Theorem 2.7, if λ1 is the first

eigenvalue for (P±) with eigenfunction ϕ1 > 0 for 0 < β, γ < 2, then ∂ϕ1/∂n < 0

on ∂Ω and ϕ1 ∈ C2,δ(Ω) ∩ C1,δ(Ω) for some 0 < δ < 1.

Now we study problem (P−), namely

(2.9)

−∆w − w

d(x)β
=

λw

d(x)γ
in Ω,

w = 0 on ∂Ω.

We recall the well-known variational characterization of the above first eigenvalue

for (P+)

λ1 = inf
w 6=0, w∈L2(Ω,b)

∫
Ω

|∇w|2 +

∫
Ω

w2

d(x)β∫
Ω

w2

d(x)γ

.

We consider the case 0 < γ, β < 2. We use a fixed point argument and apply

the above result for (P+). To any λ ∈ R fixed, with λ > 0, we associate the

eigenvalue problem

(2.10)

−∆w = µ

(
w

d(x)β
+

λw

d(x)γ

)
in Ω,

w = 0 on ∂Ω.

(i) We look for positive eigenvalues, λ > 0 of (P−). We study (2.10) where λ

is a fixed coefficient and µ plays the role of an eigenvalue parameter. By applying

Theorem 2.5 to (2.10) working in the “bigger” space L2(Ω, b), where b depends

on β and γ (it is very easy to see that β > γ implies L2(Ω, d−β) ⊂ L2(Ω, d−γ)),

we find a first eigenvalue µ1 = r(λ) > 0 of (2.10) with a positive eigenfunction

ψ > 0 having the variational characterization

r(λ) = inf
w 6=0, w∈L2(Ω,b)

∫
Ω

|∇w|2∫
Ω

w2

d(x)β
+ λ

∫
Ω

w2

d(x)γ

.
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We know (and see) that r(λ) is a continuous and monotone (decreasing)

function of λ. Moreover we have

r(λ) ≤ 1

λ
inf

w 6=0, w∈L2(Ω,b)

∫
Ω

|∇w|2∫
Ω

w2

d(x)β

which implies r(λ)
λ→+∞−−−−−→ 0. Hence the existence of a positive eigenvalue λ

to (2.9) is equivalent to the existence of λ > 0 such that r(λ) = 1, and in turn

this is equivalent to

r(0) = inf
w 6=0 w∈L2(Ω,b)

∫
Ω

|∇w|2∫
Ω

w2

d(x)β

> 1.

(ii) Next, we treat the case λ < 0 with the change of variable λ → −λ and

now we have as associated eigenvalue problem

(2.11)

−∆w +
λw

d(x)γ
= ν

w

d(x)β
in Ω,

w = 0 on ∂Ω,

where again λ is a coefficient and ν is an eigenvalue parameter, and look for pos-

itive values λ such that ν(λ) = 1, where ν(λ) > 0 is the first positive eigenvalue

to (2.11) provided by Theorem 2.5. Now the variational characterization is

ν(λ) = inf
w 6=0, w∈L2(Ω,b)

∫
Ω

|∇w|2 + λ

∫
Ω

w2

d(x)γ∫
Ω

w2

d(x)β

,

and ν(λ) is continuous and increasing in λ. Moreover, ν(λ)
λ→+∞−−−−−→ +∞. Hence

there exists λ > 0 such that ν(λ) = 1 if and only if

ν(0) = inf
w 6=0, w∈L2(Ω,b)

∫
Ω

|∇w|2∫
Ω

w2

d(x)β

< 1.

Notice that ν(0) = r(0). We have proved the following

Theorem 2.14. The problem (P−) for 0 < γ, β < 2 has a first positive

(resp. negative) eigenvalue λ1 > 0 (resp. λ1 < 0) with an associated positive

eigenfunction if and only if r(0) > 1 (resp. r(0) < 1). If ϕ1 is the associated

eigenfunction, ϕ1 > 0.

To the best of our knowledge this result is completely original.



Degenerate and Singular Semilinear and Quasilinear Parabolic Problems 949

Remark 2.15. Problem (P−) for β = 0 and γ = 2 has received a great deal

of attention in the recent years (see e.g. [25], [26], [51] and their references). In

that case, if c(x) = µ/d(x)2 for some µ ≤ 1/4 and assuming for instance that Ω

is convex, the similar statement to Lemma 2.1 requires the definition of a special

Hilbert space H of norm

‖u‖2H =

∫
Ω

(
|∇u|2 dx− µu2

d(x)2
+Mu2

)
dx

for some suitable M > 0. The case of µ ≤ 0 was considered in [30], [31], [33]–[35]

(see also their many references).

2.3. Case γ = 2. It remains to deal with the critical case γ = 2, with

0 ≤ β ≤ 2 and both signs in (1.2). It is illustrative to start by recalling the

results for the case γ = 2 and β = 2 which then (by an obvious change of

notation in λ) reduces the problem to the study of nontrivial solutions of

(2.12)

−∆w = λ
w

d(x)2
in Ω,

w = 0 on ∂Ω.

That problem was considered previously by many authors in connection with the

study of the best constant in the Hardy’s inequality (see e.g. [74], [13], [25], [26]

and the exposition made in [51]). It is well-known (see e.g. [74]) that if Ω is

convex then if we define

(2.13) µ(Ω) := inf
w∈H1

0 (Ω)

∫
Ω

|∇w|2∫
Ω

w2

d(x)2

then µ(Ω) = 1/4, λ = 1/4 is the infimum of the essential spectrum and prob-

lem (2.13) has no minimizer. Nevertheless, if µ(Ω) < 1/4 then there exists

a λµ(Ω) ∈ (0, 1/4) which is the first eigenvalue of the problem (2.12), and so

there is a positive solution w of such problem (see Remark 3.2 of [13]).

Remark 2.16. In the one-dimensional case Ω = (0, 1), and by replacing

d(x)2 by |x|2 in problem (2.12), it is easy to see ([9]) that w(x) = −
√
x lg x

if λ = 1/4 and w(x) =
√
x sin(ωλ lg x) with ωλ =

√
λ− 1/4 if λ > 1/4 are

explicit solutions of the problem. These functions are not in H1
0 (0, 1) (they

are bounded but their derivatives are not in L2(0, 1)) and so they were called

“generalized eigenfunctions” in [9] (see also a related one-dimensional problem

in [8]). Nevertheless, it can be proved that by working with the notion of very

weak solution such functions are well defined and belong to the weigthed space

H1
0 ((0, 1), d(x)). See for this matter the study of L1-eigenvalues made in [17].

From the above mentioned results, if γ = 2 we cannot always expect the

existence of countably many eigenvalues λn of problem (P±) with λn → +∞ as
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n → +∞. Nevertheless, the existence of an eigenvalue λ can be proved under

suitable additional conditions: as observed in [15], “lower order terms can reverse

the situation”.

Let us start by considering the limit case of problem (P−), i.e.

(2.14)

−∆u− ku

d(x)β
=

λu

d(x)2
in Ω,

u = 0 on ∂Ω,

for k > 0 and β ∈ [0, 2). That problem was considered in the papers by Brezis

and Marcus [13] and Brezis, Marcus and Shafrir [14] in connection with the so

called “improved Hardy inequality”. Then the question of the best constant in

such inequality becomes related to the consideration of the quantity

(2.15) JΩ
k = inf

w 6=0, w∈H1
0 (Ω)

∫
Ω

|∇w|2 − k
∫

Ω

w2

d(x)β∫
Ω

w2

d(x)2

,

for any k ∈ R. Notice that if b(x) = 1/d(x)2 and we define H1
0 (Ω, b) as the

Hilbert space with norm

‖u‖2H1
0 (Ω,b) =

∫
Ω

|∇u|2 dx+

∫
Ω

u2b(x) dx,

then, using once again Hardy’s inequality as above, we conclude that ‖u‖H1
0 (Ω,b)

and ‖u‖H1
0 (Ω) are equivalent for the space H1

0 (Ω, b) = H1
0 (Ω). In [13] it is shown

that there exists a k∗ = k∗(Ω) such that

(i) JΩ
k = 1/4 for any k ≤ k∗;

(ii) JΩ
k < 1/4 for any k > k∗;

(iii) if k > k∗ the infimum in (2.15) is achieved (by a positive function w ∈
H1

0 (Ω)). The main argument of their proof is, as in [9], the method

introduced in [15] to overcome the lack of compactness;

(iv) if k < k∗ then the infimum in (2.15) is not achieved.

The study of the borderline case k = k∗ was the main goal of the paper [14].

Their main result can be particularized to our formulation and shows that, for

any β ∈ [0, 2), the infimum in (2.15) is not achieved. Moreover, as a consequence

of the estimates obtained in [13] and [14] the positive solution u of (2.14) is not

a flat solution since ∂u/∂n < 0 on ∂Ω.

Remark 2.17. There are some important generalizations of most of the

results in this section concerning the case in which function d(x) is replaced by

d(x) = d(x,Σk), where Σk ⊂ Ω is a smooth compact manifold of co-dimension k,

0 ≤ k ≤ N−1 (Σ0 corresponds to a single point and an example of ΣN−1 is ∂Ω),

see e.g. [51], [26], [53] and their references.
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3. Applications to nonlinear problems.

I. Linearized stability for singular semilinear parabolic problems

In this section we apply the results in the precedent one to obtain linearized

stability results for positive solutions (actually for positive solutions satisfying

condition (1.4) as well) of some semilinear elliptic singular problems. This prob-

lem was studied in [63] working in the space C1
0 (Ω), where the classical version

of the Krein–Rutman theorem was used to prove the existence of a first principal

eigenvalue. Then it was proved that linearized stability implies stability in the

sense of Lyapunov (something which will be considered in [38]). Applications

were given also in [64] and [62].

But these results were applicable to the model problem example

(3.1)

−∆u =
1

uα
in Ω,

u = 0 on ∂Ω,

only for 0 < α < 1. And even in this case it is sometimes useful to have an

infinite sequence of eigenvalues and the well-known variational characterization

of the eigenvalues involving the Rayleigh quotient. For example, this is very

useful when applying the Implicit Function Theorem at the interior of positive

cone in C1
0 (Ω) in [63] to show the existence of smooth curves of solutions. See

also [64], [62], [11], [39], [40]. We have the following results for (3.1) (see e.g.

[58], [62], [63], [21] and [52]).

Theorem 3.1. If 0 < α < 1, there exists a unique solution u ∈ C2(Ω) ∩
C1,1−α

0 (Ω) such that u > 0 in Ω, ∂u/∂n < 0 on ∂Ω. Moreover,

(3.2) c1d(x) ≤ u(x) ≤ c2d(x) for some c1, c2 > 0.

Theorem 3.2. (a) If α > 1, there exists a unique solution u ∈ C2(Ω) ∩
C

0,2/(1+α)
0 (Ω) such that u > 0 in Ω and

(3.3) c1d(x)2/(1+α) ≤ u(x) ≤ c2d(x)2/(1+α)

for some c1, c2 > 0.

(b) If α = 1, there exists a unique solution u ∈ C2(Ω) ∩ C0,γ
0 (Ω) for any

γ ∈ (0, 1).

In what follows we give some applications of the previous theorems in Sec-

tion 2. Similar results working in C1
0 (Ω) were obtained in [64] and the above

references.

We only deal with part (a) in Theorem 3.2. Part (b) can be treated by using

similar arguments.
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Example 3.3. We consider the model example (3.1). The eigenvalue problem

for the linearized operator at u can be written as

(3.4)

−∆w +
αw

u1+α
= λw in Ω,

w = 0 on ∂Ω.

From (3.2) it follows immediately from the comparison results arising from the

variational characterization that, for some k1 > 0,

λ1

(
−∆ +

k1

d1+α

)
≤ λ1

(
−∆ +

α

u1+α

)
.

It is enough to show that λ1(−∆+k1/d
1+α) > 0, a particular case in Theorem 2.3

for β = 1 + α < 2. We have thus proved

Theorem 3.4. The unique solution u > 0 for (3.1) with 0 < α < 1 is linearly

stable.

If α > 1 we use (3.3) and reduce in the same way the problem to show that

λ1

(
−∆ +

k2

d2

)
> 0

where k2 > 0. We apply again Theorem 2.3, this time with β = 2. We have thus

proved

Theorem 3.5. The unique solution u > 0 for (3.1) with α > 1 is linearly

stable.

Remark 3.6. The spectrum of the operator −∆ + k1/d
2 is very relevant

for the study of the Schrödinger solution with singular potentials (see [30], [40],

[34], [33]).

Example 3.7. We study now positive solutions of the problem

(3.5)

−∆u+
1

uα
=

λ

uβ
χ{u>0} in Ω,

u = 0 on ∂Ω,

where 0 < α < β < 1 (notice that due to the positivity of solutions the singular

terms, as e.g. λ/uβ , do not need to be written otherwise, as λχ{u>0}/u
β , which

is needed for solutions with compact support). It was proved in [64] that there

is a unique positive solution to (3.5) for any λ > 0. The linearized eigenvalue

problem is

(3.6)

−∆w +
λβw

uβ+1
− αw

u1+α
= µw in Ω,

w = 0 on ∂Ω,
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or

(3.7)

−∆w +

(
λβ

uβ+1
− α

u1+α

)
w = µw in Ω,

w = 0 on ∂Ω.

It is not difficult to show, by using the estimate 0 < u ≤ λ1/(β−α) (see [64]),

that for the coefficient(
λβ

uβ+1
− α

u1+α

)
=
λβ − αuβ−α

uβ+1
> 0

and we apply Theorem 2.1. We have thus proved

Theorem 3.8. The unique solution u > 0 for (3.5) with 0 < α < β < 1 is

linearly stable.

In these examples there exists a unique positive solution which is linearly

stable. A more flexible way of using the above ideas which can be interesting

when dealing with multiple positive solutions is the following.

Assume that we consider the general semilinear elliptic problem

(3.8)

−∆u = f(u) in Ω,

u = 0 on ∂Ω,

with f smooth and let u > 0 (with ∂u/∂n < 0 on ∂Ω) be a solution. The

associated linearized problem is

(3.9)

−∆w − f ′(u)w = µw in Ω,

w = 0 on ∂Ω.

Assume that this linearized problem has the first eigenvalue µ1 with positive

(smooth) eigenfunction ψ1 > 0, thus

(3.10)

−∆ψ1 − f ′(u)ψ1 = µ1ψ1 in Ω,

ψ1 = 0 on ∂Ω.

Multiplying (3.8) by ψ1, (3.10) by u and integrating by parts on Ω using Green’s

formula gives∫
Ω

∇u · ∇ψ1 −
∫

Ω

f(u)ψ1 = 0 =

∫
Ω

∇u · ∇ψ1 −
∫

Ω

f ′(u)uψ1 − µ1

∫
Ω

uψ1,

and finally

µ1 =

∫
Ω

[
f(u)− f ′(u)u

]
ψ1∫

Ω

uψ1

.



954 J.I. D́ıaz — J. Hernández

If H(u) =
[
f(u)− f ′(u)u

]
> 0, µ1 > 0 and u is linearly stable. In Example 3.3,

H(u) = (1+α)u−α>0. In Example 3.7, H(u) = u−β
[
λ(1+β)−(1+α)uβ−α

]
>0,

using that 0 < u < λ1/(β−α) for any solution.

Notice that H(u) > 0 is just the assumption in the uniqueness theorem

in [64]. The above computations are justified by using (3.2) and (3.3).

Example 3.9. We consider again (3.5) but this time with 0 < β < α < 1.

We have

H(u) = u−β
[
λ(1 + β)uα−β − (1 + α)

]
≤ 0

if 0 < u ≤ ((1 + α)/(λ(1 + β)))1/(α−β). This means that solutions satisfying this

estimate are linearly unstable (if they exist!). Indeed, the situation is now more

delicate. In the one-dimensional case it was proved in [42] (extending the previous

paper [36]: see also [43]) the existence of an upper branch of positive solutions

uλ > 0 with ∂uλ/∂n < 0 on ∂Ω. We shall prove in [38] that the solutions of this

branch are Lyapunov stable for λ > λ∗ > 0 for some λ∗ > 0 and for λ ∈ (λ∗, λ∗∗)

there is a lower branch vλ with ∂vλ/∂n < 0 on ∂Ω, vλ < uλ possibly unstable,

which prolongates in continua of compact support solutions. But we do not know

if our result can be applied to vλ. We recall that they do not apply to the solution

vλ∗∗ such that ∂vλ∗∗/∂n = 0 on ∂Ω nor to compact support solutions. For this

problem linearization is not the only way of obtaining stability results. This has

been done in [39]–[41] by using variational arguments. The situation is again

more complicated for a general domain if N > 1. Existence of a positive solution

was proved in [64] by using a continuation argument and some multiplicity results

were obtained in [41] by combining variational and continuation methods. For

the case β > α > 0 see [3] (see also [6], [7] concerning the multivalued case

β = 0 and α = −1). The pseudo-linearization process introduced in [18] can

be applied to the multivalued case α = 0 and β ∈ (−1, 0)). The existence of

solutions for the parabolic and elliptic equations were given in [46], [47], [81]

and [42] respectively. The study of the nonlinear eigenvalue type problems for

variational inequalities (such as it corresponds when we assume α = 0) is already

quite classical in the literature (see e.g. [68] and [71]).

Example 3.10. If f(u) = λu − uα, with 0 < α < 1, we have H(u) =

f(u)−f ′(u)u = (α−1)uα < 0. This implies the linearized instability for solutions

in the interior of the positive cone.

It was proved in [77], [39] and [32] that for any λ > λ1 there exists a non-

negative solution uλ ∈ H1
0 (Ω) for the problem

(3.11)

−∆u+ uα = λu in Ω,

u = 0 on ∂Ω.
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Here λ1 (and in what follows λ2) is the first (repectively, the second) eigenvalue

of the problem −∆w = λw in Ω, w = 0 on ∂Ω. Moreover, bifurcation at infinity

arises from λ1 (see [37], [39]) and this means that solutions with a large norm uλ
close to λ1 are such that uλ > 0 with ∂uλ/∂n < 0 on ∂Ω. Now the results in [63]

allow to apply the Implicit Function Theorem at the interior of the positive cone if

the linearized operator is an isomorphism. Since we have µ1(−∆−αuα−1
λ −λ) < 0

the result would follow clearly from 0 < µ2(−∆− αuα−1
λ − λ).

From the usual variational characterization

µ2 = inf
w∈[ϕ1]⊥

∫
Ω

(
|∇w|2 +

αw2

u1−α
λ

− λw2

)
dx∫

Ω

w2 dx

we obtain the estimate

µ2 > λ2 − λ+ inf
w∈[ϕ1]⊥

∫
Ω

αw2

u1−α
λ

dx∫
Ω

w2 dx

.

Using that uλ ≤ c1d(x), for some c1(λ) > 0, we get∫
Ω

w2

u1−α
λ

dx ≥
∫

Ω

w2

c1−α1 d(x)1−α
dx ≥ 1

D1−αc1−α1

∫
Ω

w2 dx,

where D > 0 is such that d(x) ≤ D for any x ∈ Ω. Hence

µ2 > λ2 − λ+
1

D1−αc1−α1

and the condition µ2 > 0 is satisfied for some λ > λ1 close to λ1, and in particular

for λ1 < λ < λ2.

4. Applications to nonlinear problems.

II. Linearized stability for degenerate quasilinear

parabolic problems

In this section we study the quasilinear degenerate parabolic problem (1.3)

(4.1)


β(u)t −∆u = f(u) in Ω× (0,+∞),

u = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) on Ω,

where Ω ⊂ RN is again a smooth bounded domain, β(s) is smooth for s > 0,

β(s) ≥ 0 for s > 0, β(0) = 0, β′(0) = +∞ and β′(s) > 0 for s > 0. Moreover f(s)

is smooth for s > 0 with f(0) = 0 and, in principle, as in [9], f ◦ β−1 is locally

Lipschitz continuous for s ≥ 0 (this includes s = 0 !). Under these assumptions
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it is proved in [9] that (1.3) has a unique weak solution and an associate com-

parison principle which is useful in order to prove results concerning asymptotic

behaviour of solutions.

As it was shown above, the formally associated linearized problem around

the positive stationary solution u > 0 to (4.1) is

(4.2)

β′(u)wt −∆w − f ′(u)w = 0 in Ω× (0,+∞),

w = 0 on ∂Ω× (0,+∞),

which leads to the linear eigenvalue problem (1.6)

(4.3)

−∆w − f ′(u)w = λβ′(u)w in Ω,

w = 0 on ∂Ω.

We will consider problem (4.1) with β(s) = s1/m, f(s) = sp/m under the condi-

tions

(4.4) −1 <
p

m
< 1 and m > 1.

This corresponds to reaction-diffusion phenomena with a balance between suit-

able slow diffusion and strong forcing (sometimes called as exothermic) reaction

terms. Notice that f ◦ β−1(s) = sp and that it is locally Lipschitz continuous if

p ∈ [1,m) although it is not the case for the function f(s) when −m < p < 1.

The associated stationary problem

(4.5)

−∆u = up/m in Ω,

u = 0 on ∂Ω,

has a unique solution u > 0 to which the above results may be applied (the case

p ∈ (−m, 0) corresponds to Theorem 3.1) and the case p ∈ (0,m) is well-known

in the literature: see, e.g. the survey [62])). Problem (1.6) can be written as

(4.6)

−∆w − pw

mu(m−p)/m =
λw

mu(m−1)/m
in Ω,

w = 0 on ∂Ω.

Recalling that u ∼ d(x) near ∂Ω (see Theorem 3.1) if −1 < p/m < 0 and

applying the strong maximum principle if 0 < p/m < 1) the problem could be

reduced (modulo some positive constants) to problem (2.9) with

β =
m− p
m

= 1− p

m
< 2, γ =

m− 1

m
< 1

and the results in Section 2 apply.
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If λ1 is the first eigenvalue given by Theorem 2.1 and ψ1 > 0 the associated

eigenfunction, we have−∆ψ1 − f ′(u)ψ1 = λβ′(u)ψ1 in Ω,

ψ1 = 0 on ∂Ω.

The same computation as above yields

λ1 =

∫
Ω

[
f(u)− f ′(u)u

]
ψ1∫

Ω

β′(u)ψ1

> 0

since f(u) − f ′(u)u > 0. Then, the application of Theorem 2.7 and the above

analysis leads to the following conclusion:

Theorem 4.1. Assume that (4.4) holds. Then the quasilinear problem (4.1)

has a unique stationary strictly positive solution u > 0, u satisfies (4.5) and u is

linearly stable.

As noticed in the introduction, we claim that linearized stability in this

context implies Lyapunov stability: we plan to settle this question in [38]. This

was proved in the framework of C1,γ
0 (Ω), with γ ∈ (0, 1), in [63] (see also [18] for

the case of a delayed parabolic problem).

Remark 4.2. This problem was studied in [9] under the assumption 1 ≤ p <
m. If p ∈ (0, 1) the uniqueness of solutions of the associate parabolic equation

was proved in [19] for suitable initial data. For the case p ∈ (−m, 0), under

suitable additional conditions, the corresponding parabolic problem, replacing

f(u) by −f(u), has a unique solution for smooth positive initial data (this is

a simple variation of the results of [23] [54]; see also [57]).

On the other side, if we assume now

(4.7) p ∈ (−∞−m) and m > 1

there is still a unique positive solution to (4.5) but now its behaviour is u ∼
d(x)2m/(m−p) and the behaviour of the coefficients in the linearized equation is

u(m−p)/m ∼ d(x)2 and u(m−1)/m ∼ d(x)2(m−1)/(m−p),

with 2(m− 1)/(m− p) < 2. Again, we use the above results, now with β = 2,

and γ < 2 and prove

Theorem 4.3. Assume that (4.7) holds. Then the unique positive solution

u > 0 of (4.5) is linearly stable.
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Next we study the case of compactly supported solutions u, where the above

results for the linearized problem cannot be applied in a strict sense but we can

analyze the stability of flat solutions of the associate stationary problem. The

following special case was studied in [4]: consider the degenerate problem
ut − (um)xx = f(u) = u(1− u)(u− α) in (−L,L)× (0,+∞),

um(±L, t) = 0 on (0,+∞),

u(x, 0) = u0(x) on (−L,L),

with m > 1 and some 0 < α < 1. It was shown in [4] that depending on the

parameter L > 0 the associated stationary problem−(um)xx = u(1− u)(u− α) in (−L,L),

um(±L) = 0,

may have compact support solutions such that 0 ≤ u ≤ 1 (this corresponds to

the case L large enough). Assume that 0 ≤ u ≤ 1 is a solution satisfying−(um)xx = u(1− u)(u− α) in (−L,L),

um(±L) = 0,

with u > 0 on (a, b), −L < a < b < L and u ≡ 0 on [−L, a] ∪ [b, L]. This

corresponds to formulation (4.1) with

β(s) = s1/m, f(s) = s1/m(1− s1/m)(s1/m − α).

With the change of variable v = um we get

(4.8)

−vxx = v1/m(1− v1/m)(v1/m − α) in (−L,L),

v(±L) = 0.

We know (by applying the study for more general one-dimensional semilinear

equations made in [30]) that for v ∼ 0 then v ∼ d(x)2/(1−1/m) = d(x)2m/(m−1)

where 2m/(m− 1) > 2 for any m > 0. Hence u ∼ v1/m ∼ d(x)2/(m−1), and

several boundary behaviours are possible:

2

m− 1
> 1 ⇔ m < 3 ⇒ u′(a) = u′(b) = 0,

2

m− 1
≤ 1 ⇔ m ≥ 3 ⇒ u /∈ C1([a, b]) (but v ∈ C1([a, b]).

For the coefficients of the “linearized problem” on (a, b) we obtain

β′(v) ∼ v1/(m−1) =
1

v(m−1)/m
∼ 1

d(x)[2m/(m−1)][(m−1)/m]
=

1

d(x)2

and, in the same way,

f ′(v) ∼ −1

d(x)2
near x = a and x = b.
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Again, we can apply the results in Subsection 2.3 to the associate problem (4.3)

corresponding to γ = 2, as in [9]. In any case, the linearized instability of the

stationary solution u, follows by the arguments used in [9]. Indeed, once that

m > 1 we get that v ∈ C2([a, b]) and that v′(a) = v′(b) = 0. Thus z := v′ ∈
H1

0 (a, b) and, since −z′′ = f ′(v)z in (a, b), (notice that there is a misprint in the

corresponding formula in [9, p. 398]) we get that

λ1 = inf
w 6=0, w∈H1

0 (a,b)

∫ b

a

∣∣w′∣∣2 − ∫ b

a

f ′(um)w∫ b

a

β′(um)w2

≤ 0.

Moreover, as indicated in [9], λ1 6= 0 since, otherwise, the eigenfunction is chang-

ing sign. So u is unstable (in fact, that was already proved in [4] by means of the

comparison principle and the use of suitable auxiliary super and subsolutions).

See also Lemma 5.3 and the following remarks of [9].

Remark 4.4. Notice that the behavior of function

f(s) = s1/m(1− s1/m)(s1/m − α)

is very similar (near s = 0) of the nonlinear function considered in the papers [40]

and [41], f̂(s) = λuβ−uα, with 0 < α < β < 1. In fact it seems possible to extend

the results of the above mentioned papers to the case of the function f(s) =

s1/m(1 − s1/m)(s1/m − α). So, as shown in [40] and [41], the flat solutions are

unstable in the one-dimensional (and also in two dimensional) space framework.

But they are stable (as ground solutions) when Ω is a smooth bounded domain

strictly star-shaped with respect to the origin in Rn and 0 < α < β < 1 are such

that 2(1 + α)(1 + β) − N(1 − α)(1 − β) < 0. Notice that if N ≥ 3 this set of

exponents (α, β) is not empty.

If, as in Remark 5.7 in [9], we replace f(s) by the non-Lipschitz function

fp(s) = sp/m(1−sp/m)(sp/m−α) with 1 < p < m, then there are still compactly

supported solutions to the associated stationary problem (4.3). The existence of

local in time solutions for the parabolic problem is an easy consequence of the

compactness of the associated semigroup (see [46], [47], [81]). Now some new

facts arise since v ∼ d(x)2m/(m−p) and hence u ∼ d(x)2/(m−p). We have in this

case
2

m− p
> 1 ⇔ m < 2 + p ⇒ u′(a) = u′(b) = 0,

2

m− 1
≤ 1 ⇔ m ≥ 2 + p ⇒ u /∈ C1([a, b])] (but v ∈ C1([a, b])).

Again, by the results of [30]) we get

f ′(v) ∼ vp/m−1 = v(p−m)/m ∼ 1

d(x)[2m/(m−p)][(m−p)/m]
=

1

d(x)2



960 J.I. D́ıaz — J. Hernández

and on the other side

β′(v) ∼ v1/(m−1) ∼ 1

v(m−1)/m
∼ 1

d(x)[2m/(m−p)][(m−1)/m]
=

1

d(x)2(m−1)/(m−p) .

It is known (see e.g. [14]) that in order to get existence of positive solutions of

problem (4.3) the coefficient of the linear source term β′(v) must be at most as

d(x)−2, so we get that for p ∈ (1,m) there is not any positive solution of (4.3)

since
2(m− 1)

m− p
> 2 ⇔ p > 1.

Any solution of the parabolic problem blows-up in a finite time (see [57]). The

situation radically changes if besides to assume p ∈ (1,m) we perturb the para-

bolic equation with an absorption term of the form uq and we assume q < p < m

(see [41]). We mention also here that the study of linear equations with a very

singular absorption coefficient of the type d(x)−µ with µ > 2 was considered in

the paper [34].

Appendix A

As was promised in Introduction, we collect here several variants and different

simple proofs of the existence of a first eigenvalue with positive eigenfunction.

Some of them use a non-standard version of the Hardy–Sobolev inequality (see

[66], [69] and [75]).

Example A.1. We consider the eigenvalue problem−∆u = λ
u

d(x)τ
in Ω,

u = 0 on ∂Ω,

with 0 ≤ τ < 1. Here we use again a different Hardy–Sobolev inequality

(see [66]): if u ∈ W 1,q
0 (Ω) with q > N , u/d(x)τ ∈ Lr(Ω), where r = q/r and we

have ∥∥∥∥ u

d(x)τ

∥∥∥∥
Lr(Ω)

≤ C ‖u‖W 1,q
0 (Ω) .

Hence, if u ∈ C1
0 (Ω), u ∈ W 1,q

0 (Ω) for any q > N and then u/d(x)τ ∈ Lr(Ω) for

any r > N . This implies that the linear equation−∆w = λ
u

d(x)τ
in Ω,

w = 0 on ∂Ω,

has a unique solution w = Tu ∈ W 2,r(Ω) ∩W 1,r
0 (Ω) for any r > N and then

Tu ∈ C1,β
0 (Ω) for all β ∈ (0, 1), in particular Tu ∈ C1

0 (Ω). It follows from the

Strong Maximum Principle that if u ≥ 0, u 6= 0 then w = Tu > 0 in Ω and

∂Tu/∂n < 0 on ∂Ω. Moreover, T : C1
0 (Ω) → C1

0 (Ω) is compact (the embedding

C1,β
0 (Ω) ↪→ C1

0 (Ω) is compact for any β ∈ (0, 1)) and the classical Krein–Rutman
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theorem gives the existence of a positive eigenvalue λ1 > 0, which is simple with

an eigenfunction ϕ1 > 0 on Ω and ∂ϕ1/∂n < 0 on ∂Ω.

In order to apply this result to the problem−∆u = λuq in Ω,

u = 0 on ∂Ω,

with 0 < q < 1 (see [2]) we consider the corresponding linearized problem−∆w − λ q uq−1
λ w = µw in Ω,

w = 0 on ∂Ω.

Reproducing the “fixed point” argument in Section 2 it is possible to show that

µ1 > 0 (resp. µ1 < 0) if and only if r(0) < 1 (resp. r(0) > 1), where

r(0) = inf
w 6=0

∫
Ω

|∇w|2 −
∫

Ω

λ q uq−1
λ w2∫

Ω

w2
.

But we can reason more directly by using a comparison argument following from

the variational characterization for the eigenvalues, namely

0 = λ1(−∆− λuq−1
λ ) < λ1(−∆− λ q uq−1

λ ) = µ1,

and uλ is linearly stable.

Example A.2. The case β = 2, γ = 0 in Section 2 can be treated with the

different approach which follows. The cases 0 ≤ β < 2 and 0 < γ < 2 are rather

similar. We have the eigenvalue problem−∆w +
w

d(x)2
= µw in Ω,

w = 0 on ∂Ω.

We define

µ1 = inf
‖w‖L2=1

∫
Ω

|∇w|2 +

∫
Ω

w2

d(x)2
.

Let (wn) be a minimizing sequence, then∫
Ω

|∇wn|2 +

∫
Ω

w2
n

d(x)2
→ µ1, as n→ +∞, ‖wn‖L2(Ω) = 1.

Then we have

‖wn‖H1
0 (Ω) ≤ C, ‖wn‖L2(Ω,1/d(x)2) ≤ C,
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where C is independent of n. Then there exists a subsequence wn such that

wn ⇀ w weakly in H1
0 (Ω),

wn ⇀ w weakly in L2

(
Ω,

1

d(x)2

)
,

wn → w strongly in L2(Ω).

Hence ‖w‖L2 = lim ‖wn‖L2 = 1 and w 6= 0. From the l.s.c. of norms it follows

that ∫
Ω

|∇w|2 +

∫
Ω

w2

d(x)2
≤ lim inf

(∫
Ω

|∇wn|2 +

∫
Ω

w2
n

d(x)2

)
= µ1.

We also have wn → w strongly in H1
0 (Ω). Indeed, if not∫

Ω

|∇w|2 +

∫
Ω

w2

d(x)2
< lim inf

(∫
Ω

|∇wn|2 +

∫
Ω

w2
n

d(x)2

)
= µ1

and since ‖wn‖L2 = 1 we get a contradiction.
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équations elliptiques quasilnéaire, C.R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521–

524.

[46] J.I. D́ıaz and I.I. Vrabie, Existence for reaction-diffusion systems. A compactness

method approach, J. Math. Anal. Appl. 188 (1994), no. 2, 521–540.

[47] J.I. D́ıaz and I.I. Vrabie, On a Boussinesq type system in fluid dynamics, Topol. Meth-

ods Nonlinear Anal. 4 (1994), no. 2, 399–416.
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[50] P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degener-

ations and Singularities, Berlin, De Gruyter, 1997.

[51] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman and

Hall/CRC, Boca Raton, FL, 2011.



Degenerate and Singular Semilinear and Quasilinear Parabolic Problems 965

[52] N. El Berdan, J.I. D́ıaz and J.M. Rakotoson, The uniform Hopf inequality for discon-

tinuous coefficients and optimal regularity in bmo for singular problems, J. Math. Anal.

Appl. 437 (2016), 350–379.

[53] M. Fall and F. Mahmoudi, Weighted Hardy inequality with higher dimensional singu-

larity on the boundary, Calc. Var. Partial Differential Equations 50 (2014), 779–798.

[54] M. Fila, H.A.Levine and J.L.Vazquez, Stabilization of solutions of weakly singular

quenching problems, Proc. Amer. Math. Soc. 119 (1993), 555–559.

[55] J. Fleckinger, J. Hernández and F. de Thélin, Existence of multiple principal eigen-
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