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Abstract. This paper is concerned with two classes of singularly per-

turbed Schrödinger–Poisson systems of the form{
−ε2∆u+ u+ φu = f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,

and {
−ε2∆u+ V (x)u+ φu = g(x, u) +K(x)u5, x ∈ R3,

−∆φ = u2, x ∈ R3,

where ε > 0 is a small parameter. We prove that: (1) the first system admits

a concentrating bounded state for small ε, where f ∈ C(R,R) satisfies

Berestycki–Lions assumptions which are almost necessary; (2) there exists
a constant ε0 > 0 determined by V,K and g such that for any ε ∈ (0, ε0] the

second system has a nontrivial solution, where V,K ∈ C(R3,R), V (x) ≥ 0,

K(x) > 0, g ∈ C(R3 × R,R) is an indefinite function. Our results improve
and complement the previous ones in the literature.
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1. Introduction

In recent years, the following nonlinear Schrödinger–Poisson system

(1.1)

−ε2∆u+ a(x)u+ φu = h(x, u), x ∈ R3,

−∆φ = u2, x ∈ R3,

has been an object of interest for many authors. Here ε > 0 is a parameter,

a : R3 → R and φ : R3 → R represent the effective potential and the electric

potential respectively, and the nonlinear term h : R3 × R → R simulates the

interaction between many particles or external nonlinear perturbations. Such

a system, also known as Schrödinger–Maxwell equations, arises in many math-

ematical physics contexts. It was introduced in [7], [24] as a model used in the

Thomas–Fermi-von Weizsäcker theory in quantum mechanics; it also appeared

in semiconductor theory [5], [6] to describe solitary waves for nonlinear station-

ary equations of Schrödinger type interacting with an electrostatic field. For

the case that ε = 1, there exists a lot of results on the existence of nontrivial

solutions for problems like (1.1), see e.g. [11]–[13], [33], [34], [39]–[41] etc. In

quantum physics, the parameter ε is generically quite small. For small ε > 0,

the solutions are called semiclassical states, which describe a kind of transition

from Quantum Mechanics to Newtonian Mechanics, see [28], [30].

There has been a lot of research on the existence of solutions for the following

system:

(BP)ε

−ε2∆u+ u+ φu = f(u), x ∈ R3,

−∆φ = u2, x ∈ R3,

where ε > 0 is a small parameter. For example, in the case of ε = 1 and

f(u) = |u|p−1u with 1 < p < 5, the existence of radially symmetric positive

solutions of (BP)1 was obtained by D’Aprile and Mugnai [16] for 3 < p < 5

and Ruiz [31] for 2 ≤ p ≤ 3; Azzollini and Pomponio [3] proved the existence of

ground state solutions for 2 < p < 5; in [15] and [31], it is showed that (BP)1 does

not have any nontrivial solution for p ≤ 1 or p ≥ 5 and for 1 < p ≤ 2, respectively.

If ε > 0 is sufficiently small, D’Aprile and Wei [17] constructed a family of

positive radially symmetric bound states for f(u) = |u|p−1u with 1 < p < 11/7

which concentrate around a sphere in R3 as ε→ 0. Later, these existence results

were extended by many authors to more general nonlinearities which satisfy some

global growth assumptions such as the Ambrosetti–Rabinowitz type condition

or the Nehari-type monotonicity condition and so on, see e.g. [18], [29], [34]–[37],

[39]–[41]. When f satisfies Berestycki–Lions assumptions:

(F1) f ∈ C(R,R) and lim
|t|→0

f(t)/t = 0 and lim
|t|→∞

f(t)/t5 = 0;

(F2) there exists s0 > 0 such that F (s0) > s2
0/2, where F (t) :=

∫ t
0
f(s) ds,
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Azzollini, Avenia and Pomponio [2] considered a class of Schrödinger–Poisson

systems of the form:

(1.2)

−∆u+ u+ ωφu = f(u), x ∈ R3,

−∆φ = ωu2, x ∈ R3,

where ω > 0 is a small parameter. Note that (F1) and (F2) were introduced by

Berestycki and Lions in the celebrated paper [8] to obtain a radially symmetric

positive solution for the following Schödinger equation:

−∆u+ u = f(u), u ∈ H1(R3).

Using Pohoz̆aev identity they showed that these conditions are almost necessary

to get an existence result. We would like to point out that it is much more

difficult to generalize the existence result to Schrödinger–Poisson systems due

to the appearance of the term φu. To overcome this difficulty, Azzollini, Avenia

and Pomponio combined a monotonicity trick in [20] and a truncation argument

in [21] to prove that there exists ω0 > 0 such that (1.2) admits a nontrivial posi-

tive radial solution for any ω ∈ (0, ω0). For more existence results on Schrödinger

equations under Berestycki–Lions assumptions, we also mention [10], [14], [22].

However, to the best of our knowledge, there seems to be no result on semi-

classical states for (BP)ε with a Berestycki–Lions nonlinearity so far. Our first

purpose of this paper is to fill this gap, and establish the existence and concen-

tration behavior of semiclassical states for (BP)ε. Different from [2], our main

tool is the critical point theory developed by Jeong and Seok in [23, Theorem 1].

Our first result is as follows.

Theorem 1.1. Assume f satisfies (F1) and (F2). Then there exists ε > 0

such that for any ε ∈ (0, ε], problem (BP)ε admits a nontrivial solution (vε, φvε)

in H1
r (R3) × D1,2

r (R3). In addition, for any sequence {εj} converging to 0, the

sequence {vεj (εjx)} converges to a radial least energy solution of the following

equation

(1.3) −∆u+ u = f(u).

Another purpose is to study the following Schrödinger–Poisson system with

critical growth:

(CP)ε

−ε2∆u+ V (x)u+ φu = g(x, u) +K(x)u5, x ∈ R3,

−∆φ = u2, x ∈ R3,

where ε > 0 is a small parameter, V,K : R3 → R and g : R → R satisfy the

following basic conditions:

(V1) V ∈ C(R3, [0,∞)), and there is a constant b > 0 such that the set

Vb := {x ∈ R3 : V (x) < b} has finite Lebesgue measure;
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(K1) K ∈ C(R3,R) and 0 < inf
x∈R3

K(x) ≤ K(x) ≤ K∞ := sup
x∈R3

K(x) for all

x ∈ R3;

(G1) g ∈ C(R3 × R,R) and g(x, t) = o(|t|) as |t| → 0 uniformly in x ∈ R3 and

g(x, t) = o(|t|5) as |t| → ∞ uniformly in x ∈ R3.

It seems that the first result on the existence of semiclassical states for (CP)ε
satisfying (V1), (K1) and (G1) is due to Yang, Sheng and Ding [38]. If V and g

further satisfy the following assumptions:

(V0) V (0) = min
x∈R3

V (x) = 0;

(AR) there exists a constant µ > 4 such that

g(x, t)t− µG(x, t) ≥ 0 for all (x, t) ∈ R3 × R,

where G(x, t) =
∫ t

0
g(x, s) ds;

(AQ) there exist constants a0 > 0 and q0 > 4 such that

G(x, t) ≥ a0t
q0 for all (x, t) ∈ R3 × R,

they proved that for any σ > 0 there is εσ > 0 such that (CP)ε has at least one

nontrivial solution for ε ∈ (0, εσ]. Subsequently, Huang and Tang [19] obtained

a similar result under the weaker assumptions:

(G2) g(x, t)t/4−G(x, t) +K(x)t6/12 ≥ 0 for all (x, t) ∈ R3 × R;

(AQ1) there exist constants a1, R1 > 0 and κ1 > 3/2 such that

(i) G(x, t) ≥ a1t
4 for all (x, t) ∈ R3 × R;

(ii) |tg(x, t)| ≤ b/3 for all (x, t) ∈ R3 × R and |t| ≤ R1;

(iii) |g(x, t)|κ1 ≤ |t|κ1 [g(x, t)t − G(x, t)/4 + K(x)t6/12] for all (x, t) ∈
R3 × R and |t| > R1.

It is worth emphasizing that (V0), (AR) and (AQ) or (V0) and (AQ1) used

in [38] or [19] are very crucial to prove that the mountain pass level value falls in

a range in which the Palais–Smale sequence converges weakly to some nontrivial

solution. In the second part of this paper, we shall improve the result in [38],

[19] by removing the condition (V0) and relaxing (AR), (AQ) and (AQ1) to the

following condition:

(G3) g(x, t)t− 2G(x, t) ≥ 0 for all (x, t) ∈ R3 × R,

and give a more accurate upper bound ε0 > 0 of ε determined by V , K and g

to ensure the existence of semiclassical states to (CP)ε for ε ∈ (0, ε0]. In this

direction, we have the following theorem.

Theorem 1.2. Assume V, K and g satisfy (V1), (K1) and (G1)–(G3). Then

there exists a constant ε0 > 0 determined by V, K and g (see (3.13) below) such

that for any ε ∈ (0, ε0], problem (CP)ε admits a nontrivial solution (ũε, φũε)
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which satisfies

0 <
1

2

∫
R3

(
ε2|∇ũε|2 + V (x) ũ 2

ε

)
dx+

1

4

∫
R3

φũε(x) ũ 2
ε dx(1.4)

−
∫
R3

G(x, ũε) dx−
1

6

∫
R3

K(x) ũ 6
ε dx ≤

1

126
√

6K∞(γ0γ6)3
ε,

where γ0, γ6 > 0 are embedding constants given by (3.1) and (3.2) below.

Note that finding of semiclassical states for (CP)ε, (G2) plays an important

role in showing the boundedness of Palais–Smale sequences. It is an interesting

question whether (G2) can be further weakened. We shall consider this problem,

and introduce the following assumption weaker than (G2):

(G2′) there exists a constant θ > 0 such that

g(x, t)t

4
−G(x, t) +

K(x)t6

12
≥ −θt2 for all (x, t) ∈ R3 × R.

When V satisfies the coercive assumption:

(V2) V ∈ C(R3, [0,∞)) and there exists a constant r > 0 such that

lim
|y|→∞

meas
{
x ∈ R3 : |x− y| ≤ r, V (x) ≤M

}
= 0, for all M > 0,

K and g satisfies (K1), (G1) and (G2′), we establish the existence of semiclassical

states for (CP)ε.

Our last result is as follows.

Theorem 1.3. Assume V, K and g satisfy (V2), (K1), (G1) and (G2′).

Then there exists a constant ε0 > 0 determined by V, K and g (see (3.13) below)

such that for any ε ∈ (0, ε0], problem (CP)ε admits a nontrivial solution (ũε, φũε)

which satisfies the second inequality of (1.4).

To prove Theorems 1.2 and 1.3, we use some new analytic techniques to show

that the Palais–Smale sequence under some suitable level value converges weakly

to a nontrivial solution of (CP)ε (see Lemmas 3.6 and 4.3). In particular, to

obtain the above desired range of the mountain pass level, we construct a special

mountain pass curve (see Lemma 3.2), which is different from the one of [19], [38].

Remark 1.4. In Theorem 1.2, condition (G3) is much weaker than (AR)

and (AQ1); moreover, V (0) may not be equal to zero and G(x, u) is allowed

to be sign-changing. In this sense, Theorem 1.2 improves and complements the

corresponding results in [19], [38]. In addition, Theorem 1.3 seems to be the first

result on Schrödinger–Poisson systems with critical exponent since g in (CP)ε
only need to satisfies (G1) and (G2′).

The rest of the paper is organized as follows. In Section 2, we establish the

existence and concentration of semiclassical states for (BP)ε, and give the proof
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of Theorem 1.1. In Sections 3 and 4, we consider the existence of semiclassical

states for (CP)ε, and complete the proofs of Theorems 1.2 and 1.3, respectively.

Throughout this paper, H1(R3) is the usual Sobolev space equipped with

the inner product and norm

(u, v) =

∫
R3

(∇u · ∇v + uv) dx, ‖u‖ = (u, u)1/2, for all u, v ∈ H1(R3);

for any 1 ≤ s < ∞, we denote by ‖ · ‖s the usual norm of the Lebesgue space

Ls(R3); Br(x) = {y ∈ R3 : |y−x| < r}, and positive constants possibly different

in different places, by C1, C2, . . .

2. Proof of Theorem 1.1

In this section, we study the existence and concentration of semiclassical

states for (BP)ε and give the proof of Theorem 1.1. As observed in [5], [6], by the

Lax–Milgram theorem for every u ∈ H1(R3), there exists a unique φu ∈ D1,2(R3)

such that

−∆φu = u2 with φu(x) =

∫
R3

u2(y)/|x− y| dy.

Moreover, by using the Hardy–Littlewood–Sobolev inequality (see [25] or [26,

p. 98]), one has

(2.1)

∫
R3

φu(x)u2 =

∫
R3

∫
R3

|u(x)|2|u(y)|2

|x− y|
dx dy ≤ 8 3

√
2

3 3
√
π
‖u‖412/5 := C0‖u‖412/5,

for u ∈ L12/5(R3).

Substituting φu in (BP)ε and performing the scaling u(x) = v(εx), we can

rewrite (BP)ε as the following equivalent equation:

(B)ε −∆u+ u+ ε2φu(x)u = f(u).

Obviously, (v, φv) is a solution of (BP)ε if and only if u is a solution of (B)ε.

As we all know, under (F1), (B)ε is variational and its solutions are the critical

points of the C1-functional Iε : H1(R3)→ R defined by

(2.2) Iε(u) =
1

2

∫
R3

(
|∇u|2 + u2

)
dx+

ε2

4

∫
R3

φu(x)u2 dx−
∫
R3

F (u) dx.

We look for a critical point of Iε as a solution of (B)ε by applying the following

critical point theory developed by Jeong and Seok [23].

Proposition 2.1 ([23, Theorem 1]). Let H be a separable Hilbert space with

norm ‖ · ‖ and let I0 : H → R be a C1 functional of the form

I0(u) =
1

2
‖u‖2 − P (u), where P : H → R and P ′ : H → H∗ are compact.

Consider a functional Iε perturbed from the limit functional I0: Iε(u) := I0(u) +

Jε(u), where ε > 0 denotes a small parameter and Jε : H → R is a C1 functional

such that
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(J1) Jε(u) and J ′ε(u) converge to 0 locally uniformly for u, i.e. for any M>0,

lim
ε→0

sup
‖u‖≤M

|Jε(u)| = lim
ε→0

sup
‖u‖≤M

|J ′ε(u)| = 0;

(J2) Jε : H → R and J ′ε : H → H∗ are compact.

Assume that I0 satisfies the following conditions:

(I1) I0(0) = 0, there exist c, r > 0 such that if ‖u‖ = r, then I0(u) ≥ c and

there exists v0 ∈ H such that ‖v0‖ > r and I0(v0) < 0;

(I2) there exists a critical point u0 ∈ H of I0 such that

I0(u0) = c0 := min
γ∈Γ

max
s∈[0,1]

I0(γ(s)),

where Γ = {γ ∈ C([0, 1], H) : γ(0) = 0, γ(1) = v0};
(I3) c0 = inf{I0(u) | u ∈ H \ {0}, I ′0(u) = 0};
(I4) the set K := {u ∈ H \ {0} | I ′0(u) = 0, I0(u) = c0} is compact in H;

(I5) there exists a curve γ0 ∈ Γ passing through u0 at s = s0 and satisfying

I0(u0) > I0(γ0(s)) for all s 6= s0.

Then there exists ε > 0 such that for any ε ∈ (0, ε), the functional Iε admits

a nontrivial critical point uε ∈ H. In addition, for any sequence {εj} converging

to 0, the sequence of critical points {uεj} found above converges to some w ∈ K
up to a subsequence.

To use Proposition 2.1, in this section we work in the radial functions space

H1
r (R3), and consider the limit equation (1.3) of (B)ε. It is well known that solu-

tions of (1.3) are critical points of the C1-functional I0 : H1
r (R3)→ R defined by

(2.3) I0(u) =
1

2

∫
R3

(
|∇u|2 + u2

)
dx−

∫
R3

F (u) dx.

Let

P (u) =

∫
R3

F (u) dx and Jε(u) =
ε2

4

∫
R3

φu(x)u2 dx,

for all u ∈ H1
r (R3). Then

I0(u) =
1

2
‖u‖2 − P (u), Iε(u) = I0(u) + Jε(u), for all u ∈ H1

r (R3).

It is easy to see that P and P ′ are compact on H1
r (R3), and Jε satisfies (J1)

and (J2) since the Sobolev embedding H1
r (R3) ↪→ Lq(R3) for any q ∈ (2, 6) is

compact.

Proof of Theorem 1.1. We apply Proposition 2.1 with H = H1
r (R3),

I0 = I0, Jε = Jε and Iε = Iε. To prove Theorem 1.1, it suffices to show that

I0 satisfies (I1)–(I5). In fact, Berestycki and Lions [8] proved that (1.3) has

a radially symmetric least energy solution u0 ∈ H1
r (R3) under (F1) and (F2).

Moreover, Jeanjean and Tanaka [22] verified that I0 has a mountain pass ge-

ometry and the least energy solution u0 of (1.3) is a mountain pass solution.
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Therefore, (I1)–(I3) are clearly satisfied. Since I0 satisfies the Palais–Smale

condition in H1
r (R3), then (I4) holds.

Next, we prove that (I5) also holds. Let (u0)t(x) = u0(x/t) for t > 0. Then

(2.4) I0((u0)t) =
t

2
‖∇u0‖22 +

t3

2
‖u0‖22 − t3

∫
R3

F (u0) dx.

It is well known that the solution u0 of (1.3) satisfies the following Pohoz̆aev

identity (see [8, (2.1)]):

(2.5) P0(u0) :=
1

2
‖∇u0‖22 +

3

2
‖u0‖22 − 3

∫
R3

F (u0) dx = 0.

Using (F1), (2.4) and (2.5), it is easy to check that there exists T > 0 such that

I0((u0)t) < 0 for all t ≥ T . Setting

(2.6) γ0(t) =

(u0)(tT ) for t > 0,

0 for t = 0.

Then γ0 ∈ Γ, where Γ is defined by Proposition 2.1 (I2). By a simple calculation,

we can deduce that I0(γ0(t)) has unique maximum value at t = 1/T , that

is max
t∈[0,1]

I0(γ0(t)) = I0(u0) > I0(γ0(t)) for all t 6= 1/T . Hence, (I1)–(I5) are

satisfied.

In view of Proposition 2.1, there exists ε > 0 such that for any ε ∈ (0, ε),

Iε admits a nontrivial critical point uε ∈ H1
r (R3). Let vε(x) = uε(x/ε). Then

(vε, φvε) ∈ H1
r (R3)×D1,2

r (R3) is a nontrivial solution of (BP)ε for any ε ∈ (0, ε).

In addition, for any sequence {εj} converging to 0, the sequence of critical points

{vεj (εjx)} converges to a radial least energy solution of (1.3) up to a subse-

quence.

3. Proof of Theorem 1.2

In this section, we consider the existence of semiclassical states for (CP)ε
satisfying (V1), and give the proofs of Theorem 1.2. For this purpose, we define

the function space

E :=

{
u ∈ H1(R3) :

∫
R3

V (x)u2 dx <∞
}

with the scalar product and norm

(u, v)E,λ =

∫
R3

[∇u · ∇v + λV (x)uv] dx,

‖u‖E,λ =

{∫
R3

[
|∇u|2 + λV (x)u2

]
dx

}1/2

.
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In view of [32, Lemma 1], under (V1), there exists a constant γ0 > 0 independent

of λ such that

(3.1) ‖u‖ ≤ γ0‖u‖E,λ, u ∈ E, λ ≥ 1.

It is easy to see that (E, ‖ · ‖E,λ) is a Hilbert space for λ ≥ 1. Furthermore, by

the Sobolev embedding theorem and (3.1), for s ∈ [2, 6] there exists a constant

γs > 0 independent of λ such that

(3.2) ‖u‖s ≤ γs‖u‖ ≤ γ0γs‖u‖E,λ, u ∈ E, λ ≥ 1.

Substituting φu in (CP)ε, we reduce (CP)ε to the following single equation

(C̃P)ε −ε2∆u+ V (x)u+ φu(x)u = g(x, u) +K(x)u5.

Solutions of (C̃P)ε are the critical points of the C1-functional Ĩε : E → R de-

fined by

Ĩε(u) =
1

2

∫
R3

(
ε2|∇u|2 + V (x)u2

)
dx+

1

4

∫
R3

φu(x)u2 dx(3.3)

−
∫
R3

G(x, u) dx− 1

6

∫
R3

K(x)u6 dx.

Let λ = ε−2, then (C̃P)ε becomes the following equation

(C)λ −∆u+ λV (x)u+ λφu(x)u = λg(x, u) + λK(x)u5.

Solutions of (C)λ are critical points of the C1-functional Φλ : E → R defined by

Φλ(u) =
1

2

∫
R3

[
|∇u|2 + λV (x)u2

]
dx+

λ

4

∫
R3

φu(x)u2 dx(3.4)

− λ
∫
R3

G(x, u) dx− λ

6

∫
R3

K(x)u6 dx.

Obviously, any critical point of the functional Φε−1/2 is a solution (C̃P)ε for

ε > 0.

To prove the existence of critical points of Ĩε, we look for critical points of Φλ
in the following two sections. To this end, we recall a geometrical result due to

Brezis and Nirenberg [9] which is an expression of the Ambrosetti–Rabinowitz [1]

mountain pass theorem without the (PS) condition.

Lemma 3.1 ([9], Theorem 2.2). Assume that Φ is a C1-functional on a Ba-

nach space X. Suppose there exists a neighbourhood U of 0 in X and a constant

% such that Φ(u) ≥ % for all u ∈ ∂U , and Φ(0) < % and Φ(v) < % for some

v 6∈ U . Set

c = inf
p∈P

max
t∈[0,1]

Φ(p(t)), where P = {p ∈ C([0, 1], X) : p(0) = 0, p(1) = v}.

Then there is a sequence {un} ⊂ X such that Φ(un)→ c and Φ′(un)→ 0 in X∗.
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Let

(3.5) h0 := max
{

1, 5375π
√

6K∞(γ0γ6)3
}
.

Inspired by [27], we define the following functions:

(3.6) ψ(x) :=



1

h0
if |x| ≤ h0,

1

h0

(
2− |x|

h0

)
if h0 < |x| ≤ 2h0,

0 if |x| > 2h0

and

eλ(x) := λ1/2ψ
(
λ7/6x

)
.

By a simple calculation, one has

‖∇ψ‖22 ≤
∫
|x|≤2h0

1

h4
0

dx =
32π

3
h−1

0 ,(3.7)

‖ψ‖22 ≤
∫
|x|≤2h0

1

h2
0

dx =
32π

3
h0,(3.8)

‖ψ‖412/5 ≤
(∫
|x|≤2h0

1

h
12/5
0

dx

)5/3

=

(
32π

3

)5/3

h0(3.9)

and

(3.10) ‖ψ‖44 ≥
4π

3
h−1

0 .

From (K1) and (G1), we can deduce that

(3.11) lim
|t|→∞

6G(x, t) +K(x)t6

t4
= +∞ uniformly in x ∈ R3

and there exist constants θ1, θ2 > 0 such that

(3.12) G(x, t) +
1

6
K(x)t6 ≥ θ1t

4 − θ2t
2, for all (x, t) ∈ R3 × R.

Setting

(3.13) ε−2
0 = λ0 := max

{
1,

[
sup
|x|≤2h0

V (x) + 2θ2

]
h2

0,

(
226π

35θ3
1

)1/7

h
6/7
0

}
.

Lemma 3.2. Assume that (V1), (K1) and (G1) hold. Then

(a) Φλ
(
5θ
−1/2
1 eλ

)
< 0 for all λ ≥ λ0;

(b) for every λ ≥ λ0, there exist constants ρ, δ > 0 such that

Φλ(u) ≥ δ, for all ‖u‖E,λ = ρ.
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Proof. (a) By (3.4)–(3.10) and (3.13), we have

Φλ(teλ) =
t2

2

∫
R3

[
|∇eλ|2 + λV (x)e2

λ

]
dx+

λt4

4

∫
R3

φeλe
2
λ dx(3.14)

− λ
∫
R3

[
G(x, teλ) +

1

6
K(x)|teλ|6

]
dx

≤ t2

2

∫
R3

[
|∇eλ|2 + λV (x)e2

λ

]
dx

+
λC0t4

4
‖eλ‖412/5 + λθ2t

2‖eλ‖22 − λθ1t
4‖eλ‖44

=λ−1/2 t2
[

1

2
‖∇ψ‖22 +

λ−1

2

∫
R3

[
V (λ−7/6x) + 2θ2

]
ψ2 dx

+
C0
4
λ−7/3t2‖ψ‖412/5 − θ1t

2‖ψ‖44
]

≤λ−1/2t2
{

16π

3
h−1

0 +
16π

3
h0λ

−1

[
sup
|x|≤2h0

V (x) + 2θ2

]

+
C0
4

(
32π

3

)5/3

h0λ
−7/3t2 − 4θ1π

3
h−1

0 t2
}

=λ−1/2 2π

3h0
t2
{

8 + 8h2
0λ
−1

[
sup
|x|≤2h0

V (x) + 2θ2

]

+
1

π

(
2

π

)1/3(
32π

3

)5/3

h2
0λ
−7/3t2 − 2θ1t

2

}
≤λ−1/2 2π

3h0
t2(16− θ1t

2),

for all t ≥ 0, λ ≥ λ0, which implies

(3.15) Φλ(teλ) ≤ −λ−1/2 150π

θ1h0
< 0, for all t ≥ 5θ

−1/2
1 , λ ≥ λ0.

(b) By (K1) and (G1), there exists a constant C1 > 0 such that

(3.16)

∫
R3

[
G(x, u) +

1

6
K(x)u6

]
dx ≤ 1

4λ(γ2γ0)2
‖u‖22 + C1‖u‖66,

for all u ∈ E. Then, for every λ ≥ λ0, it follows from (3.1), (3.2), (3.4) and

(3.16) that

Φλ(u) ≥ 1

2
‖u‖2E,λ −

1

4(γ2γ0)2
‖u‖22 − C1λ‖u‖66

≥ 1

4
‖u‖2E,λ

[
1− 4λC1(γ0γ6)2‖u‖4E,λ

]
,

for all u ∈ E, which, together with (3.15), implies that, for every λ ≥ λ0,

(3.17) Φλ(u) ≥ 1

8
ρ2 := δ, for all ‖u‖E,λ = ρ =

(
1

8λC1(γ0γ6)2

)1/4

. �
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Lemma 3.3. Assume that (V1), (K1) and (G1) hold. Then, for every λ ≥ λ0,

there exists a sequence {uλ,n} ⊂ E such that

(3.18) Φλ(uλ,n)→ cλ > 0, Φ′λ(uλ,n)→ 0,

where

(3.19)

cλ = inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)),

Γ =
{
γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = 5θ

−1/2
1 eλ

}
.

Proof. Since Φλ(0) = 0, from Lemmas 3.1 and 3.2, we then deduce the

above conclusion. �

Lemma 3.4. Assume that (V1), (K1) and (G1) hold. Then, for every λ ≥ λ0,

cλ ≤ sup
t≥0

Φλ(teλ) ≤ 1

126
√

6K∞(γ0γ6)3
λ−1/2.

Proof. For every λ ≥ λ0, by (3.14), (3.15) and the definition of cλ, we have

cλ ≤ sup
t∈[0,1]

Φλ(5tθ
−1/2
1 eλ) = sup

t≥0
Φλ(teλ)(3.20)

≤ λ−1/2 2π

3h0
sup
t≥0

[
t2(16− θ1t

2)
]

= λ−1/2 128π

3h0
≤ 1

126
√

6K∞(γ0γ6)3
λ−1/2. �

Lemma 3.5. Assume that (V1), (K1), (G1) and (G2) hold. Then any se-

quence {uλ,n} ⊂ E satisfying (3.18) is bounded for every λ ≥ λ0.

Proof. By (G2), (3.4) and (3.18), one has

(3.21) cλ + o(1) = Φλ(uλ,n)− 1

4
〈Φ′(uλ,n), uλ,n〉

=
1

4
‖uλ,n‖2E,λ + λ

∫
R3

[
1

4
g(x, uλ,n)uλ,n −G(x, uλ,n) +

1

12
K(x)u6

λ,n

]
dx

≥ 1

4
‖uλ,n‖2E,λ.

This shows that {uλ,n} is bounded in E. �

Lemma 3.6. Assume that (V1), (K1) and (G1)–(G3) hold. Then, for any

λ ≥ λ0, problem (C)λ admits at least one nontrivial solution ũλ ∈ E such that

(3.22) 0 < Φλ(ũλ) ≤ 1

126
√

6K∞(γ0γ6)3
λ−1/2.

Proof. In view of Lemmas 3.3–3.5, for every λ ≥ λ0 there exists a bounded

sequence {uλ,n} satisfying (3.18), for brevity, we denote it by {un}. Then there

exists ũλ ∈ E such that up to a subsequence, un ⇀ ũλ in E, un → ũλ in

Lsloc(R3) for 2 ≤ s < 6 and un → ũλ almost everywhere in R3. Next, we prove
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that ũλ 6= 0. Arguing by contradiction, suppose that ũλ = 0, i.e. un ⇀ 0 in E.

Then un → 0 in Lsloc(R3) for 2 ≤ s < 6 and un → 0 almost everywhere in R3.

Since Vb is a set of finite measure and un ⇀ 0 in E, then

(3.23) ‖un‖22 ≤
∫
R3\Vb

u2
n dx+

∫
Vb
u2
n dx ≤

1

λb
‖un‖2E,λ + o(1).

For s ∈ (2, 6), by (3.1), (3.2) and (3.23), one has

‖un‖ss ≤ ‖un‖
(6−s)/2
2 ‖un‖3(s−2)/2

6(3.24)

≤ (γ0γ6)3(s−2)/2(λb)−(6−s)/4‖un‖sE,λ + o(1).

Let

Ωn :=

{
x ∈ R3 :

∣∣∣∣g(x, un)

un

∣∣∣∣ ≤ b

3

}
.

By (3.23), one has

(3.25) λ

∫
Ωn

|g(x, un)un| dx = λ

∫
Ωn

∣∣∣∣g(x, un)

un

∣∣∣∣u2
n dx ≤

λb

3
‖un‖22 ≤

1

3
‖un‖2E,λ.

By (G1), there exists % > 0 small enough such that

|t| ≤ % ⇒
∣∣∣∣g(x, t)

t

∣∣∣∣ ≤ b

3
,

which implies

(3.26)

∣∣∣∣g(x, t)

t

∣∣∣∣ > b

3
⇒ |t| > %.

From (G1), (3.26) and the boundedness of {‖un‖E,λ}, we deduce that

(3.27)
λb

3
%2|R3 \ Ωn| ≤ λ

∫
R3\Ωn

∣∣∣∣g(x, un)

un

∣∣∣∣u2
n dx

≤ λ
∫
R3

|g(x, un)un| dx ≤ λC1

(
‖un‖2E,λ + ‖un‖6E,λ

)
≤ λC2,

which implies

(3.28)
∣∣R3 \ Ωn

∣∣ ≤ 3C2

b%2
.

By (G1), for every ε > 0 and some q ∈ (2, 6), there exists a constant Cε > 0

such that

(3.29) |g(x, t)t| ≤ ε
(
t2 + t6

)
+ Cε|t|q, for all (x, t) ∈ R3 × R.

Since un → 0 in Lsloc(R3) for s ∈ (2, 6), then it follows from (3.28) and (3.29)

that for any ε > 0,

(3.30)

∫
R3\Ωn

|g(x, un)un| dx ≤ ε
(
‖un‖22 + ‖un‖66

)
+

∫
R3\Ωn

|un|q dx

= ε
(
‖un‖22 + ‖un‖66

)
+ o(1).
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By (G3), (3.18), (3.25) and (3.30), we have

cλ + o(1) = Φλ(un)− 1

6
〈Φ′λ(un), un〉

=
1

3
‖un‖2E,λ +

λ

12

∫
R3

φunu
2
n dx+ λ

∫
R3

[
1

2
g(x, un)un −G(x, un)

]
dx

− λ

3

∫
Ωn

g(x, un)un dx−
λ

3

∫
R3\Ωn

g(x, un)un dx

≥ 2

9
‖un‖2E,λ +

λ

12

∫
R3

φunu
2
n dx−

λε

3

(
‖un‖22 + ‖un‖66

)
+ o(1),

which, together with the fact that ε is arbitrary, yields

(3.31) λ

∫
R3

φunu
2
n dx ≤ 12cλ + o(1).

Note that

(3.32) cλ + o(1) = Φλ(un)− 1

2
〈Φ′λ(un), un〉

= −λ
2

∫
R3

φunu
2
n dx+ λ

∫
R3

[
1

2
g(x, un)un −G(x, un)

]
dx+

λ

3

∫
R3

K(x)u6
n dx.

By (G3), (3.31) and (3.32), one has

(3.33) λ

∫
R3

K(x)u6
n dx ≤ 21cλ + o(1).

Thus, it follows from (3.13), (3.24), (3.33), the Hölder inequality and Lemma 3.4

that

λ

∫
R3

K(x)u6
n dx = λ

(∫
R3

K(x)u6
n dx

)1/3(∫
R3

K(x)u6
n dx

)2/3

(3.34)

≤ λK1/3
∞ ‖un‖26

(
21cλ
λ

)2/3

+ o(1)

≤ K1/3
∞ γ2

6 γ
2
0(21)2/3(λ1/2cλ)2/3‖un‖2E,λ + o(1)

≤ 1

6
‖un‖2E,λ + o(1).

Combining (3.18), (3.25), (3.26), (3.29) and (3.34), we have

(3.35) o(1) ≥ 5

6
‖un‖2E,λ − λ

∫
Ωn

|g(x, un)un| dx− λ
∫
R3

K(x)u6
n dx

≥ 1

6
‖un‖2E,λ + o(1),

which implies that ‖un‖E,λ → 0 and so cλ = 0. The contradiction shows ũλ 6= 0.

By a standard argument, we have Φ′λ(ũλ) = 0. Then it follows from (3.18), the
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weak semicontinuity of norm and Fatou’s Lemma that

cλ = lim
n→∞

[
Φλ(un)− 1

4
〈Φ′(un), un〉

]
= lim
n→∞

{
1

4
‖un‖2E,λ + λ

∫
R3

[
1

4
g(x, un)un −G(x, un) +

1

12
K(x)u6

n

]
dx

}
≥ 1

4
‖ũλ‖2E,λ + λ

∫
R3

[
1

4
g(x, ũλ)ũλ −G(x, ũλ) +

1

12
K(x)ũ6

λ

]
dx

= Φλ(ũλ)− 1

4
〈Φ′(ũλ), ũλ〉 = Φλ(ũλ) > 0,

which, together with Lemma 3.4, implies that (3.22) holds. �

Proof of Theorem 1.2. Since ε = λ−1/2, we deduce from Lemma 3.6 that

the conclusion of Theorem 1.2 holds. �

4. Proof of Theorem 1.3

In this section, we consider the existence of semiclassical states for (CP)ε
satisfying (V2), and give the proof of Theorem 1.3. Since (V2) implies (V1), the

conclusions in Lemmas 3.2–3.4 of Section 3 still hold. Moreover, under (V2), we

have the following compactness lemma.

Lemma 4.1 (Lemma 3.1 [4], [42]). Assume that (V2) holds. Then the em-

bedding E ↪→ Ls(R3) is compact for 2 ≤ s < 6.

Lemma 4.2. Assume that (V2), (K1), (G1) and (G2′) hold. Then any se-

quence {uλ,n} ⊂ E satisfying (3.18) is bounded for every λ ≥ λ0.

Proof. Arguing by contradiction, suppose that ‖uλ,n‖E,λ →∞. For every

λ ≥ λ0, let wn = uλ,n/‖uλ,n‖E,λ. Then ‖wn‖E,λ = 1. Passing to a subsequence,

we may assume that wn ⇀ w in E, then by Lemma 4.1, we have wn → w in

Ls(R3) for 2 ≤ s < 6, and wn → w a.e. on R3. Note that

cλ + o(1) = Φλ(uλ,n)− 1

4
〈Φ′(uλ,n), uλ,n〉(4.1)

=
1

4
‖uλ,n‖2E,λ

+ λ

∫
R3

[
1

4
g(x, uλ,n)uλ,n −G(x, uλ,n) +

1

12
K(x)|uλ,n|6

]
dx

≥ 1

4
‖uλ,n‖2E,λ − λθ‖uλ,n‖22.

Multiplying (4.1) by 1/‖uλ,n‖2E,λ, we deduce from θ > 0 and wn → w in L2(R3)

that

(4.2) λθ‖w‖22 = λθ lim
n→∞

‖wn‖22 ≥
1

4
> 0.
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This shows that w 6= 0. Let Ω :=
{
y ∈ R3 : w(y) 6= 0

}
. Since

wn(x) =
uλ,n(x)

‖uλ,n‖E,λ
→ w(x)

for almost every x ∈ Ω and ‖uλ,n‖E,λ → ∞, then we have lim
n→∞

|uλ,n(x)| = ∞
for almost every x ∈ Ω. Thus, it follows from (2.1), (3.11), (3.12), Lebesgue

dominated convergence theorem and Fatou’s Lemma that

0 = lim
n→∞

cλ + o(1)

‖uλ,n‖4E,λ
= lim
n→∞

Φλ(uλ,n)

‖uλ,n‖4E,λ
(4.3)

≤ λ

4
lim sup
n→∞

∫
R3

φwnw
2
n dx

− λ

6
lim inf
n→∞

∫
R3

6G(x, uλ,n) +K(x)u6
λ,n + 6θ2u

2
λ,n

u4
λ,n

w4
n dx

≤ λ

4

∫
R3

φww
2 dx

− λ

6

∫
Ω

lim inf
n→∞

6G(x, uλ,n) +K(x)u6
λ,n + 6θ2u

2
λ,n

u4
λ,n

w4
n dx = −∞.

The contradiction shows that {uλ,n} is bounded in E. �

Lemma 4.3. Assume that (V2), (K1), (G1) and (G2′) hold. Then, for any

λ ≥ λ0, problem (C)λ admits at least one nontrivial solution ũλ ∈ E such that

(3.22) holds.

Proof. In view of Lemmas 3.3, 3.4 and 4.2, for every λ ≥ λ0 there exists

a bounded sequence {uλ,n} satisfying (3.18). Then there exists ũλ ∈ E such

that up to a subsequence, uλ,n ⇀ ũλ in E. By Lemma 4.1, one has uλ,n → ũλ
in Ls(R3) for 2 ≤ s < 6. If ũλ = 0, then by (3.32) and the Lebesgue dominated

convergence theorem, one has

λ

∫
R3

K(x)|uλ,n|6 dx ≤ 3cλ + o(1),

which implies that (3.34) holds. Thus it follows from (3.18), (3.29), (3.34) and

the Lebesgue dominated convergence theorem that

o(1) = 〈Φ′(uλ,n), uλ,n〉

≥ 5

6
‖uλ,n‖2E,λ − λ

∫
R3

K(x)|uλ,n|6 dx+ o(1) ≥ 2

3
‖uλ,n‖2E,λ + o(1),

which implies that ‖uλ,n‖E,λ → 0 and so cλ = 0. This contradiction shows ũλ 6=0.

A standard argument shows that Φ′(ũλ) = 0. From (3.18), Lemma 4.1 and

Lebesgue dominated convergence theorem, one can deduce easily that uλ,n → ũλ
in E, and so (3.22) holds. �
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Proof of Theorem 1.3. Since ε = λ−1/2, we deduce from Lemma 4.3 that

the conclusion 1.3 holds. �
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atoms and molecules, Comm. Math. Phys. 79 (1981), 167–180.

[8] H. Berestycki and P.L. Lions, Nonlinear scalar field equations, I. Existence of a ground

state, Arch. Rational Mech. Anal. 82 (1983), 313–345.

[9] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving

critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

[10] J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with

a general nonlinearity, Arch. Rational Mech. Anal. 185 (2007), 185–200.

[11] S.T. Chen, A. Fiscella, P. Pucci and X.H. Tang, Semiclassical ground state solu-

tions for critical Schrödinger–Poisson systems with lower perturbations, J. Differential

Equations (2019), DOI: 10.1016/j.jde.2019.09.041.

[12] S.T. Chen and X.H. Tang, On the planar Schrödinger-Poisson system with the axially

symmetric potential, J. Differential Equations (2019), DOI: 10.1016/j.jde.2019.08.036.

[13] S.T. Chen and X.H. Tang, Improved results for Klein–Gordon-Maxwell systems with

general nonlinearity, Discrete Contin. Dyn. Syst. 38 (2018), 2333–2348.

[14] S.T. Chen and X.H. Tang, Berestycki–Lions conditions on ground state solutions for

a nonlinear Schrödinger equation with variable potentials, Adv. Nonlinear Anal. 9 (2020),

496–515.

[15] T. D’Aprile and D. Mugnai, Non-existence results for the coupled Klein–Gordon–

Maxwell equations, Adv. Nonlinear Stud. 4 (2004), 307–322.

[16] T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and

Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893–906.

[17] T. D’Aprile and J.C. Wei, On Bound States Concentrating on Spheres for the Maxwell–

Schrödinger Equation, SIAM J. Math. Anal. 37 (2005), 321–342.

[18] X.M. He and W.M. Zou, Existence and concentration of ground states for Schrödinger–

Poisson equations with critical growth, J. Math. Phys. 53 (2012), 023702.

[19] W.N. Huang and X.H. Tang, Semiclassical solutions for the nonlinear Schrödinger–

Maxwell equations with critical growth, Taiwan. J. Math. 18 (2014), 1203–1217.



682 S. Chen — X. Tang — N. Zhang

[20] L. Jeanjean, On the existence of bounded Palais–Smale sequences and application to

a Landesman–Lazer-type problem set on RN , Proc. Roy. Soc. Edinburgh Sect. A 129

(1999), 787–809.

[21] L. Jeanjean and S.L. Coz, An existence and stability result for standing waves of non-

linear Schrödinger equations, Adv. Differential Equations 11 (2006), 813–840.

[22] L. Jeanjean and K. Tanka, A positive solution for a nonlinear Schrödinger equation

on RN , Indiana Univ. Math. J. 54 (2005), 443–464.

[23] W. Jeong and J. Seok, On perturbation of a functional with the mountain pass geometry,

Calc. Var. Partial Differential Equations 49 (2014), 649–668.

[24] E.H. Lieb, Thomas–Fermi and related theories and molecules, Rev. Modern Phys. 53

(1981), 603–641.

[25] E.H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev inequality and related in-

equalities, Ann. of Math. 118 (1983), 349–374.

[26] E.H. Lieb and M. Loss, Analysis, 2nd ed, American Mathematical Society, Providence,

Rhode Island, 2001.

[27] X.Y. Lin and X.H. Tang, Semiclassical solutions of perturbed p-Laplacian equations with

critical nonlinearity, J. Math. Anal. Appl. 413 (2014), 438–449.

[28] P.L. Lions, Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math.

Phys. 109 (1984), 33–97.

[29] Z.S. Liu, S.J. Guo, Y.Q. Fan, Multiple semiclassical states for coupled Schrödinger–

Poisson equations with critical exponential growth, J. Math. Phys. 56 (2015), 041505.

[30] P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor equations (1990).

[31] D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term,

J. Funct. Anal. 237 (2006), 655–674.

[32] B. Simon, Schrödinger semigroups, Bull. Am. Math. Soc. 7 (1982), 447–526.

[33] J.J. Sun and S.W. Ma, Ground state solutions for some Schrödinger–Poisson systems

with periodic potentials, J. Differential Equations 260 (2016), 2119–2149.

[34] X.H. Tang and S.T. Chen, Ground state solutions of Nehari–Pohoz̆aev type for

Schrödinger–Poisson problems with general potentials, Disc. Contin. Dyn. Syst. 37 (2017),

4973–5002.

[35] X.H. Tang and S.T. Chen, Ground state solutions of Nehari–Pohoz̆aev type for

Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations

56 (2017), 110.

[36] X.H. Tang, X. Lin and J. Yu, Nontrivial solutions for Schrödinger equation with

local super-quadratic conditions, J. Dynam. Differential Equations (2018), 1–15, DOI:

https://doi.org/10.1007/s10884-018-9662-2.

[37] X.H. Tang and X.Y. Lin, Existence of ground state solutions of Nehari–Pankov type to

Schrödinger systems, Sci. China Math. 62 (2019), DOI: https://doi.org/10.1007/s11425-

017-9332-3.

[38] M.B. Yang, Z.F. Shen and Y.H. Ding, Multiple semiclassical solutions for the nonlinear

Maxwell–Schrödinger system, Nonlinear Anal. 71 (2009), 730–739.

[39] J. Zhang, On the Schrödinger–Poisson equations with a general nonlinearity in the cri-

tical growth, Nonlinear Anal. 75 (2012), 6391–6401.

[40] J.J. Zhang, The existence and concentration of positive solutions for a nonlinear

Schrödinger–Poisson system with critical growth, J. Math. Phys. 55 (2014), 031507.

[41] L.G. Zhao and F.K. Zhao, Positive solutions for Schrödinger–Poisson equations with

a critical exponent, Nonlinear Anal. 70 (2009), 2150–2164.



Singularly Perturbed Schrödinger–Poisson Systems 683

[42] W.M. Zou and M. Schechter, Critical Point Theory and Its Applications, Springer,

New York, 2006.

Manuscript received September 2, 2018

accepted November 2, 2018

Sitong Chen, Xianhua Tang (corresponding author) and Ning Zhang

School of Mathematics and Statistics
Central South University

Changsha, Hunan 410083, P.R. CHINA

E-mail address: mathsitongchen@163.com

tangxh@mail.csu.edu.cn
18338766360@163.com

TMNA : Volume 54 – 2019 – No 2A


