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GLOBAL SECONDARY BIFURCATION,

SYMMETRY BREAKING AND PERIOD-DOUBLING

Rainer Mandel

Abstract. In this paper we provide a criterion for global secondary bi-

furcation via symmetry breaking. As an application, the occurrence of

period-doubling bifurcations for the Lugiato-Lefever equation is proved.

1. Introduction

The aim of this paper is to provide a sufficient condition for global secondary

bifurcation via symmetry breaking for equations of the form

(1.1) F (x, λ) = 0,

where x ∈ X belongs to a Banach space and λ ∈ R is a real parameter. Bifur-

cation theory is about finding solutions near a given family of trivial solutions

of (1.1). For instance, if F (0, λ) = 0 for all λ ∈ R, then the trivial solution

family is given by {(0, λ) : λ ∈ R} ⊂ X × R. More generally, if T ⊂ X × R is

a family of solutions, then (x, λ) ∈ T is a bifurcation point with respect to T if

there is a sequence of solutions (xn, λn) /∈ T converging to (x, λ). In this case

one speaks of (primary) bifurcation with respect to T and there are many pow-

erful theorems that allow to detect such bifurcations under suitable assumptions

on F . Examples for such theorems are the celebrated bifurcation results due to
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Marino, Böhme [22], [5], Crandall, Rabinowitz [9] or Krasnosel’skĭı, Rabinowitz

[16], [25]. The latter ones even allow to conclude that the bifurcating solutions

lie on a nontrivial connected set of solutions C ⊂ X×R. Such a set is sometimes

called a primary solution branch.

Our interest lies in secondary bifurcation, which we define, roughly speak-

ing, as bifurcation with respect to such primary solution branches. We refer to

Section 3 for precise definitions. Our main result (Theorem 3.3) will provide suf-

ficient conditions for the occurrence of secondary bifurcation without any explicit

knowledge of the primary branch. As a byproduct, this secondary bifurcation

comes with the phenomenon of symmetry-breaking and it will be shown to be

global in a sense that we will make precise later. As far as we know, such an

analysis has not been done before. Actually, very few analytical papers deal with

secondary bifurcations. In the paper [4] by Bauer, Keller and Reiss it is outlined

how local secondary bifurcations may occur for equations with two real parame-

ters near a degenerate trivial solution. However, their approach is local in nature

and it is not rigorously stated nor proved in an abstract setting, which makes

their results hardly comparable to those that we present in this paper. One

example for a secondary bifurcation analysis based on an almost explicit knowl-

edge of the primary solution branch is presented in the paper [17] in the context

of a one-dimensional nonlocal Allen–Cahn equation. An interesting result related

to the nonexistence of secondary bifurcation points is contained in [24].

The literature on symmetry breaking results is much larger and we mention

at least some of the available results. We focus on those that apply to the study

of nonradial solutions of nonlinear elliptic PDEs of the form

(1.2) −∆u = f(u, λ) in Ω, u ∈ H1
0 (Ω),

where Ω is an annulus in Rn. In the case of a ball the celebrated symmetry result

of Gidas, Ni and Nirenberg [14] shows that all positive solutions of (1.2) are auto-

matically radially symmetric if f( · , λ) is continuously differentiable. The corre-

sponding statement for annuli is not true for all f , as was shown variationally by

Coffman [8] for f(z, λ) = −z+ z2m+1 and m ∈ N. Srikanth [27] considered sym-

metry breaking for (1.2) when the nonlinearity is given by f(z, λ) = |z|p−1z+λz

with p > 1, λ ∈ R and annuli Ω such that the inner radius almost equals the

outer one. Computing the Leray–Schauder index along the uniquely determined

curve of positive radial solutions he discovered nonradial solutions via symmetry

breaking bifurcation from this curve. Similarly, much is known about the local

and global shape of the nonradial solutions bifurcating from the curve of radial

solutions for the Gelfand problem (1.2) with f(z, λ) = λez, see [18, Theorem 4.4]

and [12, Theorem 2]. Notice that nonradial bifurcation results from radial solu-

tions of (1.2) are also available on balls (see for instance Theorem 2.1 in [7] or

Theorem 5.4 in [26]), but the bifurcation points have to be sign-changing radial
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solutions by the above-mentioned symmetry result of Gidas, Ni and Nirenberg.

A symmetry breaking result for equations of the form (1.2) with a forcing term

is due to Dancer, see Theorem 2 in [11]. We finally mention an interesting re-

cent contribution by Bracho, Clapp and Marzantowicz [6] showing a completely

different way of symmetry breaking in the context of nonlinear elliptic systems

via variational methods.

Let us briefly describe how this paper is organized. In the following section

we recall Rabinowitz’ global bifurcation theorem along with a refinement due to

Dancer in a slightly more general framework than usual. Based on this theorem

we will state and prove our main result on symmetry breaking via secondary

bifurcation in Section 3. In Section 4, we apply these abstract results in order

to detect period-doubling secondary bifurcations for the Lugiato–Lefever equa-

tion. Actually, this application motivates the above-mentioned generalization of

Rabinowitz’ theorem. The proof of this result closely follows the original one

and is therefore postponed to Appendix A. In Appendix B we comment on the

regularity assumptions on F that are used in the proof. We emphasize that our

secondary bifurcation analysis will not rely on local considerations or on the fact

that the primary bifurcation branch is actually explicitly known. In particular,

our results on period-doubling bifurcation for the Lugiato–Lefever equation can

not be proved by means of a local period-doubling bifurcation result such as

Theorem I.14.2. in Kielhöfer’s book [15].

2. On Rabinowitz’ Global Bifurcation Theorem

In Theorem 1.3 of the paper [25] Rabinowitz studied the equation F (x, λ) = 0

where F (x, λ) = x−λLx−H(x, λ), L is a compact linear map and H : X×R→ X

is compact and continuous with H(x, λ) = o(‖x‖) locally uniformly with respect

to λ as x→ 0. Roughly speaking, he globalized Krasnoselski’s Bifurcation The-

orem [16] by proving that solutions bifurcating from the trivial solution x = 0

at some characterictic value λ0 of L of odd algebraic multiplicity lie on a contin-

uum of solutions C ⊂ X ×R that is unbounded or returns to the trivial solution

family at some other characteristic value of L. Recall that the characteristic

values of L are the reciprocals of its eigenvalues. Later, Dancer remarked that

if C is bounded and intersects the trivial solution family at mutually different

λ0, . . . , λk, then the jumps of the Leray–Schauder indices at the trivial solutions

(0, λ0), . . . , (0, λk) have to sum up to zero, see Theorem 1 in [10]. In particular,

C contains an even number of trivial solutions (0, λj) where λj is a characteris-

tic value of odd multiplicity. Both Rabinowitz’ and Dancer’s contributions are

fundamental for the rest of this paper.

In our result on secondary bifurcations we want to make use of the above-

mentioned results for equations F (x, λ) = 0 in a more general setting, where F
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and the trivial solution family T ⊂ X × R satisfy less restrictive assumptions.

This is motivated by our application to the Lugiato–Lefever equation that we will

discuss in Section 4. We will prove these results under the following assumptions

on F and T :

(A1) F ∈ C(X × R, X) is a compact perturbation of the identity,

(A2) T ⊂ X × R is a closed embedded 1-submanifold of class C1 such that

F |T = 0, F is locally uniformly differentiable along T with F ′ ∈ C(T ,
X × R) and the subset of degenerate solutions on T is discrete.

Several remarks are in order. Firstly, (A1) means that the map (x, λ) 7→ x −
F (x, λ) is continuous and compact on X×R. This ensures that Leray–Schauder

degree theory is applicable so that the main degree-theoretic ideas of Rabinowitz’

proof carry over. In the case T = {(0, λ) : λ ∈ R} this is well-known, see for

instance Theorem II.3.3 in [15]. Concerning (A2), we first point out that T need

not be unbounded; it may as well be a simple closed C1-curve in X ×R. We say

that a point (x0, λ0) ∈ T is degenerate if T is locally parametrized by a regular

curve (x, λ) : (t0 − ε, t0 + ε)→ X × R such that (x(t0), λ(t0)) = (x0, λ0) and

ker(F ′(x0, λ0)) ' span
{(
x′(t0), λ

′
(t0)

)}
.

Here, F ′ : X × R → X stands for the Fréchet derivative of F . Notice that this

notion of degeneracy does not depend on the chosen parametrization. Locally

uniform differentiability along T means that F ′ exists at all elements of T such

that for all local C1−parametrizations (x, λ) : I → R of T and all convergent

sequences (xn), (λn), (tn) with (xn, λn)− (x(tn), λ(tn))→ (0, 0) we have

‖F (xn, λn)− F (x(tn), λ(tn))− F ′(x(tn), λ(tn))[(xn − x(tn), λn − λ(tn))]‖
‖xn − x(tn)‖+ |λn − λ(tn)|

→ 0

as n→∞. For instance, this condition holds provided F is continuously differ-

entiable in an open neighbourhood of T . This regularity assumption on F allows

to conclude that bifurcation points with respect to T are necessarily degenerate

and therefore do not accumulate, which will be essential in Theorem 3.3. For

the convenience of the reader we include a proof.

Proposition 2.1. Assume (A1) and(A2). Then the set of bifurcation points

with respect to T is discrete.

Proof. By (A2), it suffices to show that every bifurcation point with respect

to T is degenerate. In the notation from above let (x(t∗), λ(t∗)) ∈ T be such

a bifurcation point and choose the subspace W such that X×R = span{ψ}⊕W ,

where ψ :=
(
x′(t∗), λ

′
(t∗)

)
. So there are C1-functions w and µ with range in W

and R, respectively, such that
(
x(t), λ(t)

)
= w(t) + µ(t)ψ for t close to t∗.

By construction of ψ we then have µ′(t∗) = 1. Since
(
x(t∗), λ(t∗)

)
∈ T is

a bifurcation point, this implies that there is a sequence (tn) converging to t∗
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and wn ∈W \{0} such that the nontrivial solutions w(tn)+wn+µ(tn)ψ converge

to w(t∗) +µ(t∗)ψ as n→∞. So the function G : W ×R→ X, (w, t) 7→ F (w(t) +

w + µ(t)ψ) satisfies G(0, t) = 0 for t close to t∗ as well as

0 = G(wn, tn) = G(wn, tn)−G(0, tn) = Gw(0, tn)[wn] + o(‖wn‖)

by the uniform differentiability of F along T . From this we get

Gw(0, tn)[wn/‖wn‖]→ 0 and hence Gw(0, t∗)[wn/‖wn‖]→ 0

by continuity of t 7→ Gw(0, t) at t∗. Exploiting that Gw(0, t∗) is a compact

perturbation of the identity, we find that a subsequence of (wn/‖wn‖) converges

to some nontrivial ξ ∈ W in the kernel of F ′
(
x(t∗), λ(t∗)

)
, hence

(
x(t∗), λ(t∗)

)
is degenerate. �

Notice that the statement of Proposition 2.1 need not be true if only F ′ ∈
C(T , X) is assumed as in Kielhöfer’s version of Rabinowitz’ Global Bifurcation

Theorem from Theorem II.3.3 in [15]. This fact will be proved in Appendix B,

see Lemma B.1.

Both conditions (A1) and (A2) are satisfied in the prototypical situation

F (x, λ) = x − λLx − H(x, λ) described above with the trivial solution family

T = {(0, λ) : λ ∈ R}. Usually, the study of bifurcations from non-standard

solution families T , say T = {(x(t), λ(t)) : t ∈ R}, is reduced to the case

T = {(0, λ) : λ ∈ R} by considering the map F̃ (y, t) := F (x(t) + y, λ(t)).

Let us explain why we do not take this approach. Firstly, if λ(t) remains

bounded as t → −∞ or t → ∞, solutions of F with parameter values outside

{λ(t) : t ∈ R} cannot be described by any result for the function F̃ . Secondly,

unbounded sequences of zeros of F̃ need not correspond to unbounded sequences

of zeros of F . Therefore, it is not possible to derive Rabinowitz’ alternative

from the corresponding result for F̃ . Thirdly, if λ is not monotone, i.e. if T has

turning points, then global continua of zeros of F̃ with respect to (y, t) may be

much more complicated than the ones for F with respect to (x, λ). One simple

example for this is illustrated in Figure 1.

One finds that turning points of T become (artificial) bifurcation points with

respect to the (y, t)-variables, which makes it rather complicated to establish

Dancer’s result about the jumps of the Leray–Schauder indices in this setting,

especially when the number of bifurcation points is large. Finally, let us mention

that bifurcations from such non-standard trivial solution families naturally ap-

pear in applications, see e.g. Section 4 or [3], [2] for an application to a nonlinear

elliptic Schrödinger system.

For the statement of Rabinowitz’ and Dancer’s results under the relaxed

assumptions (A1) and (A2) we need

Σ := {(x, λ) ∈ X × R : F (x, λ) = 0}, S := Σ \ T .
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Figure 1. Bifurcation diagrams for F and F̃ , respectively

The index jump along the trivial solution family T in direction ξ ∈ X ′ at a bi-

furcation point (x0, λ0) ∈ T is defined by the formula

(2.1) δ∗(x0, λ0; ξ) := lim
T 3(x,λ)→(x0,λ0)

λ−〈ξ,x−x0〉X′>λ0

ind
(
Fx(x, λ) + Fλ(x, λ)ξ, 0

)
− lim
T 3(x,λ)→(x0,λ0)

λ−〈ξ,x−x0〉X′<λ0

ind
(
Fx(x, λ) + Fλ(x, λ)ξ, 0

)
.

whenever these limits exist, i.e. whenever the involved Leray–Schauder indices

are well-defined and eventually constant. Here, 〈 · , · 〉X′ denotes the dual pairing

and ind(I − L, 0) ∈ {−1,+1} is the Leray–Schauder index of I − L whenever L

is a compact linear operator with 1 /∈ σ(L). In the classical setting

F (x, λ) = x− λLx−H(x, λ) and T = {(0, λ) : λ ∈ R}

the number δ∗(0, λ0; 0) is well-defined and equals sign(λ0)nL(λ0) from Theorem 1

in [10]. If, however, the bifurcation point (x0, λ0) ∈ T is also a turning point

of T , then ξ = 0 is not admissible, since it is impossible to find solutions on

T on both sides of λ0. So δ∗(x0, λ0; 0) is not well-defined in this case. Instead

of adding the unnatural assumption that bifurcation from turning points of T
does not occur, we will therefore consider δ∗(x0, λ; ξ) also for ξ 6= 0. Notice that

the case ξ 6= 0 may be reduced to the case ξ = 0 by a simple linear change of

coordinates, see (A.2).

In order to have δ∗(x0, λ0; ξ) well-defined, the direction ξ ∈ X ′ has to be

chosen in dependence of the trivial solution family T . We say that ξ ∈ X ′

is transverse to a subset of T if for each of its elements (x0, λ0) a local C1-

parametrization (x, λ) of T satisfies

(x(t0), λ(t0)) = (x0, λ0) with λ
′
(t0)− 〈ξ, x′(t0)〉X′ 6= 0.
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In this case (2.1) gives the formula

δ∗(x0, λ0; ξ) = sign
(
λ
′
(t0)− 〈ξ, x′(t0)〉X′

)
(2.2)

·
[

lim
t→t+0

ind
(
Fx(x(t), λ(t)) + Fλ(x(t), λ(t))ξ, 0

)
− lim
t→t−0

ind
(
Fx(x(t), λ(t)) + Fλ(x(t), λ(t))ξ, 0

)]
,

which is useful in applications as we will see in Section 4. Notice that transverse

directions ξ to any given finite subset of T always exist, which is a consequence of

the Hahn–Banach Theorem. In the following theorem we summarize Rabinowitz’

and Dancer’s achievements in this general setting and we refer to Appendix A

for a proof.

Theorem 2.2 (Rabinowitz, Dancer). Assume (A1), (A2) and (x0, λ0) ∈
S ∩ T . Then the connected component C of (x0, λ0) in S is either unbounded or

it is bounded and satisfies

(2.3)
∑

(x,λ)∈C∩T

δ∗(x, λ; ξ) = 0

whenever ξ ∈ X ′ is transverse to each point in C ∩ T .

The condition (2.3) implies that there is an even number of points (x, λ) ∈
C ∩ T where the critical eigenvalue of the operator Fx(x, λ) + Fλ(x, λ)ξ has odd

algebraic multiplicity and crosses zero. Notice that in Rabinowitz’ and Dancer’s

original version for the special case F (x, λ) = x − λLx − H(x, λ), the point

(x0, λ0) = (0, λ0) is chosen in such a way that 1/λ0 is an eigenvalue of odd

algebraic multiplicity of L so that the above observation proves the existence of

a second element of C ∩ T . In this way, (2.3) implies Rabinowitz’ alternative.

In the following, a continuum C as in Theorem 2.2 will be called a “Rabinowitz

continuum” of a given point (x0, λ0) ∈ T .

3. Symmetry breaking and secondary bifurcations

From now on we assume that there is a closed nontrivial subspace Y ( X

such that F (Y ×R) ⊂ Y for F as in (A1). Moreover, the trivial solution family

T will be assumed to belong to both spaces. This makes sure that Theorem 2.2

is applicable both in X × R and in Y × R. Given that the relevant quantities

introduced above in general depend on the ambient Banach space, we will put

a corresponding index. For instance CX , CY will denote Rabinowitz continua in

the spaces X, Y , respectively, similar for δ∗X , δ∗Y , ΣX ,ΣY etc. We will actually

see that the discrepancy between δ∗X and δ∗Y is responsible for symmetry breaking

via global secondary bifurcation. Here the word symmetry breaking is justified

since reasonable choices in applications are given by Y = {x ∈ X : gx = x for all
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g ∈ G} for some group G acting linearly and continuously on X. For instance,

in Section 4 we will consider an ODE boundary value problem formulated in

the spaces X = H1
per(2π/p;C) and Y = H1

per(2π/q;C) for q = lp with l ∈ N.

Notice that this subspace Y can indeed be rewritten as the fixed point space of

the nontrivial group action (mx)(t) = x(t + 2πm/q) for x ∈ X and m ∈ G :=

Z/lZ = {0, . . . , l − 1}.
We will say that a continuum (i.e. a closed connected subset ofX×R) C ⊂ ΣX

bifurcates from T at the point (x0, λ0) ∈ T if (x0, λ0) ∈ C \ T . In such a situation

we say that (local) secondary bifurcation occurs with respect to (T , C) if there

is a solution (x, λ) ∈ C \ T and a sequence of solutions (xn, λn) ∈ ΣX \ C such

that (xn, λn) → (x, λ) as n → ∞. We then say that (X,Y )-symmetry breaking

occurs at (x, λ) if we can ensure C ⊂ ΣY and (xn, λn) ∈ ΣX \ ΣY , so the xn
are less symmetric than x. The secondary bifurcation will be called global if the

connected component of (x, λ) in ΣX \ (C ∪ T ) is unbounded or returns to the

trivial family T at some other point on the trivial line, i.e., at some element of

T \ C. Another reasonable notion of global secondary bifurcation could require

this connected component to be unbounded or to return to the larger set C∪T at

another point. Our preference for the former definition is exclusively motivated

by the fact that our main result from Theorem 3.3 allows to observe the former

(more special) phenomenon.

Local secondary bifurcation from (T , C) is nothing but local bifurcation from

C \ T , so it is not a new concept from a theoretical point of view. Practically,

however, this difference is huge, since C is rarely explicitly known so that standard

bifurcation theorems are not applicable. In particular, the well-known tools

for proving local bifurcations such as the Crandall–Rabinowitz Theorem [9] or

the Marino–Böhme Theorem on variational bifurcation [5], [22] are useless for

studying such bifurcations. Degree theory as used in Theorem 2.2, however,

allows for global considerations and turns out to be useful. The following lemma

shows how this theorem may be employed to prove global secondary bifurcation

on an abstract level.

Lemma 3.1. Let X be a real Banach space, Y ⊂ X a closed subspace and

assume (A1), (A2) as well as F (Y × R) ⊂ Y . Suppose that the Rabinowitz

continuum CY emanating from (x0, λ0) ∈ T ⊂ Y ×R is non-empty and bounded

in Y × R and satisfies:

(a)
∑

(x,λ)∈CY ∩T
δ∗X(x, λ; ξ) 6= 0,

(b) CX ∩ U = CY ∩ U for some open neighbourhood U ⊂ X × R of CY ∩ T ,

for some direction ξ ∈ X ′ that is transverse to CX ∩ T . Then the following

alternative holds for the Rabinowitz continuum CX emanating from (x0, λ0):

(i) CX is unbounded, or
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(ii) CX ∩ T ) CY ∩ T such that
∑

(x,λ)∈CX∩T
δ∗X(x, λ; ξ) = 0.

In both cases global secondary bifurcation occurs from (T , CY ) through CX and

(X,Y )-symmetry-breaking occurs at all points of CX \ CY ∩ (CY \ T ) 6= ∅.

Proof. From Y ⊂ X we get CY ⊂ CX . If now CX is bounded, then Theo-

rem 2.2 (b) yields ∑
(x,λ)∈CX∩T

δ∗X(x, λ; ξ) = 0,

so assumption (a) implies CX ∩T ) CY ∩T . This proves the alternative (i) or (ii)

from above.

Next we use (b) to prove global secondary bifurcation from (T , CY ) through

CX . The set CX is, by definition, connected in ΣX \ T and we have CX =

CX \ CY ∪ CY where both subsets are nonempty and closed in ΣX \ T . So these

two sets have nonempty intersection, i.e. we can find (x, λ) ∈ CY and (xn, λn) ∈
CX \ CY such that (xn, λn)→ (x, λ) as n→∞. By assumption (b) the continua

CX , CY coincide in a neighbourhood of CY ∩ T proving (x, λ) ∈ CY \ T , i.e. local

secondary bifurcation with respect to (T , CY ) occurs at (x, λ). Even more, for

any such point (x, λ) ∈ CX \ CY ∩ CY \ T and any open neighbourhood of (x, λ)

there must be at least one element of CX \ CY that does not belong to Y × R,

since otherwise CY would not be maximal. So (X,Y )-symmetry breaking occurs

at (x, λ).

We finally prove that the secondary bifurcation is global in the sense de-

fined above. In view of the validity of the alternative “(i) or (ii)” it suffices to

show that the connected component of any (x, λ) ∈ CY \ T in ΣX \ (CY ∪ T ) is

precisely CX \ (CY ∪ T ). Indeed, the latter set contains (x, λ) and it is closed

in ΣX \ (CY ∪ T ). Additionally, it is open in ΣX \ (CY ∪ T ) since CX is open

in ΣX \ T . �

T

P1

P2

P3

P4
S1

S2

Figure 2. Primary and secondary bifurcations at P1, P2, P3, P4, resp. S1, S2.

In Figure 2 we illustrate the situation described by Lemma 3.1 schematically.

The curve of trivial solutions T contains primary bifurcation points P1, . . . , P4.
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One possible configuration is that that the primary branch CY consists of the

solutions on the curve joining P1, S1, P4. At S1 secondary bifurcation occurs

into CX ⊃ CY and CX reenters the trivial solution family at P2 and P3.

At first sight, Lemma 3.1 may appear to be of limited use due to assump-

tion (b). In order to verify it, we make use of the Crandall–Rabinowitz Theorem

because it allows to charaterize all solutions in the vicinity of the bifurcation

point. For the convenience of the reader we recall it here.

Theorem 3.2 (Crandall–Rabinowitz, cf. [9, Theorem 1]). Let X be a real

Banach space and assume (A1), (A2) as well as F ∈ C2(X×R, X), let (x0, λ0) :=

(x(t0), λ(t0)) ∈ T where (x, λ) is a local C1-parametrization of T . Moreover,

assume

(A3) kerX×R(F ′(x0, λ0)) = span{(x′(t0), λ′(t0)), φ} is two-dimensional with

φ ∈ Y × R,

(A4) ranX×R(F ′(x0, λ0)) has codimension one,

(A5) F ′′(x0, λ0)[(x′(t0), λ′(t0)), φ] /∈ ranX×R(F ′(x0, λ0)).

Then there exists ε > 0 and a continuous curve
(
x̂, λ̂

)
: (−ε, ε) → X × R with

x̂(0) = x0, λ̂(0) = λ0 such that F
(
x̂(s), λ̂(s)

)
= 0 for all s ∈ (−ε, ε) and

(x̂(s), λ̂(s)) /∈ T if 0 < |s| < ε. In a small neighbourhood of (x0, λ0) in X × R
all solutions not belonging to T lie on this curve.

We remark that the regularity assumptions on F may be slightly relaxed for

this result to remain true. In fact, twice continuous differentiablity on X × R
may be replaced by once continuous differentiablity in a neighbourhood of T
with uniform twice continuous differentiablity along T , see Satz A.7 and in par-

ticular assumption (V) in [20, pp. 119–126]. Combining the Crandall–Rabinowitz

Theorem with Lemma 3.1 we obtain our main result.

Theorem 3.3. Let X be a real Banach space, Y ⊂ X a closed subspace and

assume (A1), (A2) as well as F ∈ C2(X×R, X) with F (Y ×R) ⊂ Y . Moreover,

suppose that the Rabinowitz continuum CY emanating from (x0, λ0) ∈ T ⊂ Y ×R
is non-empty, bounded and that (A3)–(A5) are satisfied at each element of CY ∩T .

Furthermore, for ξ ∈ X ′ transverse to CX ∩ T we assume

(3.1)
∑

(x,λ)∈CY ∩T

δ∗X(x, λ; ξ) 6= 0.

Then global secondary bifurcation occurs from (T , CY ) through CX and (X,Y )-

symmetry-breaking occurs at all points of CX \ CY ∩ (CY \ T ) 6= ∅.

Proof. We verify the assumptions of Lemma 3.1. Condition (a) holds

thanks to (3.1).

In order to prove (b) we may write CY ∩ T = {(x0, λ0), . . . , (xk, λk)} thanks

to discreteness of the set of bifurcation points on T from Proposition 2.1. By
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(A1)–(A5) the Crandall–Rabinowitz Theorem is applicable at each (xj , λj) both

in X and in Y , so we obtain continuous curves
(
x̂j , λ̂j

)
: (−εj , εj)→ Y ×R and,

without loss of generality, mutually disjoint small neighbourhoods Uj of (xj , λj)

in X × R with the properties mentioned in Theorem 3.2. So U :=
k⋃
j=0

Uj is

a neighbourhood of CY ∩ T in X × R with the property

CY ∩ U = CX ∩ U =

k⋃
j=0

{(
x̂j(s), λ̂j(s)

)
: |s| < εj

}
∩ Uj .

This proves (b) so that Lemma 3.1 gives the result. �

4. Applications

In this section we apply Theorem 3.3 in order to detect secondary bifurca-

tions via period-doubling, period-tripling, etc. for the stationary Lugiato–Lefever

equation

(4.1) da′′ + (i− ζ)a+ |a|2a− if = 0, a : R→ C is 2π-periodic.

It was proposed in [19] as an accurate model for the description of the electric

field in a ring resonator. The parameters d, ζ, f ∈ R with d, f 6= 0 model phy-

sical effects originating from dispersion, detuning and forcing, respectively, and

therefore vary according to the precise experimental setup. The term ia incorpo-

rates damping and the nonlinear term is due to the use of Kerr-type materials as

propagation media. The parameters f and especially ζ may be calibrated rather

easily in the laboratory in order to generate so-called frequency combs, i.e. elec-

tric fields with a broad frequency range of almost uniformly distributed and suf-

ficiently large power per frequency. Such electric fields typically arise as spatially

concentrated (soliton-like) solutions of (4.1). In a joint work with W. Reichel [21]

the author provided a detailed bifurcation analysis of the Lugiato–Lefever equa-

tion related to primary bifurcations from the family of constant solutions. Our

aim here is to discuss secondary bifurcations for this problem. To this end we

will show how the assumptions of Theorem 3.3 may be verified in the context

of (4.1). In order not to overload this paper with tedious computations, we will

only present the main steps. We start by recalling the results obtained in [21]

about the primary bifurcations.

The functional analytical setting. In order to prove the existence of

nonconstant solutions via bifurcation theory it was shown in [21] that so-called

synchronized solutions of (4.1) are precisely the zeros of the function

F : H1
per([0, 2π];C)× R→ H1

per([0, 2π];C)
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given by

F (a, ζ) := a− sign(d)D−1
(
− ζa+ sign(d)a+ |a|2a+ ia− if

)
,

where D denotes the differential operator −|d|∂xx + 1 with homogeneous Neu-

mann boundary conditions at 0 and π for both real and imaginary part, see

Section 4.1 and equation (23) in [21] for details. These boundary conditions

were chosen in order to benefit from simple kernels by ruling out the transla-

tion invariance of (4.1). Moreover, they ensure the solutions to be symmetric

about 0 and π and hence to be 2π-periodic. Since not all solutions of (4.1) are

known to satisfy these boundary conditions, this special class of solutions was

attributed the name “synchronized”, see Definition 1.4 in [21]. So F satisfies

assumption (A1), the parameters d 6= 0, f ∈ R are fixed and ζ will be considered

as a bifurcation parameter.

The trivial solution family T and its primary bifurcations. In Lem-

ma 2.1 (a) from [21] it was proved that there is a uniquely determined (un-

bounded) curve T =
{

(a(t), ζ(t)) : |t| < 1
}

consisting of constant solutions

of (4.1). This curve is smoothly parametrized via

(4.2) a(t) = f(1− t2)− ift(1− t2)1/2, ζ(t) = f2(1− t2) + t(1− t2)−1/2,

where |t| < 1. Moreover, it was shown that for “generic” choices of d and

f there are finitely many bifurcation points on T at t = tk,1 or t = tk,2 for

k = 1, . . . , kmax. These points are characterized as the solutions of

(4.3) (ζ(t)+dk2)2−4|a(t)|2(ζ(t)+dk2)+1+3|a(t)|4 = 0 (k = 1, . . . , kmax),

see [21, Proposition 4.3]. In particular, (A2) is satisfied. In a neighbourhood

of these bifurcation points the associated Rabinowitz continua consist of 2π/k-

periodic solutions, and they are bounded and therefore return to T at some

other bifurcation point. This analysis benefits from the fact that the sufficient

conditions of the Crandall–Rabinowitz Theorem (A3)–(A5) are satisfied in all

bifurcation points for “generic” d and f . This follows from the fact that the

assumptions (S), (T) from Theorem 1.4 in [21] hold for most parameter values.

The numerical investigations from Section 5.3 in [21] suggest that the periodic

pattern close to the bifurcation point may be lost along some of the bifurcating

branches via secondary bifurcation. In the following we show how this phenom-

enon may be proved with the aid of Theorem 3.3. Our theoretical results are

illustrated in Figure 3 using the Matlab software package pde2path.

Index computations. We apply Theorem 3.3 for the Banach spaces

(4.4) X = H1
per

(
2π

p
;C
)
, Y = H1

per

(
2π

q
;C
)

where p divides q.
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(a) q = 7, p = 1 (b) q = 6, p = 3

(c) q = 6, p = 2 (d) q = 4, p = 2

Figure 3. T (black), primary branches (blue), secondary branches (green, red).

Since we will not encounter bifurcation from turning points of T later, we only

consider ξ = 0. For all bifurcation points
(
a(tk,i), ζ(tk,i)

)
∈ CY ∩ T with k ∈ qN

we will have to compute

(4.5) δ∗X
(
a(tk,i), ζ(tk,i); 0

)
= sign

(
ζ ′(tk,i)) · (ιX(tk,i + ε)− ιX(tj − ε))

for i = 1, 2 (see (2.2)), where ιX(t) is given by

ιX(t) := indX(F ( · , ζ(t)), a(t)) = indX(Fa(a(t), ζ(t)), 0).

Given the definition of the Leray–Schauder index and the fact that all eigenvalues

are simple, the quantities ιX(tk,i + ε), ιX(tk,i − ε) can be computed by counting

the negative eigenvalues of the linearized operator Fa(a(t), ζ(t))[ · ] : X → X.

These eigenvalues can be computed with the aid of Proposition 4.3 [21]. In the

notation from [21] one finds that E is an eigenvalue of this operator in X if and

only if the determinant of one the matrices dl2 Id−N(a, ζ)−E(dl2 + sign(d)) Id

for l ∈ pN vanishes. Plugging in the formula for N(a, ζ) from Proposition 4.2
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in [21] we get that the eigenvalues satisfy

(4.6)
(
ζ(t) + dl2 − E

(
dl2 + sign(d)

))2
− 4|a(t)|2

(
ζ(t) + dl2 − E

(
dl2 + sign(d)

))
+ 1 + 3|a(t)|4 = 0

for some l ∈ pN coming with 2π/l-periodic eigenfunctions. So ιX(tk,i ± ε) is the

number of negative E solving (4.6) for some l ∈ pN, which can be computed

rather easily using a computer. Notice that the eigenvalues change with p and

hence with the ambient space X.

Computing CY ∩ T . Above we pointed out that all bifurcation points in

H1
per([0, 2π];C) are of the form(

a(tk,1), ζ(tk,1)
)
, (a(tk,2), ζ(tk,2)

)
for k = 1, . . . , kmax

with 2π/k-periodic eigenfunctions of the (simple) zero eigenvalue. Choosing Y

as in (4.4) we find that these points, being bifurcation points in Y , can belong to

CY only if k ∈ qN. So the choice kmax/2 < q ≤ kmax ensures k = q. In particular,

CY ∩T ⊂
{(
a(tq,1), ζ(tq,1)

)
,
(
a(tq,2), ζ(tq,2)

)}
. Moreover, CY is bounded by the a

priori bounds from Theorems 1.1 and 1.2 in [21], so that the set CY ∩T contains

at least two elements by Rabinowitz’ bifurcation theorem, see (2.3) and the

explanations thereafter. From these two facts we deduce

(4.7) CY ∩ T =
{(
a(tq,1), ζ(tq,1)

)
,
(
a(tq,2), ζ(tq,2)

)}
provided q ∈ N, kmax/2 < q ≤ kmax.

Summary. For generic d 6= 0 and f ∈ R we find kmax ∈ N0 such that the

curve of constant solutions T given by (4.2) contains 2kmax bifurcation points in

H1
per([0, 2π];C) at t = tk,1 or t = tk,2 for k = 1, . . . , kmax. Then, choosing X and

Y as in (4.4) with kmax/2 < q ≤ k, we get (4.7). The sufficient condition (3.1)

for symmetry breaking secondary bifurcation can then be verified using (4.5)

where the Leray–Schauder indices ιX(tj ± ε) is −1 to the number of negative E

solving (4.6) for some l ∈ pN.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

tk,1 0.10528 −0.18543 −0.52046 −0.72866 −0.77281 −0.61695 −0.20600
tk,2 0.77130 0.75556 0.72127 0.66089 0.56321 0.40312 0.01535

ζ(tk,1) 2.63750 2.28327 1.25702 0.13682 −0.18666 0.80166 2.24085

ζ(tk,2) 2.24888 2.25196 2.26952 2.32248 2.42954 2.58449 2.57475

Re(a(tk,1)) 0.64816 0.68661 0.76763 0.90117 1.09247 1.34000 1.59962

Im(a(tk,1)) −0.78546 −0.79192 −0.79934 −0.79358 −0.74462 −0.59026 −0.02455
Re(a(tk,2)) 1.58226 1.54499 1.16659 0.75049 0.64442 0.99099 1.53210

Im(a(tk,2)) −0.16752 0.29154 0.71106 0.79847 0.78473 0.77687 0.32253

Table 1. Bifurcation points on T for f = 1.6, d = 0.1.
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Secondary bifurcations. For simplicity we now focus on a special case. We

choose f = 1.6, d = 0.1 so that the interested reader may compare our results

to those presented in Section 5.3 of the paper [21]. In this particular case the

equation (4.3) has exactly 14 solutions, two for each k ∈ {1, . . . , 7}, i.e. kmax = 7.

The numerical values for these solutions tk,1, tk,2 yielding the bifurcation points(
a(tk,1), ζ(tk,1)

)
,
(
a(tk,2), ζ(tk,2)

)
in the ambient space H1

per([0, 2π];C) are pro-

vided in Table 1.

For notational convenience we write zk,i :=
(
a(tk,i), ζ(tk,i)

)
for the bifurca-

tion points in H1
per([0, 2π];C). Using (4.7) it is possible to check the symmetry

breaking condition (3.1) with the aid of formula (4.5). Doing so for the spaces

X, Y from (4.4), Theorem 3.3 yields the following:

(1) q = 7, p = 1: Then δ∗X(z7,1) + δ∗X(z7,2) = −4, so the symmetry-breaking

condition (3.1) from Theorem 3.3 is satisfied and secondary bifurcation

from (T , CY ) occurs via period-septupling.

(2) q = 6, p = 3: Here we find δ∗X(z6,1) + δ∗X(z6,2) = −4, which implies

secondary bifurcation by period-doubling from 2π/6−periodic into 2π/3-

periodic solutions. Moreover, δ∗X(z3,1) = δ∗X(z3,2) = 2 implies CX ∩ T =

{z6,1, z6,2, z3,1, z3,2} because of Lemma 3.1 (b). Item (3) even reveals

that in a larger space, for instance in H1
per([0, 2π];C), we will discover

further secondary bifurcations.

(3) q = 6, p = 2: Then δ∗X(z6,1) + δ∗X(z6,2) = 4, so secondary bifurcation via

period-tripling occurs.

(4) q = 4, p = 2: From δ∗X(z4,1) + δ∗X(z4,2) = −4 we deduce secondary

bifurcation via period-doubling.

In particular, we conclude: for f = 1.6, d = 0.1 and each pair (q, p) ∈ {(7, 1),

(6, 3), (6, 2), (4, 2)} there is a sequence of 2π/p-symmetric but not 2π/q-symme-

tric solutions of (4.1) converging to a nonconstant 2π/q-symmetric solution.

Appendix A. Proof of Theorem 2.2

We finally provide the proof of Dancer’s and Rabinowitz’ results from The-

orem 2.2 under the relaxed assumptions (A1) and (A2). As in [10], [25] the main

arguments rely on well-known properties of the Leray–Schauder degree. We refer

to the survey article [23] and the books [1], [13] for more information about these

topics. The following property will be especially important.

Lemma A.1 (Generalized homotopy invariance). Let X be a real Banach

space, Ω ⊂ X × R open and bounded and F ∈ C(Ω;X) a compact pertur-

bation of the identity. If F (x, t) 6= 0 for all x ∈ ∂Ωt with t ∈ [0, 1], then

t 7→ d(F ( · , t),Ωt, 0) is constant on [0, 1].
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For a proof of this well-known result we refer to Theorem 4.1 in [1]. We

mention that Ωt := {x ∈ X : (x, t) ∈ Ω}, for t ∈ R, denote the slices of Ω.

Moreover, the projection of Ω onto the parameter space will be denoted by

pr(Ω) := {t ∈ R : Ωt 6= ∅}. Furthermore, we recall the following result, cf. [13,

Lemma 29.1].

Lemma A.2 (Whyburn). Let (M,d) be a compact metric space, A ⊂ M

a component and B ⊂M closed such that A ∩B = ∅. Then there exist compact

MA ⊃ A, MB ⊃ B such that M = MA ∪MB and MA ∩MB = ∅.

Proof of Theorem 2.2. We assume that C is bounded. Exploiting the

discreteness of the set of bifurcation points Ξ ⊂ T , see Proposition 2.1, we find

that C ∩ T is finite and

(A.1) Bρ(C) ∩ Ξ = C ∩ T = {(xij , λi) : i = 0, . . . , k, j = 0, . . . ,mi},

where ρ > 0 is sufficiently small, k ∈ N0, m0, . . . ,mk ∈ N0 and the trivial

solutions (xij , λi) are all different from each other. Without loss of generality

we may assume λ0 < λ1 < . . . < λk. Here, Bρ(C) := {(x, λ) ∈ X × R :

dist((x, λ), C) < ρ} denotes the open ball in X × R around C. Replacing F , T
by F̃ , T̃ given by

(A.2) F̃ (x, λ) := F (x, λ+ 〈ξ, x〉X′), T̃ := {(x, λ− 〈ξ, x〉X′) : (x, λ) ∈ T },

we may without loss of generality assume that C∩T does not have turning points

so that ξ = 0 is transverse to C ∩ T . So it remains to prove (2.3) in this special

case. Due to the absence of turning points in C ∩ T we have (eventually after

shrinking ρ > 0)

(T ∩Bρ(C) \ C)λi = ∅ for i = 0, . . . , k.

Since S∩Bρ(C) is compact, we may invoke Whyburn’s Lemma to get S∩Bρ(C) =

K1 ∪ K2 where K1, K2 are disjoint compact sets such that C ⊂ K1 and S ∩
∂Bρ(C) ⊂ K2. Then, for 0 < δ < min

{
dist(K1,K2),dist(K1, ∂Bρ(C))

}
, the

open set O := Bδ(K1) ⊂ Bρ(C) is a bounded open neighbourhood of C satisfying

(i) ∂O ∩ S = ∅ and (∂O ∩ T )λi = ∅ for i = 0, . . . , k,

(ii) O ∩ Ξ = C ∩ T is given by (A.1).

Next we define for λ ∈ R \ {λ0, . . . , λk}

µ(λ) := lim
r→0+

d(F ( · , λ), Br(T )λ, 0),

ν(λ) := lim
r→0+

d(F ( · , λ), (O \Br(T ))λ, 0).

Then µ(λ) is well-defined since Tλ does not contain a bifurcation point due to

λ ∈ R\{λ0, . . . , λk} and (ii). Similarly, ν(λ) is well-defined in view of ∂O∩S = ∅
by construction of O. We now prove the following equalities for sufficiently small

ε > 0:
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(a) µ(λi − ε) + ν(λi − ε) = µ(λi + ε) + ν(λi + ε) for i = 0, . . . , k,

(b) ν(λi + ε) = ν(λi+1 − ε) for i = 0, . . . , k − 1,

(c) ν(λ0 − ε) = 0 and ν(λk + ε) = 0.

Choose ε > 0 such that Br(T )λ ⊂ Oλ for |λ − λi| ≤ ε. Then, by (i), ∂Oλ does

not contain any zeros of F ( · , λ) whenever |λ − λi| ≤ ε. Hence, the additivity

and the homotopy invariance of the degree yield

µ(λi − ε) + ν(λi − ε) = d(F ( · , λi − ε),Oλi−ε, 0)

= d(F ( · , λi + ε),Oλi+ε, 0) = µ(λi + ε) + ν(λi + ε).

This proves (a).

By property (ii) there is a sufficiently small r > 0 such that solutions (x, λ) ∈
O with λi + ε ≤ λ ≤ λi+1 − ε for i = 0, . . . , k − 1 satisfy (x, λ) /∈ Br(T ) and

(x, λ) /∈ ∂O \ Br(T ) follows from property (i). So, Lemma A.1 implies, for

i = 0, . . . , k − 1,

ν(λi + ε) = d(F ( · , λi + ε), (O \Br(T ))λi+ε, 0)

= d(F ( · , λi+1 − ε), (O \Br(T ))λi+1−ε, 0) = ν(λi+1 − ε),

so that (b) is proved, too.

Claim (c) follows again from Lemma A.1 and the fact that O is bounded.

Indeed, for all r > 0, we have

(A.3) d(F ( · , λ), (O \Br(T ))λ, 0) = d(F ( · , λ), ∅, 0) = 0

if λ ≤ λ∗ := inf pr(O). As above, by (i) and (ii) we may choose r > 0 such that

all solutions (x, λ) ∈ O with λ∗ ≤ λ ≤ λ0 − ε satisfy (x, λ) /∈ Br(T ) as well as

(x, λ) /∈ ∂O \Br(T ). Hence, we get from (A.3)

ν(λ0 − ε) = d(F ( · , λ0 − ε), (O \Br(T ))λ0−ε, 0)

= d(F ( · , λ∗), (O \Br(T ))λ∗ , 0) = 0.

The analogous reasoning gives ν(λk + ε) = 0.

From (a)–(c) we deduce

k∑
i=0

(µ(λi + ε)− µ(λi − ε)) = −
k∑
i=0

(ν(λi + ε)− ν(λi − ε))

= ν(λk − ε)−
k−1∑
i=0

(ν(λi + ε)− ν(λi − ε))

= ν(λk − ε)−
k−1∑
i=0

(ν(λi+1 − ε)− ν(λi − ε))

= ν(λk − ε)− ν(λk − ε) + ν(λ0 − ε) = 0
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so that it remains to rewrite this identity in the form (2.3). To this end we use

that for |λ − λi| ≤ ε sufficiently small the slices (O ∩ T )λ consist of precisely

mi + 1 distinct points that converge to the points xij , j = 0, . . . ,mi as λ → λi.

Notice that at this point we use that none of these points is a turning point of T .

Invoking the Leray–Schauder index formula (see for instance Theorem 8.10 in [13]

or Lemma 3.19 in [1]) we arrive, for ε > 0 sufficiently small, at

µ(λi + ε) − µ(λi − ε)

=
∑

(x,λi+ε)∈O∩T

ind(F ( · , λi + ε), x)−
∑

(x,λi−ε)∈O∩T

ind(F ( · , λi − ε), x)

=
∑

(x,λi+ε)∈O∩T

ind(Fx(x, λi + ε), 0)−
∑

(x,λi−ε)∈O∩T

ind(Fx(x, λi − ε), 0)

=

mi∑
j=0

δ∗(xij , λi; 0).

These identities finally imply

0 =

k∑
i=0

(
µ(λi + ε)−µ(λi− ε)

)
=

k∑
i=0

mi∑
j=0

δ∗(xij , λi; 0) =
∑

(x,λ)∈C∩T

δ∗(x, λ; 0). �

Appendix B. On assumption (A2)

In this Section we motivate the assumption of locally uniform differentiability

of F along the trivial solution T in the context of Proposition 2.1. We provide

an example for a not locally uniformly differentiable function F : X × R → X

with F (0, λ) = 0 for all λ ∈ R such that the set of bifurcation points is not

discrete even though the set of degenerate solutions on T is. In particular, this

shows that Proposition 2.1 cannot hold without this assumption.

The starting point for the construction of a counterexample is a differ-

entiable function f : R × R → R with f |T = 0 such that f is not locally

uniformly differentiable along T , but λ 7→ f ′(0, λ) is continuous. We define

M := max
z∈R

sin2(z)/z > 0 and its unique maximizer z∗ ≈ 1.165561. Then the

following function has the above-mentioned properties:

f(x, λ) := x−M−1 sin2(xλ−3)λ3 for x ∈ R, λ 6= 0,

f(x, 0) := x for x ∈ R.

Moreover, we have fx(0, λ) = 1 for all λ ∈ R and (0, 0) is a bifurcation point

because of f(xλ, λ) = 0 for all λ ∈ R where xλ := z∗λ3. Notice that there are

no other nontrivial solutions. We conclude:

(0, 0) is a bifurcation point for f(x, λ) = 0 with fx(0, 0) 6= 0.
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In other words (0, 0) is a nondegenerate bifurcation point for this equation in the

sense we defined at the beginning of Section 2. We stress that this is possible due

to the fact that f is not locally uniformly differentiable along T and in particular

not continuously differentiable in a neighbourhood of T . In fact, one has xλ → 0

as λ→ 0 and

f(xλ, λ)− f(0, λ)− fx(0, λ)xλ
xλ

=
sin2(xλλ

−3)

Mxλλ−3
=

sin2(z∗)

Mz∗
= 1 6→ 0

as λ → 0. In the next lemma, this function is used for the construction of

a counterexample.

Lemma B.1. There is a differentiable function F : R × R → R satisfying

F (0, λ) = 0 for all λ ∈ R and such that, for λ0 ∈ R, the following holds:

(a) The map λ 7→ F ′(0, λ) is continuous on R,

(b) Fx(0, λ0) = 0 and Fx(0, λ)(λ− λ0) > 0 for all λ 6= λ0,

(c) there is a sequence of bifurcation points (0, λn) for F (x, λ) = 0 such that

λn → λ0 as n→∞.

Proof. Without loss of generality we may assume λ0 = 0. Let f be defined

as above, let χ ∈ C∞0 (R) be a smooth cut-off function such that χ(z) = 1 for

|z| ≤ 1/2, 0 < χ(z) < 1 for |z| < 1 and χ(z) = 0 for |z| ≥ 1 and define

F (x, λ) := λ

(∑
k∈Z

χ(a2k(λ− 2−k))f(x, λ− 2−k)

+
∑
k∈Z

χ(a2k(λ+ 2−k))f(x, λ+ 2−k)

)
,

where a ∈ (2, 3). Our aim is to verify the above-mentioned properties for λn :=

2−n. First let us mention that the k-th summand in the first series is zero

for λ 6∈ ((a− 12−k/a, (a+ 1)2−k/a). So, for all λ > 0 we can find a small

open neighbourhood of λ and kλ ∈ Z such that the second sum is zero and

the k-th summand in the first series vanishes on this neighbourhood whenever

k /∈ {kλ, kλ + 1}. Here, a > 1 is used. The analogous reasoning applies to

λ < 0. So the well-definedness and differentiability of F at points (0, λ) with

λ 6= 0 follows from the corresponding statements about f . Moreover, we have

F (0, λ) = 0 for all λ ∈ R. Let us prove the claims (a)–(c).

(a) For λ 6= 0 we have Fλ(0, λ) = 0 and

(B.1) Fx(0, λ) = λ

(∑
k∈Z

χ(a2k(λ− 2−k)) +
∑
k∈Z

χ(a2k(λ+ 2−k))

)
.
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So (a) is proved once we show that F ′(0, 0) exists with Fx(0, 0) = Fλ(0, 0) = 0.

Indeed, we have for x, λ→ 0

|F (x, λ)| ≤ |λ|
∑
k∈Z

(
|χ(a2k(λ− 2−k))||f(x, λ− 2−k)|

+ |χ(a2k(λ+ 2−k))||f(x, λ+ 2−k)|
)

≤ 2|λ||x|
∑
k∈Z

(
|χ(a2k(λ− 2−k))|+ |χ(a2k(λ+ 2−k))|

)
≤ 4|λ||x| = o(|x|+ |λ|).

Here we used that χ(a2k(λ± 2−k)) is non-zero for at most two indices k.

(b) For any given λ > 0 we can choose k ∈ Z such that λ ∈ ((a− 1)2−k/a,

(a+ 1)2−k/a). This is due to a < 3. So χ(a2k(λ− 2−k)) > 0 and thus, in view

of (B.1), Fx(0, λ)λ > 0. The analogous reasoning applies to λ < 0, which

implies (b).

(c) We show that bifurcation occurs at λn = 2−n. Indeed, for 0 < |λ| ≤
min{(a− 1)/(2a), (a− 2)/a}2−n, which is possible due to a > 2, we have

a2k
∣∣(2−n + λ)− 2−k

∣∣ = a
∣∣2k−n(1− 2nλ)− 1

∣∣
≥ a

(
2 ·
(

1− a− 1

2a

)
− 1

)
= 1 if k > n,

a2k
∣∣(2−n + λ)− 2−k

∣∣ ≥ a(1− 2k(|λ|+ 2−n)
)

≥ a
(

1− 2k · 2a− 2

a
2−n

)
≥ a

(
1− a− 1

a

)
= 1 if k < n.

The same inequalities hold for a2k
∣∣(2−n + λ) + 2−k

∣∣ and all k ∈ Z. So we get

F (xλ, 2
−n +λ) = (2−n +λ)

[∑
k∈Z

χ
(
a2k
(
2−n + 2−k + λ

))︸ ︷︷ ︸
=0

f
(
xλ, 2

−n + 2−k +λ
)

+
∑

k∈Z, k 6=n
χ
(
a2k
(
2−n − 2−k + λ

))︸ ︷︷ ︸
=0

f
(
xλ, 2

−n − 2−k + λ
)

+ χ(a2nλ) f(xλ, λ)︸ ︷︷ ︸
=0

]
= 0.

Hence, (0, λn) is a bifurcation point, which is all we had to show. �
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