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STRONG CONVERGENCE

OF BI-SPATIAL RANDOM ATTRACTORS

FOR PARABOLIC EQUATIONS

ON THIN DOMAINS WITH ROUGH NOISE

Fuzhi Li — Yangrong Li — Renhai Wang

Abstract. This article concerns bi-spatial random dynamics for the sto-

chastic reaction-diffusion equation on a thin domain, where the noise is
described by a general stochastic process instead of the usual Wiener pro-

cess. A bi-spatial attractor is obtained when the non-initial state space is

the p-times Lebesgue space, meanwhile, measurability of the attractor in
the Banach space is proved by using measurability of both cocycle and ab-

sorbing set. Finally, the p-norm convergence of attractors is obtained when

the thin domain collapses onto a lower dimensional domain. The method
of symbolical truncation is applied to provide some uniformly asymptotic
estimates.

1. Introduction

The subject of a thin domain problem is to consider both existence and

convergence of an attractor when the equation is defined on a thin domain, which

collapses onto a lower dimensional domain. Some pioneered works were given

by Hale, Raugel and Sell (see [16], [31]), with notable developments for a large

number of (deterministic) dissipative equations (see [1], [3], [4], [14], [19], [30],

and the references therein).
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Such a thin domain problem was generalized to the stochastic PDE (see [6],

[9], [10]). In particular, D. Li et al. [20], [21] had investigated the following

stochastic reaction-diffusion equation with Neumann boundary conditions

(1.1)

dũ
ε −∆ũε dt+ λũε dt = (F (t, x, ũε) +G(t, x)) dt+ h(x) dW, t ≥ τ,

∂ũε

∂νε
= 0, on ∂Oε, ũε(τ, x) = ũετ (x), x ∈ Oε, τ ∈ R,

where λ > 0, νε is the unit outward normal vector on ∂Oε for ε ∈ (0, 1]. The

n+ 1-dimensional thin domain Oε is given by

Oε = {x = (x∗, xn+1) : x∗ = (x1, . . . , xn) ∈ Q, 0 < xn+1 < εg(x∗)},

where Q is a bounded smooth domain in Rn and g ∈ C2(Q, (0,+∞)).

In this article, we use a general stochastic process W to replace the Wiener

process used in [20], [21]. Let

Ω =

{
ω ∈ C(R,R) : ω(0) = 0, lim

t→±∞

ω(t)

t
= 0

}
,

and take the Frechét metric

%(ω, ω∗) =

∞∑
k=1

1

2k
ρk(ω, ω∗)

1 + ρk(ω, ω∗)
,(1.2)

where %k is the metric in C([−k, k],R). Then, (Ω,F) is a measurable space,

where F = B(Ω) is the Borel algebra on (Ω, %). We denote a group {θt : t ∈ R}
of self-mappings on Ω by θtω( · ) = ω(t+ · )− ω(t) for (ω, t) ∈ Ω× R.

Now, we take a general probability measure P on (Ω,F) such that W (t, ω) :=

ω(t) (t ∈ R) is a stochastic process on the probability space (Ω,F , P ), meanwhile,

it ensures that θt is measure preserving and ergodic with respect to P .

We remark here that one can obtain different stochastic processes from differ-

ent probability measures. In particular, by [8], one can obtain the usual Wiener

process by taking P a Wiener measure, which is widely used in the literature (see

[5], [7], [12], [33] and the references therein). In fact, the above class of processes

contains any continuous stochastic process with lim
t→±∞

W (t)/t = 0, such as the

Wong–Zakai-type noise used in the more recent paper [35].

The subject of this article is to consider strong attraction and strong con-

vergence of the L2-attractor. More precisely, we will prove the existence of

a bi-spatial random attractor Aε for equation (1.1) in (L2, Lp), where p > 2.

Also, we consider the p-norm convergence from Aε to the attractor A0 of the

following limiting equation:

(1.3)


du0 − 1

g

n∑
i=1

(gu0yi)yi dt+ λu0 dt = (F0(t, y∗, u0) +G0(t)) dt+ h0 dW,

∂u0

∂ν0
= 0 on ∂Q, u0(τ, y∗) = u0τ (y∗), y∗ ∈ Q, t ≥ τ, τ ∈ R,



Strong Convergence of Bi-Spatial Random Attractors 661

where F0(t, y∗, u0) = F (t, (y∗, 0), u0), G0(t, y∗) = G(t, (y∗, 0)), h0(y∗) = h(y∗, 0)

and ν0 is the unit outward normal vector on ∂Q.

In Section 2 some abstract existence results given in Li et al. [24] can be

applied to the thin-domain problem if we make a transformation from the varying

thin domain to a fixed domain. Under such a fixed domain, we can show that

the random dynamical system has an (L2, Lp)-attractor, see Theorem 4.6.

However, the abstract result on upper semi-continuity of the attractor cannot

simply be applied to the thin domain problem. In fact, in Section 5, we consider

the convergence from a n + 1-dimensional function to the lower dimensional

average function. This convergence together with some priori estimates in Lp

can help us to prove directly the upper semi-continuity from Aε to A0 under the

p-norm, see Theorem 5.2.

It is worth pointing out that random invariant manifolds and random attrac-

tors in such a Banach space had been considered by [23], [27], [28], [34], [39],

[40], where the non-thin domain problem had been investigated.

Another issue is measurability of the pullback attractor in Lp, which is a main

subject different from deterministic pullback attractors (see [22], [29], [36]). How-

ever, the random attractor is still the omega-limit set of the absorbing set under

the solution operator (cocycle). So, in Section 3, we show that the solution

operator is F-measurable in both state spaces L2 and Lp, which leads to the

measurability of the attractor.

2. Transformation of the thin domain and well-posedness

2.1. Assumptions. Let Õ = Q × (0, γ2) and Ô = Q × [0, γ2), where γ2 ≥
γ1 > 0 such that γ1 ≤ g(x∗) ≤ γ2 for all x∗ ∈ Q. Note that u ∈ L∞(Ô) if and

only if u ∈ L∞(Õ) with the same norms.

Assumption 2.1. The nonlinearity f : R × Ô × R → R is continuous and

satisfies the following conditions: for all x ∈ Ô and t, s ∈ R,

f(t, x, s)s ≤ −α1|s|p + ψ1(t, x),(2.1)

|f(t, x, s)| ≤ α2|s|p−1 + ψ2(t, x),(2.2)

∂f(t, x, s)

∂s
≤ β,

∣∣∣∣∂f(t, x, s)

∂s

∣∣∣∣ ≤ α3|s|p−2 + ψ3(t, x),(2.3) ∣∣∣∣∂f(t, x, s)

∂x

∣∣∣∣ ≤ ψ4(t, x),(2.4)

where p > 2, αi, β > 0, ψ1 ∈ L1
loc∩L2

loc(R, L∞(Õ)), ψ2, ψ3, ψ4 ∈ L2
loc(R, L∞(Õ)).

Assumption 2.2. G ∈ L2
loc(R, L∞(Õ)) and h ∈ C2(Q× [0, γ2]).
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Assumption 2.3. Tempered conditions: for any τ ∈ R and σ > 0,∫ τ

−∞
e1/4λs

(
‖G(s)‖2∞ + ‖ψ1(s)‖∞ + ‖ψ2(s)‖2∞ + ‖ψ4(s)‖2∞

)
ds <∞,(2.5)

eσr
∫ 0

−∞
e1/4λs

(
‖G(s+ r)‖2∞ + ‖ψ1(s+ r)‖∞ + ‖ψ4(s+ r)‖2∞

)
ds→ 0,(2.6)

as r → −∞, where we use ‖ · ‖∞ to denote the norm in L∞
(
Õ
)
.

Assumption 2.4. By the same method as defining F0, G0 and h0 in the

limiting equation (1.3), we define the restrictions ψj,0 (j = 1, . . . , 4). Then, we

assume ψ1,0 ∈ L1
loc ∩ L2

loc(R, L∞(Q)) and ψ2,0, ψ3,0, ψ4,0 ∈ L2
loc(R, L∞(Q)).

2.2. Transformation of the thin domain. We consider a transformation

Tε from Oε onto O = Q× (0, 1), defined by

(y∗, yn+1) = Tε(x
∗, xn+1) =

(
x∗,

xn+1

εg(x∗)

)
for all x = (x∗, xn+1) ∈ Oε.

Then, the bijective mapping Tε has the Jacobian matrix:

J =
∂(y1, . . . , yn+1)

∂(x1, . . . , xn+1)
=

 I 0

−yn+1

g
(gy1 , . . . , gyn)

1

εg(y∗)


with the positive determinant |J | = 1/εg(y∗). By [17], [21], we have ∇xũ(x) =

J∗∇yu(y) and

∆xũ(x) = |J |divy
(
|J |−1JJ∗∇yu(y)

)
=

1

g
divy(Υεu(y)),

where u(y) = ũ(x) (y = Tεx ∈ O), J∗ is the transport of J and Υε is the operator

given by

(2.7) Υεu(y) =



guy1 − gy1yn+1uyn+1

...

guyn − gynyn+1uyn+1

−
n∑
i=1

yn+1gyiuyi +
1

ε2g

(
1 +

n∑
i=1

(εyn+1gyi)
2

)
uyn+1


.

We can rewrite the problem (1.1) as an equation defined on O:

(2.8)


duε − 1

g
divy(Υεu

ε) dt+ λuε dt

= (Fε(t, y, u
ε) +Gε(t, y)) dt+ hε(y) dW,

Υεu
ε · ν = 0, on ∂O, uε(τ, y) = ũετ (T−1ε (y)), y ∈ O, τ ∈ R.
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where ν is the unit outward normal vector on ∂O, and

Fε(t, y
∗, yn+1, u) = F (t, y∗, εg(y∗)yn+1, u),

Gε(t, y
∗, yn+1) = G(t, y∗, εg(y∗)yn+1),

hε(y
∗, yn+1) = h(y∗, εg(y∗)yn+1).

We take the equivalent norms on X = L2(O) and Y = Lp(O) by

‖u‖2g =

∫
O
gu2 dy, u ∈ X and ‖v‖pp =

∫
O
g|v|p dy, v ∈ Y.

Also, we consider a family of new norms and bilinear forms on Z = H1(O):

‖u‖2H1
ε

= aε(u, u) + ‖u‖2g and aε(u, v) = (J∗∇yu, J∗∇yv)g,

for u, v ∈ Z. It is necessary to make clear the uniformness of the norm equiva-

lences in small ε, which slightly generalizes the results in [16], [17].

Lemma 2.5. There exist ε0 ∈ (0, 1) and η1, η2 > 0 such that, for all ε ∈ (0, ε0],

(2.9) η1‖u‖2H1 ≤ η1
(
‖u‖2H1 +

‖uyn+1
‖2

ε2

)
≤ ‖u‖2H1

ε
≤ η2

(
‖u‖2H1 +

‖uyn+1
‖2

ε2

)
.

Proof. Let

γ3 = max
y∈Q

n∑
i=1

g2yi(y) and ε0 =
1

1 +
√

2γ3
.

Then, for all ε ∈ (0, ε0],

‖u‖2H1
ε

= ‖u‖2g +

∫
O
g

( n∑
i=1

(
uyi −

yn+1

g
gyiuyn+1

)2

+
1

ε2g2
u2yn+1

)

≥ ‖u‖2g +
γ1
2

n∑
i=1

‖uyi‖2 +

∫
O

1

g
u2yn+1

(
1

ε2
−

n∑
i=1

g2yi

)

≥ ‖u‖2g +
γ1
2

n∑
i=1

‖uyi‖2 +

∫
O

1

2ε2g
u2yn+1

≥
(
γ1‖u‖2 +

γ1
2

n∑
i=1

‖uyi‖2 +
1

4γ2ε20
‖uyn+1

‖2
)

+
1

4γ2

‖uyn+1‖2

ε2
.

By taking η1 = min{γ1/2, 1/(4γ2)}, we obtain the second inequality in (2.9). It

is similar to prove the third inequality by taking η2 = max{2γ2, 2/γ1} with the

same ε0. The first inequality is obvious. �

Now, we define an unbounded operator on X by

Aεu = −1

g
divy(Υεu), and so (Aεu, v)g = aε(u, v), for u ∈ D(Aε), v ∈ Y.
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where D(Aε) = {u ∈ H2(O) : Υεu · ν = 0 on ∂O}. Therefore, equations (2.8)

can be rewritten as an abstract equation on X.

(2.10)


duε

dt
+Aεu

ε + λuε = Fε(t, y, u
ε) +Gε(t, y) + hε

dW

dt
,

uε(τ) = uετ , y ∈ O, t ≥ τ.

2.3. Well posedness of solutions. We use a transformation of variables:

vε(t, τ, ω, vτ ) = uε(t, τ, ω, uτ )− hεz(θtω), where

z(ω) = −λ
∫ 0

−∞
eλsω(s) ds, ω ∈ Ω.(2.11)

It is easy to see the mapping t → z(θtω) is continuous for each ω ∈ Ω. By

lim
t→±∞

ω(t)/t = 0 and (2.11), it follows from [2, Proposition 4.1.3] that there

exists another tempered random variable r(ω) such that

(2.12) ẑ(θtω) := |z(θtω)|+ |z(θtω)|2p ≤ eλ/2|t|r(ω), for all t ∈ R, ω ∈ Ω.

Then, the equation (2.10) can be translated into a random equation:

(2.13)


dvε

dt
+Aεv

ε + λvε = fε(t, y, v
ε + hεz(θtω)) +Gε(t, y)−Aεhεz(θtω),

vε(τ, τ, ω, vτ ) = vτ y ∈ O, t ≥ τ.

The following well-posedness of problem (2.13) can be found in [21].

Lemma 2.6. For any τ ∈ R, ω ∈ Ω, vτ ∈ X and ε ∈ (0, ε0), problem (2.13)

has a unique solution

vε( · , τ, ω, vτ ) ∈ C
(
[τ,∞), X

)
∩ Lp

(
(τ, τ + T ), Y

)
∩ L2

(
(τ, τ + T ), Z

)
(2.14)

for every T > 0. Moreover, this solution continuously depends on vτ and t.

3. Lusin continuity in samples and random cocycle

In this section, we prove F-measurability (actually Lusin continuity) of the

solution mapping from Ω to X. The following result generalizes the correspond-

ing result given in [11] from the Wiener process to a general process. Let

Ωi =
{
ω ∈ Ω : |ω(t)| ≤ ieλ|t|/2, for all t ∈ R

}
, for all i ∈ N.(3.1)

Lemma 3.1.

(a) Ω =
∞⋃
i=1

Ωi and {Ωi} is an increasing sequence of closed sets in (Ω, %).

(b) For each I ∈ N, the mapping ω 7→ z(θtω) is continuous on (ΩI , %),

uniformly in t on a compact intervals. More precisely, for any [a, b] ⊂ R,

(3.2) sup
t∈[a,b]

|z(θtωk)− z(θtω0)| → 0, as %(ωk, ω0)→ 0, ωk, ω0 ∈ ΩI .
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Proof. (a) Given any ω ∈ Ω, we know lim
t→±∞

ω(t)/t = 0, which implies

lim
t→±∞

ω(t)

eλ|t|/2
= lim
t→±∞

ω(t)

t
· t

eλ|t|/2
= 0.

Hence, by the continuity of t→ ω(t), there is i0 = i0(ω) ∈ N such that |ω(t)| ≤
i0e

λ|t|/2 for all t ∈ R, which means ω ∈ Ωi0 . Therefore, Ω =
∞⋃
i=1

Ωi. The other

assertions are obvious.

(b) Assume [a, b] ⊂ [−n0, n0] with n0 ∈ N. Let n1 > n0, since ωk, ω0 ∈ ΩI ,

it follows from (3.1), we can find

Mk : =

∣∣∣∣ ∫ −n0

−∞
eλs(ωk(s)− ω0(s)) ds

∣∣∣∣
≤
∫ −n1

−∞
eλs|ωk(s)− ω0(s)| ds+

∫ −n0

−n1

eλs|ωk(s)− ω0(s)| ds

≤
∫ −n1

−∞
eλs2Ie−λs/2 ds+ ρn1

(ωk, ω0)

∫ −n0

−n1

eλsq ds

≤ 4I

λ
e−λn1 +

1

λ
ρn1(ωk, ω0).

Let k, n1 → ∞, we have Mk → 0. Suppose t ∈ [a, b] ⊂ [−n0, n0], by (2.11), we

have

|z(θtωk)− z(θtω0)| = λ

∣∣∣∣ ∫ 0

−∞
eλs(ωk(s+ t)− ω0(s+ t)− ωk(t) + ω0(t)) ds

∣∣∣∣
≤ λ

∣∣∣∣ ∫ 0

−∞
eλs(ωk(s+ t)− ω0(s+ t)) ds

∣∣∣∣+ |ωk(t)− ω0(t)|

≤ λe−λt
∣∣∣∣ ∫ t

−∞
eλs(ωk(s)− ω0(s)) ds

∣∣∣∣+ ρn0
(ωk, ω0)

≤ λe−λt
(
Mk +

∫ t

−n0

eλs|ωk(s)− ω0(s)| ds
)

+ ρn0(ωk, ω0)

≤ λeλn0Mk +
(
e2λn0 + 1

)
ρn0

(ωk, ω0),

which converges to zero as k →∞ uniformly in t ∈ [a, b]. �

Lemma 3.2. For each I ∈ N, the mapping ω → vε(t, τ, ω, vτ ) is continuous

from (ΩI , %) to (X, ‖ · ‖g), where v is the solution of equation (2.13).

Proof. We omit the superscript ε when there is no ambiguity. Let ωk, ω0 ∈
ΩI such that ρ(ωk, ω0) → 0 as k → ∞. We denote by vk := v(t, τ, ωk, vτ ),

v0 := v(t, τ, ω0, vτ ) and Vk := vk−v0, where t ∈ [τ, τ +T ] with T > 0. By (2.13),

we have

(3.3)
dVk
dt

+ λVk +AεVk = Fε(t, y, vk + hεz(θtωk))

− Fε(t, y, v0 + hεz(θtω0))−Aεhε(z(θtωk)− z(θtω0))
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with the initial data Vk(τ) = vτ − vτ = 0. We multiply (3.3) with gVk and then

integrate over O to obtain

(3.4)
1

2

d

dt
‖Vk‖2g + λ‖Vk‖2g + aε(Vk, Vk) = J1 + J2.

By the mean valued theorem and the condition (2.3),

J1 : =
(
Fε(t, y, vk + hεz(θtωk))− Fε(t, y, v0 + hεz(θtω0)), Vk

)
g

=

∫
O
g
∂Fε
∂s

(Vk + hε(z(θtωk)− z(θtω0)))Vk dy

≤ β‖Vk‖2g + C|z(θtωk)− z(θtω0)|
∫
O
g
(
|ψ3|+ |vk|p−2 + |v0|p−2

)
|Vk| dy

≤ β‖Vk‖2g + CZ2
k‖ψ3(t)‖2∞ + CZk(1 + ‖v0‖pp + ‖vk‖pp),

where Zk = sup
t∈[τ,τ+T ]

|z(θtωk)−z(θtω0)|, and we have used the facts: hε ∈ L∞(O)

and sup
k

sup
t∈[τ,τ+T ]

|z(θtωk)| < +∞. While

J2 := − (Aεhε(z(θtωk)− z(θtω0)), Vk)g = −aε(hε(z(θtωk)− z(θtω0)), Vk)

≤ 1

2
aε(Vk, Vk) +

1

2
Z2
kaε(hε, hε) ≤

1

2
aε(Vk, Vk) +

1

2
Z2
kaε‖hε‖2H1

ε

≤ 1

2
aε(Vk, Vk) +

η2
2
Z2
k

(
‖hε‖2H1 +

1

ε2

∥∥∥∥ ∂

∂yn+1
h(y∗, εg(y∗)yn+1)

∥∥∥∥2)
≤ 1

2
aε(Vk, Vk) + CZ2

k .

The above estimates yield

(3.5)
d

dt
‖Vk‖2g ≤ C‖Vk‖2g + CZk

(
1 + ‖v0‖pp + ‖vk‖pp

)
+ CZ2

k

(
1 + ‖ψ3(t)‖2∞

)
.

By the Gronwall inequality over [τ, t] with t ∈ [τ, τ + T ], we find

‖Vk(t)‖2g ≤CeCT
(
Zk

∫ τ+T

τ

(1 + ‖v0(s)‖pp + ‖vk(s)‖pp) ds

+ Z2
k

∫ τ+T

τ

(
1 + ‖ψ3(s)‖2∞

)
ds

)
≤C

(
Zk + Z2

k + Zk

∫ τ+T

τ

‖vk(s)‖pp ds
)
,

where we have used the facts: ψ3 ∈ L2
loc

(
R, L∞

(
Õ
))

and v0 ∈ Lploc(R, Lp(O)).

By an energy inequality on vk (see [20, (47)]),

d

dt
‖vk‖2g + λ‖vk‖2g + c‖vk‖pp

≤ C(1 + |z(θtωk)|)p + c
(
‖G(t)‖2∞ + ‖ψ1(t)‖∞ + ‖ψ2(t)‖2∞

)
.
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The Gronwall inequality implies that

e−λT
∫ τ+T

τ

‖vk(s)‖pp ds‖vk‖pp

≤ C‖vτ‖2g + C

∫ τ+T

τ

(
1 + ‖G(s)‖2∞ + ‖ψ1(s)‖∞ + ‖ψ2(s)‖2∞

)
ds < +∞.

By Lemma 3.1 (b), we know Zk → 0, and thus ‖Vk(t)‖2g → 0 as k →∞, uniformly

in t ∈ [τ, τ + T ]. �

Corollary 3.3. ω→vε(t, τ, ω, vτ ) is (F ,B(X)) measurable, for X=L2(O).

Proof. By Lemma 3.1 (a) and the countable additivity of P , it is easy to

see lim
i→∞

P (Ωi) = P (Ω) = 1. Then Lemma 3.2 implies Lusin/basic continuity of

the mapping, which further implies the needed measurability. �

Next, we need to prove that the solution mapping is F-measurable in Y =

Lp(O). In this case, we recall the concept of a quasi-continuous mapping, which

is introduced by Li and Guo [25] and developed by Gess [15].

Let M be a Polish space and X a separable Banach space. A mapping

Φ: M 7→ X is said to be quasi-continuous if Φmi ⇀ Φm weakly in X , whenever

{Φmi}∞i=1 is bounded in X and mi → m in M . The following result can be found

in a recent article by Cui, Langa and Li [11].

Lemma 3.4.

(a) (Measurability) Φ is (B(M),B(X )) measurable if Φ: M 7→ X is quasi-

continuous.

(b) (Inheritability) Let Y ↪→ X and X ∗ ↪→ Y∗ densely. Then, Φ: M 7→ Y is

quasi-continuous if Φ: M 7→ X is quasi-continuous and Φ(M) ⊂ Y.

Lemma 3.5. For t > τ , the solution mapping ω → vε(t, τ, ω, vτ ) is (F ,B(Y ))

measurable, where Y = Lp(O).

Proof. By Lemma 3.2, the solution mapping is continuous from (ΩI , ρ)

to X for each I ∈ N, and so it is quasi-continuous from ΩI to X. By Lemma 2.6,

v(t, τ, ω, vτ ) ∈ Y for t > τ and vτ ∈ X. Since Y ↪→ X and X∗ ↪→ Y ∗ densely, it

follows from inheritability given in Lemma 3.4 (b) that the solution mapping is

quasi-continuous from ΩI to Y . Then, by the measurability of a quasi-continuous

mapping (see Lemma 3.4 (a)), the solution mapping is (B(ΩI),B(Y )) measur-

able for each I ∈ N. By Lemma 3.1, each ΩI is closed in Ω and
∞⋃
i=1

Ωi = Ω.

Therefore, it is easy to prove that the solution mapping is (F ,B(Y )) measur-

able. �

Now, we define a family of mappings φε : R+ × R× Ω×X → X by

φε(t, τ, ω, vτ ) = vε(t+ τ, τ, θ−τω, vτ ).
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Recall that the concept of random cocycle which is given by Wang [32].

Definition 3.6. A mapping φ : R+ × R × Ω × X 7→ X is called a random

cocycle on X if

(a) φ is (B(R+)×B(R)×F ×B(X),B(X)) measurable;

(b) it holds the cocycle property: for all t, s ∈ R+, τ ∈ R and ω ∈ Ω,

φ(t+ s, τ, ω) = φ(t, τ + s, θsω)φ(s, τ, ω), φ(0, τ, ω) = idX .

Applying Lemmas 2.6, 3.2, 3.5 and Corollary 3.3, we have proved the follow-

ing result.

Theorem 3.7. For each ε ∈ (0, ε0], φε is a continuous random cocycle on X.

Its restriction on Y is a quasi-continuous random cocycle on Y .

Finally, we take a universe D of all set-valued mappings D : R×Ω→ 2X \ ∅
such that, for any γ > 0,

lim
t→+∞

e−γt‖D(τ − t, θ−tω)‖2X = 0, τ ∈ R, ω ∈ Ω,

where ‖D‖ denote the supremum of norms for all elements, and X = L2(O).

It is similar to define the universe D0 on L2(Q).

4. Random attractors in p-times Lebesgue space

We need the following basic estimates for the solution vε(s, τ − t, θ−τω, v0)

in X (see [20]).

Lemma 4.1. [20]. Let ε0 be the positive number given in Lemma 2.5. Then,

for each D ∈ D, τ ∈ R and ω ∈ Ω, there exist T = T (D, τ, ω) ≥ 2 such that for

all t ≥ T , v0 ∈ D(τ − t, θ−tω) and ε ∈ (0, ε0),

‖vε(τ, τ − t, θ−τω, v0)‖2H1
ε

+

∫ τ

τ−t
eλs‖uε(s)‖pp ds ≤ c1ρ1(τ, ω)(4.1)

where ρ1 is tempered and given by

ρ1(τ, ω) = r(ω) +

∫ 0

−∞
eλs(1 + Ψ(s+ τ)) ds,

with Ψ(s) = ‖G(s)‖2∞ + ‖ψ1(s)‖∞ + ‖ψ2(s)‖2∞ + ‖ψ4(s)‖2∞ and r(ω) is given

in (2.12).

The following Gronwall-type lemma will be used frequently, which can be

founded in [26].

Lemma 4.2. Let z, z1 be nonnegative locally integrable such that ż+az ≤ z1.

Then, for any τ ∈ R and µ > 0,

z(τ) ≤ 1

µ

∫ τ

τ−µ
ea(r−τ)z(r) dr +

∫ τ

τ−µ
ea(r−τ)z1(r) dr.(4.2)
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Lemma 4.3. For any D ∈ D, τ ∈ R and ω ∈ Ω, there exist T ≥ 2 such that

sup
s∈[τ−1,τ ]

sup
t≥T

sup
ε∈(0,ε0)

‖vε(s, τ − t, θ−τω, v0)‖pp ≤ c2ρ2(τ, ω),(4.3)

whenever v0 ∈ D(τ − t, θ−tω), where ρ2 is a finite function given by

ρ2(τ, ω) =
(
1 + eλ(1−τ)

)
ρ1(τ, ω) +

∫ 0

−∞
eλs‖ψ1(s+ τ)‖2∞ ds.

Proof. We multiply (2.13) with g|v|p−2v and integrating over O to obtain

(4.4)
1

p

d

dt
‖v‖pp + λ‖v‖pp +

∫
O
gAεv · |v|p−2v dy

=
(
Fε(t, y, u), |v|p−2v

)
g

+
(
Gε(t, y), |v|p−2v

)
g
−
(
Aεhεz(θtω), |v|p−2v

)
g
.

The Laplace term is non-negative. Indeed,∫
O
gAεv · |v|p−2v dy

= −1

ε

∫
Oε

∆xṽ|ṽ|p−2ṽ dx =
1

ε

∫
Oε

∇xṽ · ∇x
(
|ṽ|p−2ṽ

)
dx

=
p− 2

ε

∫
Oε

∇xṽ · |ṽ|p−4|ṽ|2∇xṽ dx+
1

ε

∫
Oε

∇xṽ · |ṽ|p−2∇xṽ dx

=
p− 1

ε

∫
Oε

|ṽ|p−2|∇xṽ|2 dx ≥ 0.

In order to estimate the nonlinear term in (4.4), we use the conditions (2.1) and

(2.2) to obtain

Fε(t, y, u)v = F (t, y∗, εg(y∗)yn+1, u)u− F (t, y∗, εg(y∗)yn+1, u)hεz(θtω)

≤ −α1|u|p + ψ1(t) +
(
α2|u|p−1 + |ψ2(t)|

)
|hεz(θtω)|

≤ −α1

2p
|v|p + c|hεz(θtω)|p + |ψ1(t)|+

(
α2|u|p−1 + |ψ2(t)|

)
|hεz(θtω)|

≤ − α1

2p+1
|v|p + |ψ1(t)|+ |ψ2(t)hεz(θtω)|+ c|hεz(θtω)|p,

where ψ1(t) = ψ1(t, y∗, εg(y∗)yn+1), and it is similar for ψ2(t). Hence,∫
O
gFε(t, y, u)v|v|p−2 dy ≤ −α1γ1

2p+1

∫
O
|v|2p−2 dy

+ cγ2

∫
O

(|ψ1(t)|+ |ψ2(t)hεz(θtω)|+ |hεz(θtω)|p)|v|p−2 dy.

By the Young inequality abp−2 ≤ ηb2p−2 +C(η)aµ, where µ = 2− 2/p such that

1 ≤ µ < 2, we have

cγ2|ψ1(t)||v|p−2 ≤ α1γ1
2p+4

|v|2p−2 + c|ψ1(t)|µ

≤ α1γ1
2p+4

|v|2p−2 + c
(
|ψ1(t)|+ |ψ1(t)|2

)
.
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Similarly, by h ∈ C2(Q× [0, γ2]) and so h ∈ L∞
(
Õ
)
,

cγ2|hεz(θtω)|p|v|p−2 ≤ α1γ1
2p+4

|v|2p−2 + c
(
|z(θtω)|p + |z(θtω)|2p

)
≤ α1γ1

2p+4
|v|2p−2 + cẑ(θtω),

where ẑ(θtω) is given in (2.12). By the generalized Young inequality: abc ≤
ηa(2p−2)/(p−2) + C(η)b2 + C(η)c2p−2, we have

|v|p−2(cγ2|ψ2(t)|)|hεz(θtω)| ≤ α1γ1
2p+4

|v|2p−2 + c|ψ2(t)|2 + cẑ(θtω).

All above estimates imply that

(4.5)

∫
O
gFε(t, y, u)v|v|p−2 dy

≤ −α1γ1
2p+2

‖v‖2p−22p−2 + c
(
‖ψ1(t)‖∞ + ‖ψ1(t)‖2∞ + ‖ψ2(t)‖2∞

)
+ cẑ(θtω).

where ‖ · ‖∞ denotes the norm in L∞
(
Õ
)
. The second term on the right side

of (4.4) is controlled by∫
O
gGε(t, y)|v|p−2v dy ≤ α1γ1

2p+4

∫
O
|v|2p−2 dy + c

∫
O
G2
ε(t, y) dy(4.6)

≤ α1γ1
2p+4

‖v‖2p−22p−2 + c‖G(t)‖2∞.

The final term of (4.4) is bounded by

(4.7) − (Aεhεz(θtω), |v|p−2v)g =

∫
O
gz(θtω)Aεhε · |v|p−2v dy

≤ γ2
∫
O
gz(θtω)Aεhε · |v|p−2v dy ≤

α1γ1
2p+4

‖v‖2p−22p−2 + cẑ(θtω),

where, by h ∈ C2(Q× [0, γ2]), we have

‖Aεhε‖2g =

∫
O
g|Aεhε‖2 dy =

∫
Oε

g|∆xh(x)|2 dx

≤
∫
Q×[0,γ2]

g|∆xh(x)|2 dx < +∞.

By (4.4)–(4.7), there are constants c1, c2 > 0 such that

d

dt
‖v‖pp + λ‖v‖pp + c1‖v‖2p−22p−2 ≤ c2

(
Ψ̂(t) + ẑ(θtω)

)
.(4.8)

where Ψ̂(t) = ‖ψ1(t)‖∞+‖ψ1(t)‖2∞+‖ψ2(t)‖2∞+‖G(t)‖2∞. For each s ∈ [τ−1, τ ],

we apply the Gronwall-type inequality (4.2) with µ = s− (τ −2) ≥ 1 and replace
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ω by θ−τω in (4.8), the result is

‖v(s, τ − t, θ−τω, v0)‖pp

≤
∫ s

τ−2
eλ(σ−s)‖v(σ, τ − t, θ−τω, v0)‖pp dσ + c

∫ s

τ−2
eλ(σ−s)

(
ẑ(θσ−τω) + Ψ̂(σ)

)
dσ

≤ eλ(1−τ)
∫ τ

τ−t
eλσ‖v(σ, τ − t, θ−τω, v0)‖pp dσ + c

∫ τ

−∞
eλ(σ−s)

(
ẑ(θσ−τ )+Ψ̂(σ)

)
dσ.

for all t ≥ T ≥ 2 with the same entry time T as given in Lemma 4.1. Note that

Ψ̂(σ) ≤ Ψ(σ)+‖ψ1(σ)‖2∞. By (4.1) in Lemma 4.1, we obtain (4.3) as required.�

Lemma 4.4. Let T := T (D, τ, ω) ≥ 1 be the entry time, given in Lemmas 4.1

and 4.3, for any (D, τ, ω) ∈ D× R× Ω. Then

lim
K→∞

sup
ε∈(0,ε0]

sup
t≥T

∫
O(|vε|≥K)

|vε(τ, τ − t, θ−τω, v0)|p dy = 0,(4.9)

uniformly in v0 ∈ D(τ − t, θ−tω), where O(|vε| ≥ K) = OK ∪ O−K with

OK = OεK(s, τ − t) = {y ∈ O : vε(s, τ − t, θ−τω, v0)(y) ≥ K},

O−K = {y ∈ O : vε(s, τ − t, θ−τω, v0)(y) ≤ −K}.

Proof. We first show that

lim
K→∞

sup
s∈[τ−1,τ ]

sup
ε∈(0,ε0]

sup
t≥T

sup
v0∈D(τ−t,θ−tω)

|OεK(s, τ − t, v0)| = 0,(4.10)

where |OK | denotes the Lebesgue measure. For this end, by Lemma 4.3, we

know that

|OεK(s, τ − t)|Kp ≤
∫
OK

|vε(s, τ − t)|p dy ≤
∫
O
|vε(s, τ − t)|p dy ≤ C < +∞,

hereafter, we denote by C = C(τ, ω) and denote by c a constant. Letting K →
+∞ in the above inequality yields (4.10).

On the other hand, by the continuity of s→ z(θsω), we have

sup
s∈[−1,0]

|z(θsω)|‖h‖L∞(Q×[0,γ2]) = K1 < +∞.

By the condition (2.1), we can take K2 > 0 such that

(4.11) F (s, x, u) ≤ −α1u
p−1 + ψ1(s, x)u−1, if u > K2.

Now, let K be large enough such that K ≥ K1 + K2 + 1, and take the inner

product of (2.13) with g(v − K)p−1+ in L2(O), where w+ := max{w, 0}. The

result is

(4.12)
1

p

d

ds
‖(v −K)+‖pp + λ

(
v, (v −K)p−1+

)
g

+
(
Aεv, (v −K)p−1+

)
g

= (Fε(s, y, u), (v −K)p−1+ )g + (Gε(s, y), (v −K)p−1+ )g

−
(
Aεhεz(θs−τω), (v −K)p−1+

)
g
.
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for all s ∈ [τ − 1, τ ]. It is easy to see that

(4.13) (Aεv, (v −K)p−1+ )g ≥ 0, λ

∫
O
gv(v −K)p−1+ dy ≥ λ‖(v −K)+‖pp.

If v ≥ K, then

u = v + hε(y)z(θs−τω) ≥ v − |hε(y)z(θs−τω)| ≥ v −K1 ≥ K2.

By (4.11),

F (s, x, u) ≤ −α1u
p−1 + ψ1(s, x)u−1

≤ −α1

2p
vp−1 + |ψ1(s, x)|u−1 + c|hεz(θs−τω)|p−1.

Therefore, we obtain the following estimates of the nonlinearity,∫
Oε

K

gFε(s, y
∗, εg(y∗)yn+1, u)(v −K)p−1+ dy(4.14)

≤ − α1γ1
2p

∫
Oε

K

vp−1(v −K)p−1+ dy + γ2

∫
Oε

K

|ψ1(s)|(v −K)p−2+ dy

+ c

∫
Oε

K

|hεz(θs−τω)|p−1(v −K)p−1+ dy

≤ − α1γ1
2p+1

∫
Oε

K

vp−1(v −K)p−1+ dy

+ c

∫
Oε

K

|ψ1(s)|2−2/p dy + c

∫
Oε

K

|hεz(θs−τω)|2p−2 dy

≤ − α1γ1
2p+1

∫
Oε

K

vp−1(v −K)p−1+ dy

+ c(‖ψ1(s)‖∞ + ‖ψ1(s)‖2∞)|OεK |+ cẑ(θs−τω)|OεK |.

where ψ1(s) = ψ1(s, y∗, εg(y∗)yn+1) and ‖ · ‖∞ denotes the norm in L∞
(
Õ
)
.

Similarly, we have(
Gε(s, y), (v −K)p−1+

)
g
≤ α1γ1

2p+1

∫
Oε

K

vp−1(v −K)p−1+ dy + c‖G(s)‖2∞|OεK |.

By using Aεhε ∈ L2(Q), we have

(4.15) −
(
Aεhεz(θs−τω), (v −K)p−1+

)
g

=

∫
Oε

K

gAεhεz(θs−τω)(v −K)p−1+ dy

≤ α1γ1
2p+1

∫
Oε

K

vp−1(v −K)p−1+ dy + cẑ(θs−τω)|OεK |.

By (4.12)–(4.15), we can obtain that

(4.16)
d

ds
‖(v −K)+‖pp + C2

∫
Oε

K

vp−1(v −K)p−1+ dy

≤ C3(‖ψ1(s)‖∞ + ‖ψ1(s)‖2∞ + ‖G(s)‖2∞ + ẑ(θs−τω))|OεK |.



Strong Convergence of Bi-Spatial Random Attractors 673

where C2, C3 are positive and independent of K and ε. Note that∫
Oε

K

vp−1(v −K)p−1+ dy ≥
∫
Oε

K

vp−2(v −K)p+ dy ≥ Kp−2‖(v −K)+‖pp,

then, (4.16) can be rewritten as follows:

(4.17)
d

ds
‖(v −K)+‖pp + C2

∫
Oε

K

vp−1(v −K)p−1+ dy

≤ C3

(
‖ψ1(s)‖∞ + ‖ψ1(s)‖2∞ + ‖G(s)‖2∞ + ẑ(θs−τω)

)
|OεK |.

By the Gronwall-type inequality (4.2) in Lemma 4.2 with µ = 1, we have

‖(v(τ)−K)+‖pp ≤
∫ τ

τ−1
eC2K

p−2(s−τ)‖(v(s)−K)+‖pp ds

+ C3|OεK |
∫ τ

τ−1
(‖ψ1(s)‖∞ + ‖ψ1(s)‖2∞ + ‖G(s)‖2∞ + ẑ(θs−τω)) ds

≤
∫ τ

τ−1
eC2K

p−2(s−τ)‖(v(s)−K)+‖pp ds+ C4|OεK |,

in the last step, we have used ψ1, G ∈ L2
loc

(
R, L∞

(
Õ
))

and the continuity

of ẑ(θ ·ω). Since ‖(v −K)+‖pp ≤ ‖v‖pp, it follows from Lemma 4.3 that

sup
s∈[τ−1,τ ]

sup
t≥T

sup
ε∈(0,ε0]

‖(vε(s, τ − t, θ−τω)−K)+‖pp ≤ C5.

Therefore, by (4.10), as K →∞,

‖(vε(τ, τ − t, θ−τω, v0)−K)+‖pp ≤
C5

C2Kp−2 + C4|OεK | → 0,

uniformly in ε ∈ (0, ε0], t ≥ T and v0 ∈ D(τ − t, θ−tω). Note that v ≤ 2(v −K)

if v ≥ 2K. We have∫
Oε

2K

|(vε(τ, τ − t, θ−τω, v0)|pdy ≤ 2γ−11 ‖(v −K)+‖pp → 0,

as K → +∞, uniformly in ε ∈ (0, ε0], t ≥ T and v0 ∈ D(τ − t, θ−tω). Similarly,

the above uniform convergence holds true on O−2K . �

We give the following concept of a bi-spatial random attractor, which is

slightly different from the concept given in [24] because we require that the

F-measurability of the attractor holds true in both initial and terminate spaces.

Definition 4.5. A bi-parametric set A = {A(τ, ω)} is said to be a (X,Y )-

random attractor for a random cocycle φ if

(a) ω → A(τ, ω) is F-measurable in X and in Y respectively;

(b) A ∈ D, and A(τ, ω) is compact in X ∩ Y ;

(c) A is invariant, i.e. φ(s, τ, ω)A(τ, ω) = A(τ + s, θsω) for s ≥ 0;
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(d) A is pullback attracting in Y , i.e. for every D ∈ D,

lim
t→+∞

distY (φ(t, τ − t, θ−tω)D(τ − t, θ−tω),A(τ, ω)) = 0.

Theorem 4.6. For each ε ∈ (0, ε0], the cocycle φε, generated by the problem

(2.13), has a unique D-pullback (X,Y )-random attractor Aε = {Aε(τ, ω) : τ ∈ R,
ω ∈ Ω}, where X = L2(O) and Y = Lp(O).

Proof. By Lemma 4.1, a random absorbing set is given by

K(τ, ω) = {u ∈ L2(O) : ‖u‖2 ≤ c1ρ1(τ, ω)}, for all τ ∈ R, ω ∈ Ω.

It is obvious that K ∈ D, and the absorption is uniform in ε ∈ (0, ε0]. Next, we

need to show that φε is asymptotically compact in Y .

In fact, we prove the stronger eventual compactness in Y . Let (D, τ, ω) ∈
D× R× Ω and ε ∈ (0, ε0] be fixed, we define a decreasing family of sets by

Bε(T ) :=
⋃
t≥T

φε(t, τ − t, θ−tω)D(τ − t, θ−tω), for all T > 0.(4.18)

Let T0 = T0(D, τ, ω) be the entry time given in Lemmas 4.1 and 4.4. By

Lemma 4.4, for each η > 0, we can find a K = K(η) > 0 such that∫
O(|v|≥K)

|v(y)|p dy < ηp, for all v ∈ Bε(T0).(4.19)

On the other hand, by Lemmas 4.1, Bε(T0) is bounded in H1
ε (O) and so in

H1(O) (by Lemma 2.5), which implies that Bε(T0) is pre-compact in L2(O).

Hence, Bε(T0) has a finite net in L2(O) with the same radius (K(2−p)/2ηp/2 and

the finite centers vk ∈ Bε(T ), k = 1, . . . ,m. That is, for any v ∈ Bε(T0), we can

find a center vk such that

(4.20) ‖v − vk‖2 ≤ K2−pηp.

We will prove ‖v−vk‖p ≤ cη, by dividing the domain into four parts: O =
4⋃
j=1

Oj ,

where,

O1 = O(|v| ≥ K) ∩ O(|vk| ≤ K), O2 = O(|v| ≤ K) ∩ O(|vk| ≥ K),

O3 = O(|v| ≥ K) ∩ O(|vk| ≥ K), O4 = O(|v| ≤ K) ∩ O(|vk| ≤ K).

Note that |v| ≥ K ≥ |vk| on O1, and |v| ≤ K ≤ |vk| on O2. By (4.19), we have∫
O1

|v − vk|p dy ≤ 2p
∫
O1

(|v|p + |vk|p) dy ≤ 2p+1

∫
O(|v|≥K)

|v|p dy ≤ 2p+1ηp,∫
O2

|v − vk|p dy ≤ 2p+1

∫
O(|vk|≥K)

|vk|p dy ≤ 2p+1ηp.

By (4.19) again, we have∫
O3

|v − vi|p dy ≤ 2p
(∫
O(|v|≥K)

|v|p dy +

∫
O(|vk|≥K)

|vk|p dy
)
≤ 2p+1ηp.
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On the other hand, by (4.20), we have∫
O4

|v − vk|p dy ≤ (2K)p−2
∫
O4

|v − vk|2 dy ≤ (2K)p−2‖v − vk‖2 ≤ 2p−2ηp.

By the estimates mentioned above, ‖v − vk‖pp ≤ 2p+3ηp, which implies that

Bε(T0) has a finite 16η-net in Lp(O) with the same centers vk, k = 1, . . . ,m.

Therefore, Bε(T0) is pre-compact in Lp(O) and so φε is eventually compact in

Lp(O) as required.

By the abstract existence result of bi-spatial attractors given in [26] (see [24]

in the autonomous case), we know that φε has a (X,Y )-attractor Aε, except for

F-measurability in Y . By Lemma 3.5, the cocycle φε is F-measurable in Y . By

Lemma 4.3, φε has a D-pullback absorbing set Kp in Lp(O) given by

Kp(τ, ω) = {u ∈ Lp(O) : ‖u‖pp ≤ c2ρ2(τ, ω)}, for all τ ∈ R, ω ∈ Ω.

It is obvious that Kp is a random set in Lp(O) in view of the measurability of the

mapping ω → ρ2(τ, ω). Then, it follows from [11, Theorem 19] that the attractor

Aε is F-measurable in Lp(O). Therefore, Aε is indeed a (X,Y )-random attractor

in the sense of Definition 4.5. �

In order to consider the limiting equation (1.3) on Q, we define an opera-

tor A0 by

D(A0) =

{
u ∈ H2(Q) :

∂u

∂ν0
= 0 on ∂Q

}
,

and, for u ∈ D(A0),

A0u = −1

g

n∑
i=1

(guyi)yi , (A0u, v)g = a0(u, v) =

∫
Q

g∇u · ∇v dy∗.

Let u0 is a solution of problem (1.3). Then, v0(t, τ, ω, v0τ ) = u0(t, τ, ω, u0τ ) −
h0(y∗)z(θtω) satisfies the following equation:

(4.21)


dv0

dt
+A0v

0 + λv0 = f0(t, y∗, u0) +G0(t, y∗)−A0h0(y∗)z(θtω),

v0(τ) = v0τ , y∗ ∈ Q, t ≥ τ,

and the solution determines a continuous random cocycle φ0(t, τ, ω, u0τ ) on L2(Q).

Theorem 4.7. Under the Assumption 2.4, the cocycle φ0, generated by equa-

tion (4.21), has a unique D0-pullback (L2(Q), Lp(Q)) random attractor A0 ∈ D0.

5. Upper semicontinuity of bi-spatial random attractors

For a function defined on O, we consider its average function with respect to

the n+ 1-th variable, by using the average operator M : L2(O) 7→ L2(Q),

(Mu)(y∗) =

∫ 1

0

u(y∗, yn+1) dyn+1.
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Conversely, for a function u defined on Q, we regard that u is identical to the

function û(y∗, yn+1) = u(y∗), (y∗, yn+1) ∈ O = Q × (0, 1). The following result

can be found in [18]: If u ∈ H1(O), then Mu ∈ H1(Q) and

‖u−Mu‖L2(O) ≤ c ε‖u‖H1
ε (O).(5.1)

We need some convergence assumptions for both source and force.

Assumption 5.1. There exist two functions µ1( · ), µ2( · ) ∈ L2
loc(R) such that

‖fε(t, · , s)− f0(t, · , s)‖L2(O) ≤ µ1(t)ε, for all t, s ∈ R,

‖Gε(t, · )−G0(t, · )‖L2(O) ≤ µ2(t)ε, for all t ∈ R.

Since h ∈ C2(Q × [0, γ2], by the mean valued theorem, we have the same

convergence from hε to h0 as

sup
y∈O
|hε(y)− h0(y∗)| ≤ cε.

Then, under the Assumption 5.1, the following convergence of the cocycle φε can

be found in [20, Theorem 2.2]: Suppose ‖vε0‖H1
ε (O) is bounded with respect to

ε ∈ (0, ε0], then

lim
ε→0

∥∥φε(t, τ, ω)vε0 − φ0(t, τ, ω)Mvε0
∥∥
L2(O)

= 0,(5.2)

for each t ≥ 0, τ ∈ R and ω ∈ Ω.

By using the above convergence, [20, Theorem 2.3] further proved the fol-

lowing convergence of the random attractor in L2(O):

lim
ε→0

distL2(O)(Aε(τ, ω),A0(τ, ω)) = 0.(5.3)

Our main result in this section is to show that the convergence (5.3) holds

true in the stronger topology. This type of semi-continuity is different from the

semi-continuity come from the varying densities of noise (see [13], [37], [38]).

Theorem 5.2. The random attractor Aε is upper semi-continuous in Lp(O)

at ε = 0, that is

(5.4) lim
ε→0

distLp(O)(Aε(τ, ω),A0(τ, ω)) = 0, for all τ ∈ R, ω ∈ Ω.

Proof. We split the proof into three parts.

Part 1. We show that any sequence zk ∈ Aεk(τ, ω) is pre-compact in Lp(O),

where εk → 0. For this end, we assume without lose of generality that εk ∈ (0, ε0]

for all k ∈ N. By Lemma 4.1, each cocycle φεk has a collective absorbing set

K ∈ D defined by

(5.5) K(τ, ω) :=
{
u ∈ L2(O) : ‖u‖2 ≤ c1ρ1(τ, ω)

}
.
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Then, the invariance of Aεk and the absorption of K implies that⋃
k∈N
Aεk(s, ω̂) ⊂ K(s, ω̂), for all s ∈ R, ω̂ ∈ Ω.

Let T be the same entry time given in Lemmas 4.1 and 4.4 when K is absorbed

by itself. By the invariance of Aεk and the above inclusion, we know that

zk ∈ φεk(T, τ − T, θ−Tω)K(τ − T, θ−Tω), for all k ∈ N.

By Lemma 4.4, for each δ > 0 there is a R = R(δ) such that

sup
k∈N

∫
O(|zk|≥R)

|zk|p dy ≤ δp.(5.6)

By Lemma 4.1, we know

sup
k
‖φεk(T, τ − T, θ−Tω)K(τ − T, θ−Tω)‖2H1

εk
(O) ≤ c1ρ1(τ, ω),

which, together with the first inequality in Lemma 2.5, implies that

sup
k
‖zk‖2H1(O) ≤ sup

k

1

η1
‖zk‖2H1

εk
(O) ≤ cρ0(τ, ω).

Then, by the Sobolev compact embedding, the sequence {zk}∞k=1 has a conver-

gent subsequence (not relabeled) in L2(O). In particular, {zk}∞k=1 is a Cauchy

sequence in L2(O). Then, there is a k0 ∈ N such that

(5.7) ‖zk − zm‖2L2(O) ≤ R
2−pδp, for all k,m ≥ k0.

By the similar method as given in the proof of Theorem 4.6, we split the domain

O =
4⋃
j=1

Oj with

O1 = O(|zk| ≥ R) ∩ O(|zm| ≤ R), O2 = O(|zk| ≤ R) ∩ O(|zm| ≥ R),

O3 = O(|zk| ≥ R) ∩ O(|zm| ≥ R), O4 = O(|zk| ≤ R) ∩ O(|zm| ≤ R).

By (5.6), we can calculate as follows:∫
O1

|zk − zm|pdy ≤ 2p+1

∫
O(|zk|≥R)

|zk|p dy ≤ 2p+1δp,∫
O2

|zk − zm|p dy ≤ 2p+1

∫
O(|zm|≥R)

|zi|p dy ≤ 2p+1δp,∫
O3

|zk − zi|p dy ≤ 2p
(∫
O(|zk|≥R)

|zk|p dy +

∫
O(|zm|≥R)

|zi|p dy
)
≤ 2p+1δp.

By (5.7)∫
O4

|zk − zm|p dy ≤ (2R)p−2
∫
O
|zk − zm|2 dy ≤ (2R)p−2R2−pηp ≤ 2p+1δp.

Hence, ‖zk−zm‖pp ≤ 2p+3δp and so ‖zk−zm‖p ≤ 4δ. Therefore, the subsequence

{zk}∞k=1 is a Cauchy sequence and thus convergent in Lp(O) as required.
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Part 2. We construct an absorbing set B ⊂ H1(O) such that B0 =M(B) is

a closed tempered set in L2(Q) and so B0 ∈ D0 is attracted by the attractor A0

under the topology of Lp(Q). For this end, we define two bi-parametric sets in

H1(O) and in L2(Q) respectively.

B(τ, ω) =

{
u ∈ H1(O) : u ∈ K(τ, ω), ‖u‖2H1(O) ≤

c1
η1
ρ1(τ, ω)

}
,

B0(τ, ω) = {Mu : u ∈ B(τ, ω)},

where the over-line denotes the closure in L2(Q) and K is the absorbing set given

by (5.5). Since B(τ, ω) ⊂ K(τ, ω), we have B ∈ D. By Lemmas 2.5 and 4.1, for

any ε ∈ (0, ε0] and D ∈ D,

‖φε(t, τ − t, θ−tω)D(τ − t, θ−tω)‖2H1(O)

≤ η−11 ‖φε(t, τ − t, θ−tω)D(τ − t, θ−tω)‖2H1
ε (O) ≤ c1η

−1
1 ρ1(τ, ω),

provided t is large enough. Hence, B ∈ D is still a D-pullback absorbing set. On

the other hand, by (5.1) and by Lemma 2.5 again, we have, for all u ∈ B(τ, ω),

‖u−Mu‖2L2(O) ≤ cε
2‖u‖2H1

ε (O) ≤ c ε
2 η2
ε2
‖u‖2H1(O) ≤ c

η2
η1
ρ1(τ, ω),

Hence, for all u ∈ B(τ, ω),

‖Mu‖2L2(Q) ≤ 2
(
‖u‖2L2(O) + ‖u−Mu‖2L2(O)

)
≤ cρ1(τ, ω).

Since ρ1(τ, ω) is a tempered random variable, the above estimate yields B0 ∈ D0

(we can not prove K0 ∈ D0, where K0 =M(K) was used in [20], [21]).

Now, by Theorem 4.7, the bi-spatial attractor A0 attracts B0 ∈ D0 under

the topology of Lp(Q). More precisely, for each δ > 0, there is a T0 = T0(δ) > 0

such that for all t ≥ T0,

distLp(Q)(φ0(t, τ − t, θ−tω)B0(τ − t, θ−tω),A0(τ, ω)) < δ.(5.8)

Part 3. We argue the convergence of random attractors in Lp(O) by contra-

diction. Suppose (5.4) is not true, then, there exist δ > 0, τ ∈ R, ω ∈ Ω, εk → 0

and zk ∈ Aεk(τ, ω) such that

distLp(O)(zk,A0(τ, ω)) ≥ δ, for all k ∈ N.

By Part 1, there is a z ∈ Lp(O) such that, passing to a subsequence,

lim
k→∞

‖zk − z‖Lp(O) = 0 and distLp(O)(z,A0(τ, ω)) ≥ δ.(5.9)

By Part 2, B is an absorbing set, which, together with the invariance of Aεk ,

implies that

(5.10)
⋃
k

Aεk(s, ω̃) ⊂ B(s, ω̃), for all s ∈ R, for all ω̃ ∈ Ω.
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By Part 2 again, B ∈ D and so B can absorb itself. In this case, we let T =

T (B) > 0, independent of εk, be an entry time such that T ≥ T0, where T0 =

T0(δ) is the attraction time given in (5.8) when A0 attracts B0.

Now, for each k ∈ N, by the invariance of Aεk , there are ẑk ∈ Aεk(τ − T,
θ−Tω) such that

zk = φεk(T, τ − T, θ−Tω)ẑk.

By Lemma 4.1 and (5.10), there exists another entry time T̂ = T̂ (B, τ−T, θ−Tω)

such that, for all t ≥ T̂ and k ∈ N,

‖ẑk‖H1
εk
≤ ‖φεk(t, τ − T − t, θ−tθ−Tω)Aεk(τ − T − t, θ−tθ−Tω)‖H1

εk
(5.11)

≤ ‖φεk(t, τ − T − t, θ−tθ−Tω)B(τ − T − t, θ−tθ−Tω)‖H1
εk

≤ c1ρ1(τ − T, θ−Tω).

This means that ‖ẑk‖H1
εk

is bounded in k, which together with (5.2) give

‖φεk(T, τ − T, θ−Tω)ẑk − φ0(T, τ − T, θ−Tω)Mẑk‖L2(O) → 0, as k →∞.

that is

‖zk − φ0(T, τ − T, θ−Tω)Mẑk‖L2(O) → 0, as k →∞.

By (5.9) and by the Hölder inequality, we have

‖zk − z‖2L2(O) ≤ |O|‖zk − z‖
p
Lp(O) → 0, as k →∞.

Then, we have

(5.12) ‖z − φ0(T, τ − T, θ−Tω)Mẑk‖L2(O) → 0, as k →∞.

Once more, we consider the sequence ẑk ∈ Aεk(τ − T, θ−Tω). By (5.11),

‖ẑk‖H1
εk

(O) is bounded in k, which together with (5.1) imply that

‖ẑk −Mẑk‖L2(O) ≤ cεk‖ẑk‖H1
εk

(O) ≤ Cεk → 0.

By Part 1, {ẑk} has a convergent subsequence (denoted by itself) in Lp(O)

and thus in L2(O). Then, the above convergence shows that the corresponding

subsequence {Mẑk} is a Cauchy sequence in L2(O) and thus in L2(Q). So, there

is a ẑ0 ∈ L2(Q) such that

Mẑk → ẑ0 in L2(Q) as k →∞.

By the continuity of the operator φ0 : L2(Q) 7→ L2(Q), we have

φ0(T, τ − T, θ−Tω)Mẑk → φ0(T, τ − T, θ−Tω)ẑ0 in L2(Q),

and so in L2(O) by expending the domain. This together with (5.12) implies

that z = φ0(T, τ − T, θ−Tω)ẑ0 in L2(O). So, z = φ0(T, τ − T, θ−Tω)ẑ0 almost

everywhere on O, which implies

z = φ0(T, τ − T, θ−Tω)ẑ0 in Lp(O).
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By (5.10), we know ẑk ∈ Aεk(τ − T, θ−Tω) ⊂ B(τ − T, θ−Tω). Then, by the

construction in Part 2, it follows that Mẑk ∈ B0(τ − T, θ−Tω) for all k ∈ N.

Hence, the limit ẑ0 ∈ B0(τ − T, θ−Tω) in view of the closedness of B0. By (5.8)

in Part 2 and by T ≥ T0, we have

distLp(O)(z,A0(τ, ω)) = distLp(Q)

(
φ0(T, τ − T, θ−Tω)ẑ0,A0(τ, ω)

)
< δ.

This gives a contradiction with (5.9). �
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