STRONG CONVERGENCE OF BI-SPATIAL RANDOM ATTRACTORS FOR PARABOLIC EQUATIONS ON THIN DOMAINS WITH ROUGH NOISE

Fuzhi Li - Yangrong Li - Renhai Wang

Abstract

This article concerns bi-spatial random dynamics for the stochastic reaction-diffusion equation on a thin domain, where the noise is described by a general stochastic process instead of the usual Wiener process. A bi-spatial attractor is obtained when the non-initial state space is the p-times Lebesgue space, meanwhile, measurability of the attractor in the Banach space is proved by using measurability of both cocycle and absorbing set. Finally, the p-norm convergence of attractors is obtained when the thin domain collapses onto a lower dimensional domain. The method of symbolical truncation is applied to provide some uniformly asymptotic estimates.

1. Introduction

The subject of a thin domain problem is to consider both existence and convergence of an attractor when the equation is defined on a thin domain, which collapses onto a lower dimensional domain. Some pioneered works were given by Hale, Raugel and Sell (see [16], [31]), with notable developments for a large number of (deterministic) dissipative equations (see [1], [3], [4], [14], [19], [30], and the references therein).

[^0]Such a thin domain problem was generalized to the stochastic PDE (see [6], [9], [10]). In particular, D. Li et al. [20], [21] had investigated the following stochastic reaction-diffusion equation with Neumann boundary conditions

$$
\left\{\begin{array}{l}
d \widetilde{u}^{\varepsilon}-\Delta \widetilde{u}^{\varepsilon} d t+\lambda \widetilde{u}^{\varepsilon} d t=\left(F\left(t, x, \widetilde{u}^{\varepsilon}\right)+G(t, x)\right) d t+h(x) d W, \quad t \geq \tau, \tag{1.1}\\
\frac{\partial \widetilde{u}^{\varepsilon}}{\partial \nu_{\varepsilon}}=0, \quad \text { on } \partial \mathcal{O}_{\varepsilon}, \quad \widetilde{u}^{\varepsilon}(\tau, x)=\widetilde{u}_{\tau}^{\varepsilon}(x), \quad x \in \mathcal{O}_{\varepsilon}, \tau \in \mathbb{R},
\end{array}\right.
$$

where $\lambda>0, \nu_{\varepsilon}$ is the unit outward normal vector on $\partial \mathcal{O}_{\varepsilon}$ for $\varepsilon \in(0,1]$. The $n+1$-dimensional thin domain $\mathcal{O}_{\varepsilon}$ is given by

$$
\mathcal{O}_{\varepsilon}=\left\{x=\left(x^{*}, x_{n+1}\right): x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in Q, 0<x_{n+1}<\varepsilon g\left(x^{*}\right)\right\},
$$

where Q is a bounded smooth domain in \mathbb{R}^{n} and $g \in C^{2}(\bar{Q},(0,+\infty))$.
In this article, we use a general stochastic process W to replace the Wiener process used in [20], [21]. Let

$$
\Omega=\left\{\omega \in C(\mathbb{R}, \mathbb{R}): \omega(0)=0, \lim _{t \rightarrow \pm \infty} \frac{\omega(t)}{t}=0\right\}
$$

and take the Frechét metric

$$
\begin{equation*}
\varrho\left(\omega, \omega^{*}\right)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\rho_{k}\left(\omega, \omega^{*}\right)}{1+\rho_{k}\left(\omega, \omega^{*}\right)}, \tag{1.2}
\end{equation*}
$$

where ϱ_{k} is the metric in $C([-k, k], \mathbb{R})$. Then, (Ω, \mathcal{F}) is a measurable space, where $\mathcal{F}=\mathfrak{B}(\Omega)$ is the Borel algebra on (Ω, ϱ). We denote a group $\left\{\theta_{t}: t \in \mathbb{R}\right\}$ of self-mappings on Ω by $\theta_{t} \omega(\cdot)=\omega(t+\cdot)-\omega(t)$ for $(\omega, t) \in \Omega \times \mathbb{R}$.

Now, we take a general probability measure P on (Ω, \mathcal{F}) such that $W(t, \omega):=$ $\omega(t)(t \in \mathbb{R})$ is a stochastic process on the probability space (Ω, \mathcal{F}, P), meanwhile, it ensures that θ_{t} is measure preserving and ergodic with respect to P.

We remark here that one can obtain different stochastic processes from different probability measures. In particular, by [8], one can obtain the usual Wiener process by taking P a Wiener measure, which is widely used in the literature (see [5], [7], [12], [33] and the references therein). In fact, the above class of processes contains any continuous stochastic process with $\lim _{t \rightarrow \pm \infty} W(t) / t=0$, such as the Wong-Zakai-type noise used in the more recent paper [35].

The subject of this article is to consider strong attraction and strong convergence of the L^{2}-attractor. More precisely, we will prove the existence of a bi-spatial random attractor $\mathcal{A}_{\varepsilon}$ for equation (1.1) in $\left(L^{2}, L^{p}\right)$, where $p>2$. Also, we consider the p-norm convergence from $\mathcal{A}_{\varepsilon}$ to the attractor \mathcal{A}_{0} of the following limiting equation:

$$
\left\{\begin{array}{l}
d u^{0}-\frac{1}{g} \sum_{i=1}^{n}\left(g u_{y_{i}}^{0}\right)_{y_{i}} d t+\lambda u^{0} d t=\left(F_{0}\left(t, y^{*}, u^{0}\right)+G_{0}(t)\right) d t+h_{0} d W, \tag{1.3}\\
\frac{\partial u^{0}}{\partial \nu_{0}}=0 \quad \text { on } \partial Q, \quad u^{0}\left(\tau, y^{*}\right)=u_{\tau}^{0}\left(y^{*}\right), \quad y^{*} \in Q, t \geq \tau, \tau \in \mathbb{R},
\end{array}\right.
$$

where $F_{0}\left(t, y^{*}, u^{0}\right)=F\left(t,\left(y^{*}, 0\right), u^{0}\right), G_{0}\left(t, y^{*}\right)=G\left(t,\left(y^{*}, 0\right)\right), h_{0}\left(y^{*}\right)=h\left(y^{*}, 0\right)$ and ν_{0} is the unit outward normal vector on ∂Q.

In Section 2 some abstract existence results given in Li et al. [24] can be applied to the thin-domain problem if we make a transformation from the varying thin domain to a fixed domain. Under such a fixed domain, we can show that the random dynamical system has an $\left(L^{2}, L^{p}\right)$-attractor, see Theorem 4.6.

However, the abstract result on upper semi-continuity of the attractor cannot simply be applied to the thin domain problem. In fact, in Section 5, we consider the convergence from a $n+1$-dimensional function to the lower dimensional average function. This convergence together with some priori estimates in L^{p} can help us to prove directly the upper semi-continuity from $\mathcal{A}_{\varepsilon}$ to \mathcal{A}_{0} under the p-norm, see Theorem 5.2.

It is worth pointing out that random invariant manifolds and random attractors in such a Banach space had been considered by [23], [27], [28], [34], [39], [40], where the non-thin domain problem had been investigated.

Another issue is measurability of the pullback attractor in L^{p}, which is a main subject different from deterministic pullback attractors (see [22], [29], [36]). However, the random attractor is still the omega-limit set of the absorbing set under the solution operator (cocycle). So, in Section 3, we show that the solution operator is \mathcal{F}-measurable in both state spaces L^{2} and L^{p}, which leads to the measurability of the attractor.

2. Transformation of the thin domain and well-posedness

2.1. Assumptions. Let $\widetilde{\mathcal{O}}=Q \times\left(0, \gamma_{2}\right)$ and $\widehat{\mathcal{O}}=Q \times\left[0, \gamma_{2}\right)$, where $\gamma_{2} \geq$ $\gamma_{1}>0$ such that $\gamma_{1} \leq g\left(x^{*}\right) \leq \gamma_{2}$ for all $x^{*} \in \bar{Q}$. Note that $u \in L^{\infty}(\widehat{\mathcal{O}})$ if and only if $u \in L^{\infty}(\widetilde{\mathcal{O}})$ with the same norms.

AsSumption 2.1. The nonlinearity $f: \mathbb{R} \times \widehat{\mathcal{O}} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and satisfies the following conditions: for all $x \in \widehat{\mathcal{O}}$ and $t, s \in \mathbb{R}$,

$$
\begin{align*}
f(t, x, s) s & \leq-\alpha_{1}|s|^{p}+\psi_{1}(t, x) \tag{2.1}\\
|f(t, x, s)| & \leq \alpha_{2}|s|^{p-1}+\psi_{2}(t, x) \tag{2.2}\\
\frac{\partial f(t, x, s)}{\partial s} & \leq \beta, \quad\left|\frac{\partial f(t, x, s)}{\partial s}\right| \leq \alpha_{3}|s|^{p-2}+\psi_{3}(t, x) \tag{2.3}\\
\left|\frac{\partial f(t, x, s)}{\partial x}\right| & \leq \psi_{4}(t, x) \tag{2.4}
\end{align*}
$$

where $p>2, \alpha_{i}, \beta>0, \psi_{1} \in L_{\mathrm{loc}}^{1} \cap L_{\mathrm{loc}}^{2}\left(\mathbb{R}, L^{\infty}(\widetilde{\mathcal{O}})\right), \psi_{2}, \psi_{3}, \psi_{4} \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}, L^{\infty}(\widetilde{\mathcal{O}})\right)$.
AsSumption 2.2. $G \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}, L^{\infty}(\widetilde{\mathcal{O}})\right)$ and $h \in C^{2}\left(\bar{Q} \times\left[0, \gamma_{2}\right]\right)$.

Assumption 2.3. Tempered conditions: for any $\tau \in \mathbb{R}$ and $\sigma>0$,

$$
\begin{gather*}
\int_{-\infty}^{\tau} e^{1 / 4 \lambda s}\left(\|G(s)\|_{\infty}^{2}+\left\|\psi_{1}(s)\right\|_{\infty}+\left\|\psi_{2}(s)\right\|_{\infty}^{2}+\left\|\psi_{4}(s)\right\|_{\infty}^{2}\right) d s<\infty \tag{2.5}\\
e^{\sigma r} \int_{-\infty}^{0} e^{1 / 4 \lambda s}\left(\|G(s+r)\|_{\infty}^{2}+\left\|\psi_{1}(s+r)\right\|_{\infty}+\left\|\psi_{4}(s+r)\right\|_{\infty}^{2}\right) d s \rightarrow 0 \tag{2.6}
\end{gather*}
$$

as $r \rightarrow-\infty$, where we use $\|\cdot\|_{\infty}$ to denote the norm in $L^{\infty}(\widetilde{\mathcal{O}})$.
Assumption 2.4. By the same method as defining F_{0}, G_{0} and h_{0} in the limiting equation (1.3), we define the restrictions $\psi_{j, 0}(j=1, \ldots, 4)$. Then, we assume $\psi_{1,0} \in L_{\mathrm{loc}}^{1} \cap L_{\mathrm{loc}}^{2}\left(\mathbb{R}, L^{\infty}(Q)\right)$ and $\psi_{2,0}, \psi_{3,0}, \psi_{4,0} \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}, L^{\infty}(Q)\right)$.
2.2. Transformation of the thin domain. We consider a transformation T_{ε} from $\mathcal{O}_{\varepsilon}$ onto $\mathcal{O}=Q \times(0,1)$, defined by

$$
\left(y^{*}, y_{n+1}\right)=T_{\varepsilon}\left(x^{*}, x_{n+1}\right)=\left(x^{*}, \frac{x_{n+1}}{\varepsilon g\left(x^{*}\right)}\right) \quad \text { for all } x=\left(x^{*}, x_{n+1}\right) \in \mathcal{O}_{\varepsilon}
$$

Then, the bijective mapping T_{ε} has the Jacobian matrix:

$$
J=\frac{\partial\left(y_{1}, \ldots, y_{n+1}\right)}{\partial\left(x_{1}, \ldots, x_{n+1}\right)}=\left(\begin{array}{cc}
I & 0 \\
-\frac{y_{n+1}}{g}\left(g_{y_{1}}, \ldots, g_{y_{n}}\right) & \frac{1}{\varepsilon g\left(y^{*}\right)}
\end{array}\right)
$$

with the positive determinant $|J|=1 / \varepsilon g\left(y^{*}\right)$. By [17], [21], we have $\nabla_{x} \widetilde{u}(x)=$ $J^{*} \nabla_{y} u(y)$ and

$$
\Delta_{x} \widetilde{u}(x)=|J| \operatorname{div}_{y}\left(|J|^{-1} J J^{*} \nabla_{y} u(y)\right)=\frac{1}{g} \operatorname{div}_{y}\left(\Upsilon_{\varepsilon} u(y)\right)
$$

where $u(y)=\widetilde{u}(x)\left(y=T_{\varepsilon} x \in \mathcal{O}\right), J^{*}$ is the transport of J and Υ_{ε} is the operator given by

$$
\Upsilon_{\varepsilon} u(y)=\left(\begin{array}{c}
g u_{y_{1}}-g_{y_{1}} y_{n+1} u_{y_{n+1}} \tag{2.7}\\
\vdots \\
g u_{y_{n}}-g_{y_{n}} y_{n+1} u_{y_{n+1}} \\
-\sum_{i=1}^{n} y_{n+1} g_{y_{i}} u_{y_{i}}+\frac{1}{\varepsilon^{2} g}\left(1+\sum_{i=1}^{n}\left(\varepsilon y_{n+1} g_{y_{i}}\right)^{2}\right) u_{y_{n+1}}
\end{array}\right)
$$

We can rewrite the problem (1.1) as an equation defined on \mathcal{O} :

$$
\left\{\begin{array}{l}
d u^{\varepsilon}-\frac{1}{g} \operatorname{div}_{y}\left(\Upsilon_{\varepsilon} u^{\varepsilon}\right) d t+\lambda u^{\varepsilon} d t \tag{2.8}\\
\quad=\left(F_{\varepsilon}\left(t, y, u^{\varepsilon}\right)+G_{\varepsilon}(t, y)\right) d t+h_{\varepsilon}(y) d W \\
\Upsilon_{\varepsilon} u^{\varepsilon} \cdot \nu=0, \quad \text { on } \partial \mathcal{O}, \quad u^{\varepsilon}(\tau, y)=\widetilde{u}_{\tau}^{\varepsilon}\left(T_{\varepsilon}^{-1}(y)\right), \quad y \in \mathcal{O}, \tau \in \mathbb{R}
\end{array}\right.
$$

where ν is the unit outward normal vector on $\partial \mathcal{O}$, and

$$
\begin{aligned}
F_{\varepsilon}\left(t, y^{*}, y_{n+1}, u\right) & =F\left(t, y^{*}, \varepsilon g\left(y^{*}\right) y_{n+1}, u\right) \\
G_{\varepsilon}\left(t, y^{*}, y_{n+1}\right) & =G\left(t, y^{*}, \varepsilon g\left(y^{*}\right) y_{n+1}\right) \\
h_{\varepsilon}\left(y^{*}, y_{n+1}\right) & =h\left(y^{*}, \varepsilon g\left(y^{*}\right) y_{n+1}\right) .
\end{aligned}
$$

We take the equivalent norms on $X=L^{2}(\mathcal{O})$ and $Y=L^{p}(\mathcal{O})$ by

$$
\|u\|_{g}^{2}=\int_{\mathcal{O}} g u^{2} d y, \quad u \in X \quad \text { and } \quad\|v\|_{p}^{p}=\int_{\mathcal{O}} g|v|^{p} d y, \quad v \in Y
$$

Also, we consider a family of new norms and bilinear forms on $Z=H^{1}(\mathcal{O})$:

$$
\|u\|_{H_{\varepsilon}^{1}}^{2}=a_{\varepsilon}(u, u)+\|u\|_{g}^{2} \quad \text { and } \quad a_{\varepsilon}(u, v)=\left(J^{*} \nabla_{y} u, J^{*} \nabla_{y} v\right)_{g}
$$

for $u, v \in Z$. It is necessary to make clear the uniformness of the norm equivalences in small ε, which slightly generalizes the results in [16], [17].

Lemma 2.5. There exist $\varepsilon_{0} \in(0,1)$ and $\eta_{1}, \eta_{2}>0$ such that, for all $\varepsilon \in\left(0, \varepsilon_{0}\right]$,

$$
\begin{equation*}
\eta_{1}\|u\|_{H^{1}}^{2} \leq \eta_{1}\left(\|u\|_{H^{1}}^{2}+\frac{\left\|u_{y_{n+1}}\right\|^{2}}{\varepsilon^{2}}\right) \leq\|u\|_{H_{\varepsilon}^{1}}^{2} \leq \eta_{2}\left(\|u\|_{H^{1}}^{2}+\frac{\left\|u_{y_{n+1}}\right\|^{2}}{\varepsilon^{2}}\right) \tag{2.9}
\end{equation*}
$$

Proof. Let

$$
\gamma_{3}=\max _{y \in \bar{Q}} \sum_{i=1}^{n} g_{y_{i}}^{2}(y) \quad \text { and } \quad \varepsilon_{0}=\frac{1}{1+\sqrt{2 \gamma_{3}}}
$$

Then, for all $\varepsilon \in\left(0, \varepsilon_{0}\right]$,

$$
\begin{aligned}
\|u\|_{H_{\varepsilon}^{1}}^{2} & =\|u\|_{g}^{2}+\int_{\mathcal{O}} g\left(\sum_{i=1}^{n}\left(u_{y_{i}}-\frac{y_{n+1}}{g} g_{y_{i}} u_{y_{n+1}}\right)^{2}+\frac{1}{\varepsilon^{2} g^{2}} u_{y_{n+1}}^{2}\right) \\
& \geq\|u\|_{g}^{2}+\frac{\gamma_{1}}{2} \sum_{i=1}^{n}\left\|u_{y_{i}}\right\|^{2}+\int_{\mathcal{O}} \frac{1}{g} u_{y_{n+1}}^{2}\left(\frac{1}{\varepsilon^{2}}-\sum_{i=1}^{n} g_{y_{i}}^{2}\right) \\
& \geq\|u\|_{g}^{2}+\frac{\gamma_{1}}{2} \sum_{i=1}^{n}\left\|u_{y_{i}}\right\|^{2}+\int_{\mathcal{O}} \frac{1}{2 \varepsilon^{2} g} u_{y_{n+1}}^{2} \\
& \geq\left(\gamma_{1}\|u\|^{2}+\frac{\gamma_{1}}{2} \sum_{i=1}^{n}\left\|u_{y_{i}}\right\|^{2}+\frac{1}{4 \gamma_{2} \varepsilon_{0}^{2}}\left\|u_{y_{n+1}}\right\|^{2}\right)+\frac{1}{4 \gamma_{2}} \frac{\left\|u_{y_{n+1}}\right\|^{2}}{\varepsilon^{2}} .
\end{aligned}
$$

By taking $\eta_{1}=\min \left\{\gamma_{1} / 2,1 /\left(4 \gamma_{2}\right)\right\}$, we obtain the second inequality in (2.9). It is similar to prove the third inequality by taking $\eta_{2}=\max \left\{2 \gamma_{2}, 2 / \gamma_{1}\right\}$ with the same ε_{0}. The first inequality is obvious.

Now, we define an unbounded operator on X by
$A_{\varepsilon} u=-\frac{1}{g} \operatorname{div}_{y}\left(\Upsilon_{\varepsilon} u\right), \quad$ and so $\quad\left(A_{\varepsilon} u, v\right)_{g}=a_{\varepsilon}(u, v), \quad$ for $u \in D\left(A_{\varepsilon}\right), v \in Y$.
where $D\left(A_{\varepsilon}\right)=\left\{u \in H^{2}(\mathcal{O}): \Upsilon_{\varepsilon} u \cdot \nu=0\right.$ on $\left.\partial \mathcal{O}\right\}$. Therefore, equations (2.8) can be rewritten as an abstract equation on X.

$$
\left\{\begin{array}{l}
\frac{d u^{\varepsilon}}{d t}+A_{\varepsilon} u^{\varepsilon}+\lambda u^{\varepsilon}=F_{\varepsilon}\left(t, y, u^{\varepsilon}\right)+G_{\varepsilon}(t, y)+h_{\varepsilon} \frac{d W}{d t} \tag{2.10}\\
u^{\varepsilon}(\tau)=u_{\tau}^{\varepsilon}, \quad y \in \mathcal{O}, t \geq \tau
\end{array}\right.
$$

2.3. Well posedness of solutions. We use a transformation of variables: $v^{\varepsilon}\left(t, \tau, \omega, v_{\tau}\right)=u^{\varepsilon}\left(t, \tau, \omega, u_{\tau}\right)-h_{\varepsilon} z\left(\theta_{t} \omega\right)$, where

$$
\begin{equation*}
z(\omega)=-\lambda \int_{-\infty}^{0} e^{\lambda s} \omega(s) d s, \quad \omega \in \Omega \tag{2.11}
\end{equation*}
$$

It is easy to see the mapping $t \rightarrow z\left(\theta_{t} \omega\right)$ is continuous for each $\omega \in \Omega$. By $\lim _{t \rightarrow \pm \infty} \omega(t) / t=0$ and (2.11), it follows from [2, Proposition 4.1.3] that there exists another tempered random variable $r(\omega)$ such that

$$
\begin{equation*}
\widehat{z}\left(\theta_{t} \omega\right):=\left|z\left(\theta_{t} \omega\right)\right|+\left|z\left(\theta_{t} \omega\right)\right|^{2 p} \leq e^{\lambda / 2|t|} r(\omega), \quad \text { for all } t \in \mathbb{R}, \omega \in \Omega \tag{2.12}
\end{equation*}
$$

Then, the equation (2.10) can be translated into a random equation:

$$
\left\{\begin{array}{l}
\frac{d v^{\varepsilon}}{d t}+A_{\varepsilon} v^{\varepsilon}+\lambda v^{\varepsilon}=f_{\varepsilon}\left(t, y, v^{\varepsilon}+h_{\varepsilon} z\left(\theta_{t} \omega\right)\right)+G_{\varepsilon}(t, y)-A_{\varepsilon} h_{\varepsilon} z\left(\theta_{t} \omega\right), \tag{2.13}\\
v^{\varepsilon}\left(\tau, \tau, \omega, v_{\tau}\right)=v_{\tau} \quad y \in \mathcal{O}, t \geq \tau
\end{array}\right.
$$

The following well-posedness of problem (2.13) can be found in [21].
Lemma 2.6. For any $\tau \in \mathbb{R}, \omega \in \Omega, v_{\tau} \in X$ and $\varepsilon \in\left(0, \varepsilon_{0}\right)$, problem (2.13) has a unique solution

$$
\begin{equation*}
v^{\varepsilon}\left(\cdot, \tau, \omega, v_{\tau}\right) \in C([\tau, \infty), X) \cap L^{p}((\tau, \tau+T), Y) \cap L^{2}((\tau, \tau+T), Z) \tag{2.14}
\end{equation*}
$$

for every $T>0$. Moreover, this solution continuously depends on v_{τ} and t.

3. Lusin continuity in samples and random cocycle

In this section, we prove \mathcal{F}-measurability (actually Lusin continuity) of the solution mapping from Ω to X. The following result generalizes the corresponding result given in [11] from the Wiener process to a general process. Let

$$
\begin{equation*}
\Omega_{i}=\left\{\omega \in \Omega:|\omega(t)| \leq i e^{\lambda|t| / 2}, \text { for all } t \in \mathbb{R}\right\}, \quad \text { for all } i \in \mathbb{N} \text {. } \tag{3.1}
\end{equation*}
$$

Lemma 3.1.
(a) $\Omega=\bigcup_{i=1}^{\infty} \Omega_{i}$ and $\left\{\Omega_{i}\right\}$ is an increasing sequence of closed sets in (Ω, ϱ).
(b) For each $I \in \mathbb{N}$, the mapping $\omega \mapsto z\left(\theta_{t} \omega\right)$ is continuous on $\left(\Omega_{I}, \varrho\right)$, uniformly in t on a compact intervals. More precisely, for any $[a, b] \subset \mathbb{R}$,

$$
\begin{equation*}
\sup _{t \in[a, b]}\left|z\left(\theta_{t} \omega_{k}\right)-z\left(\theta_{t} \omega_{0}\right)\right| \rightarrow 0, \quad \text { as } \varrho\left(\omega_{k}, \omega_{0}\right) \rightarrow 0, \omega_{k}, \omega_{0} \in \Omega_{I} . \tag{3.2}
\end{equation*}
$$

Proof. (a) Given any $\omega \in \Omega$, we know $\lim _{t \rightarrow \pm \infty} \omega(t) / t=0$, which implies

$$
\lim _{t \rightarrow \pm \infty} \frac{\omega(t)}{e^{\lambda|t| / 2}}=\lim _{t \rightarrow \pm \infty} \frac{\omega(t)}{t} \cdot \frac{t}{e^{\lambda|t| / 2}}=0
$$

Hence, by the continuity of $t \rightarrow \omega(t)$, there is $i_{0}=i_{0}(\omega) \in \mathbb{N}$ such that $|\omega(t)| \leq$ $i_{0} e^{\lambda|t| / 2}$ for all $t \in \mathbb{R}$, which means $\omega \in \Omega_{i_{0}}$. Therefore, $\Omega=\bigcup_{i=1}^{\infty} \Omega_{i}$. The other assertions are obvious.
(b) Assume $[a, b] \subset\left[-n_{0}, n_{0}\right]$ with $n_{0} \in \mathbb{N}$. Let $n_{1}>n_{0}$, since $\omega_{k}, \omega_{0} \in \Omega_{I}$, it follows from (3.1), we can find

$$
\begin{aligned}
M_{k}: & =\left|\int_{-\infty}^{-n_{0}} e^{\lambda s}\left(\omega_{k}(s)-\omega_{0}(s)\right) d s\right| \\
& \leq \int_{-\infty}^{-n_{1}} e^{\lambda s}\left|\omega_{k}(s)-\omega_{0}(s)\right| d s+\int_{-n_{1}}^{-n_{0}} e^{\lambda s}\left|\omega_{k}(s)-\omega_{0}(s)\right| d s \\
& \leq \int_{-\infty}^{-n_{1}} e^{\lambda s} 2 I e^{-\lambda s / 2} d s+\rho_{n_{1}}\left(\omega_{k}, \omega_{0}\right) \int_{-n_{1}}^{-n_{0}} e^{\lambda s} q d s \\
& \leq \frac{4 I}{\lambda} e^{-\lambda n_{1}}+\frac{1}{\lambda} \rho_{n_{1}}\left(\omega_{k}, \omega_{0}\right) .
\end{aligned}
$$

Let $k, n_{1} \rightarrow \infty$, we have $M_{k} \rightarrow 0$. Suppose $t \in[a, b] \subset\left[-n_{0}, n_{0}\right]$, by (2.11), we have

$$
\begin{aligned}
\left|z\left(\theta_{t} \omega_{k}\right)-z\left(\theta_{t} \omega_{0}\right)\right| & =\lambda\left|\int_{-\infty}^{0} e^{\lambda s}\left(\omega_{k}(s+t)-\omega_{0}(s+t)-\omega_{k}(t)+\omega_{0}(t)\right) d s\right| \\
& \leq \lambda\left|\int_{-\infty}^{0} e^{\lambda s}\left(\omega_{k}(s+t)-\omega_{0}(s+t)\right) d s\right|+\left|\omega_{k}(t)-\omega_{0}(t)\right| \\
& \leq \lambda e^{-\lambda t}\left|\int_{-\infty}^{t} e^{\lambda s}\left(\omega_{k}(s)-\omega_{0}(s)\right) d s\right|+\rho_{n_{0}}\left(\omega_{k}, \omega_{0}\right) \\
& \leq \lambda e^{-\lambda t}\left(M_{k}+\int_{-n_{0}}^{t} e^{\lambda s}\left|\omega_{k}(s)-\omega_{0}(s)\right| d s\right)+\rho_{n_{0}}\left(\omega_{k}, \omega_{0}\right) \\
& \leq \lambda e^{\lambda n_{0}} M_{k}+\left(e^{2 \lambda n_{0}}+1\right) \rho_{n_{0}}\left(\omega_{k}, \omega_{0}\right)
\end{aligned}
$$

which converges to zero as $k \rightarrow \infty$ uniformly in $t \in[a, b]$.
Lemma 3.2. For each $I \in \mathbb{N}$, the mapping $\omega \rightarrow v^{\varepsilon}\left(t, \tau, \omega, v_{\tau}\right)$ is continuous from $\left(\Omega_{I}, \varrho\right)$ to $\left(X,\|\cdot\|_{g}\right)$, where v is the solution of equation (2.13).

Proof. We omit the superscript ${ }^{\varepsilon}$ when there is no ambiguity. Let $\omega_{k}, \omega_{0} \in$ Ω_{I} such that $\rho\left(\omega_{k}, \omega_{0}\right) \rightarrow 0$ as $k \rightarrow \infty$. We denote by $v_{k}:=v\left(t, \tau, \omega_{k}, v_{\tau}\right)$, $v_{0}:=v\left(t, \tau, \omega_{0}, v_{\tau}\right)$ and $V_{k}:=v_{k}-v_{0}$, where $t \in[\tau, \tau+T]$ with $T>0$. By (2.13), we have

$$
\begin{align*}
\frac{d V_{k}}{d t}+\lambda V_{k}+A_{\varepsilon} V_{k} & =F_{\varepsilon}\left(t, y, v_{k}+h_{\varepsilon} z\left(\theta_{t} \omega_{k}\right)\right) \tag{3.3}\\
& -F_{\varepsilon}\left(t, y, v_{0}+h_{\varepsilon} z\left(\theta_{t} \omega_{0}\right)\right)-A_{\varepsilon} h_{\varepsilon}\left(z\left(\theta_{t} \omega_{k}\right)-z\left(\theta_{t} \omega_{0}\right)\right)
\end{align*}
$$

with the initial data $V_{k}(\tau)=v_{\tau}-v_{\tau}=0$. We multiply (3.3) with $g V_{k}$ and then integrate over \mathcal{O} to obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\|V_{k}\right\|_{g}^{2}+\lambda\left\|V_{k}\right\|_{g}^{2}+a_{\varepsilon}\left(V_{k}, V_{k}\right)=J_{1}+J_{2} . \tag{3.4}
\end{equation*}
$$

By the mean valued theorem and the condition (2.3),

$$
\begin{aligned}
J_{1}: & =\left(F_{\varepsilon}\left(t, y, v_{k}+h_{\varepsilon} z\left(\theta_{t} \omega_{k}\right)\right)-F_{\varepsilon}\left(t, y, v_{0}+h_{\varepsilon} z\left(\theta_{t} \omega_{0}\right)\right), V_{k}\right)_{g} \\
& =\int_{\mathcal{O}} g \frac{\partial F_{\varepsilon}}{\partial s}\left(V_{k}+h_{\varepsilon}\left(z\left(\theta_{t} \omega_{k}\right)-z\left(\theta_{t} \omega_{0}\right)\right)\right) V_{k} d y \\
& \leq \beta\left\|V_{k}\right\|_{g}^{2}+C\left|z\left(\theta_{t} \omega_{k}\right)-z\left(\theta_{t} \omega_{0}\right)\right| \int_{\mathcal{O}} g\left(\left|\psi_{3}\right|+\left|v_{k}\right|^{p-2}+\left|v_{0}\right|^{p-2}\right)\left|V_{k}\right| d y \\
& \leq \beta\left\|V_{k}\right\|_{g}^{2}+C Z_{k}^{2}\left\|\psi_{3}(t)\right\|_{\infty}^{2}+C Z_{k}\left(1+\left\|v_{0}\right\|_{p}^{p}+\left\|v_{k}\right\|_{p}^{p}\right),
\end{aligned}
$$

where $Z_{k}=\sup _{t \in[\tau, \tau+T]}\left|z\left(\theta_{t} \omega_{k}\right)-z\left(\theta_{t} \omega_{0}\right)\right|$, and we have used the facts: $h_{\varepsilon} \in L^{\infty}(\mathcal{O})$ and $\sup _{k} \sup _{t \in[\tau, \tau+T]}\left|z\left(\theta_{t} \omega_{k}\right)\right|<+\infty$. While

$$
\begin{aligned}
J_{2} & :=-\left(A_{\varepsilon} h_{\varepsilon}\left(z\left(\theta_{t} \omega_{k}\right)-z\left(\theta_{t} \omega_{0}\right)\right), V_{k}\right)_{g}=-a_{\varepsilon}\left(h_{\varepsilon}\left(z\left(\theta_{t} \omega_{k}\right)-z\left(\theta_{t} \omega_{0}\right)\right), V_{k}\right) \\
& \leq \frac{1}{2} a_{\varepsilon}\left(V_{k}, V_{k}\right)+\frac{1}{2} Z_{k}^{2} a_{\varepsilon}\left(h_{\varepsilon}, h_{\varepsilon}\right) \leq \frac{1}{2} a_{\varepsilon}\left(V_{k}, V_{k}\right)+\frac{1}{2} Z_{k}^{2} a_{\varepsilon}\left\|h_{\varepsilon}\right\|_{H_{\varepsilon}^{1}}^{2} \\
& \leq \frac{1}{2} a_{\varepsilon}\left(V_{k}, V_{k}\right)+\frac{\eta_{2}}{2} Z_{k}^{2}\left(\left\|h_{\varepsilon}\right\|_{H^{1}}^{2}+\frac{1}{\varepsilon^{2}}\left\|\frac{\partial}{\partial y_{n+1}} h\left(y^{*}, \varepsilon g\left(y^{*}\right) y_{n+1}\right)\right\|^{2}\right) \\
& \leq \frac{1}{2} a_{\varepsilon}\left(V_{k}, V_{k}\right)+C Z_{k}^{2} .
\end{aligned}
$$

The above estimates yield
(3.5) $\frac{d}{d t}\left\|V_{k}\right\|_{g}^{2} \leq C\left\|V_{k}\right\|_{g}^{2}+C Z_{k}\left(1+\left\|v_{0}\right\|_{p}^{p}+\left\|v_{k}\right\|_{p}^{p}\right)+C Z_{k}^{2}\left(1+\left\|\psi_{3}(t)\right\|_{\infty}^{2}\right)$.

By the Gronwall inequality over $[\tau, t]$ with $t \in[\tau, \tau+T]$, we find

$$
\begin{aligned}
\left\|V_{k}(t)\right\|_{g}^{2} \leq & C e^{C T}\left(Z_{k} \int_{\tau}^{\tau+T}\left(1+\left\|v_{0}(s)\right\|_{p}^{p}+\left\|v_{k}(s)\right\|_{p}^{p}\right) d s\right. \\
& \left.+Z_{k}^{2} \int_{\tau}^{\tau+T}\left(1+\left\|\psi_{3}(s)\right\|_{\infty}^{2}\right) d s\right) \\
\leq & C\left(Z_{k}+Z_{k}^{2}+Z_{k} \int_{\tau}^{\tau+T}\left\|v_{k}(s)\right\|_{p}^{p} d s\right)
\end{aligned}
$$

where we have used the facts: $\psi_{3} \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}, L^{\infty}(\widetilde{\mathcal{O}})\right)$ and $v_{0} \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}, L^{p}(\mathcal{O})\right)$.
By an energy inequality on v_{k} (see $[20,(47)]$),

$$
\begin{aligned}
& \frac{d}{d t}\left\|v_{k}\right\|_{g}^{2}+\lambda\left\|v_{k}\right\|_{g}^{2}+c\left\|v_{k}\right\|_{p}^{p} \\
& \leq C\left(1+\left|z\left(\theta_{t} \omega_{k}\right)\right|\right)^{p}+c\left(\|G(t)\|_{\infty}^{2}+\left\|\psi_{1}(t)\right\|_{\infty}+\left\|\psi_{2}(t)\right\|_{\infty}^{2}\right)
\end{aligned}
$$

The Gronwall inequality implies that

$$
\begin{aligned}
& e^{-\lambda T} \int_{\tau}^{\tau+T}\left\|v_{k}(s)\right\|_{p}^{p} d s\left\|v_{k}\right\|_{p}^{p} \\
& \quad \leq C\left\|v_{\tau}\right\|_{g}^{2}+C \int_{\tau}^{\tau+T}\left(1+\|G(s)\|_{\infty}^{2}+\left\|\psi_{1}(s)\right\|_{\infty}+\left\|\psi_{2}(s)\right\|_{\infty}^{2}\right) d s<+\infty
\end{aligned}
$$

By Lemma 3.1 (b), we know $Z_{k} \rightarrow 0$, and thus $\left\|V_{k}(t)\right\|_{g}^{2} \rightarrow 0$ as $k \rightarrow \infty$, uniformly in $t \in[\tau, \tau+T]$.

Corollary 3.3. $\omega \rightarrow v^{\varepsilon}\left(t, \tau, \omega, v_{\tau}\right)$ is $(\mathcal{F}, \mathfrak{B}(X))$ measurable, for $X=L^{2}(\mathcal{O})$.
Proof. By Lemma 3.1 (a) and the countable additivity of P, it is easy to see $\lim _{i \rightarrow \infty} P\left(\Omega_{i}\right)=P(\Omega)=1$. Then Lemma 3.2 implies Lusin/basic continuity of the mapping, which further implies the needed measurability.

Next, we need to prove that the solution mapping is \mathcal{F}-measurable in $Y=$ $L^{p}(\mathcal{O})$. In this case, we recall the concept of a quasi-continuous mapping, which is introduced by Li and Guo [25] and developed by Gess [15].

Let M be a Polish space and \mathcal{X} a separable Banach space. A mapping $\Phi: M \mapsto \mathcal{X}$ is said to be quasi-continuous if $\Phi m_{i} \rightharpoonup \Phi m$ weakly in \mathcal{X}, whenever $\left\{\Phi m_{i}\right\}_{i=1}^{\infty}$ is bounded in \mathcal{X} and $m_{i} \rightarrow m$ in M. The following result can be found in a recent article by Cui, Langa and Li [11].

Lemma 3.4.
(a) (Measurability) Φ is $(\mathfrak{B}(M), \mathfrak{B}(\mathcal{X}))$ measurable if $\Phi: M \mapsto \mathcal{X}$ is quasicontinuous.
(b) (Inheritability) Let $\mathcal{Y} \hookrightarrow \mathcal{X}$ and $\mathcal{X}^{*} \hookrightarrow \mathcal{Y}^{*}$ densely. Then, $\Phi: M \mapsto \mathcal{Y}$ is quasi-continuous if $\Phi: M \mapsto \mathcal{X}$ is quasi-continuous and $\Phi(M) \subset \mathcal{Y}$.

Lemma 3.5. For $t>\tau$, the solution mapping $\omega \rightarrow v^{\varepsilon}\left(t, \tau, \omega, v_{\tau}\right)$ is $(\mathcal{F}, \mathfrak{B}(Y))$ measurable, where $Y=L^{p}(\mathcal{O})$.

Proof. By Lemma 3.2, the solution mapping is continuous from $\left(\Omega_{I}, \rho\right)$ to X for each $I \in \mathbb{N}$, and so it is quasi-continuous from Ω_{I} to X. By Lemma 2.6, $v\left(t, \tau, \omega, v_{\tau}\right) \in Y$ for $t>\tau$ and $v_{\tau} \in X$. Since $Y \hookrightarrow X$ and $X^{*} \hookrightarrow Y^{*}$ densely, it follows from inheritability given in Lemma 3.4 (b) that the solution mapping is quasi-continuous from Ω_{I} to Y. Then, by the measurability of a quasi-continuous mapping (see Lemma $3.4(\mathrm{a})$), the solution mapping is $\left(\mathfrak{B}\left(\Omega_{I}\right), \mathfrak{B}(Y)\right.$) measurable for each $I \in \mathbb{N}$. By Lemma 3.1, each Ω_{I} is closed in Ω and $\bigcup_{i=1}^{\infty} \Omega_{i}=\Omega$. Therefore, it is easy to prove that the solution mapping is $(\mathcal{F}, \mathfrak{B}(Y))$ measurable.

Now, we define a family of mappings $\phi_{\varepsilon}: \mathbb{R}^{+} \times \mathbb{R} \times \Omega \times X \rightarrow X$ by

$$
\phi_{\varepsilon}\left(t, \tau, \omega, v_{\tau}\right)=v^{\varepsilon}\left(t+\tau, \tau, \theta_{-\tau} \omega, v_{\tau}\right)
$$

Recall that the concept of random cocycle which is given by Wang [32].
Definition 3.6. A mapping $\phi: \mathbb{R}^{+} \times \mathbb{R} \times \Omega \times X \mapsto X$ is called a random cocycle on X if
(a) ϕ is $\left(\mathfrak{B}\left(\mathbb{R}^{+}\right) \times \mathfrak{B}(\mathbb{R}) \times \mathcal{F} \times \mathfrak{B}(X), \mathfrak{B}(X)\right)$ measurable;
(b) it holds the cocycle property: for all $t, s \in \mathbb{R}^{+}, \tau \in \mathbb{R}$ and $\omega \in \Omega$,

$$
\phi(t+s, \tau, \omega)=\phi\left(t, \tau+s, \theta_{s} \omega\right) \phi(s, \tau, \omega), \quad \phi(0, \tau, \omega)=\operatorname{id}_{X} .
$$

Applying Lemmas 2.6, 3.2, 3.5 and Corollary 3.3, we have proved the following result.

Theorem 3.7. For each $\varepsilon \in\left(0, \varepsilon_{0}\right], \phi_{\varepsilon}$ is a continuous random cocycle on X. Its restriction on Y is a quasi-continuous random cocycle on Y.

Finally, we take a universe \mathfrak{D} of all set-valued mappings $\mathcal{D}: \mathbb{R} \times \Omega \rightarrow 2^{X} \backslash \emptyset$ such that, for any $\gamma>0$,

$$
\lim _{t \rightarrow+\infty} e^{-\gamma t}\left\|\mathcal{D}\left(\tau-t, \theta_{-t} \omega\right)\right\|_{X}^{2}=0, \quad \tau \in \mathbb{R}, \omega \in \Omega,
$$

where $\|D\|$ denote the supremum of norms for all elements, and $X=L^{2}(\mathcal{O})$. It is similar to define the universe \mathfrak{D}_{0} on $L^{2}(Q)$.

4. Random attractors in p-times Lebesgue space

We need the following basic estimates for the solution $v^{\varepsilon}\left(s, \tau-t, \theta_{-\tau} \omega, v_{0}\right)$ in X (see [20]).

Lemma 4.1. [20]. Let ε_{0} be the positive number given in Lemma 2.5. Then, for each $\mathcal{D} \in \mathfrak{D}, \tau \in \mathbb{R}$ and $\omega \in \Omega$, there exist $T=T(\mathcal{D}, \tau, \omega) \geq 2$ such that for all $t \geq T, v_{0} \in \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right)$ and $\varepsilon \in\left(0, \varepsilon_{0}\right)$,

$$
\begin{equation*}
\left\|v^{\varepsilon}\left(\tau, \tau-t, \theta_{-\tau} \omega, v_{0}\right)\right\|_{H_{\varepsilon}^{1}}^{2}+\int_{\tau-t}^{\tau} e^{\lambda s}\left\|u^{\varepsilon}(s)\right\|_{p}^{p} d s \leq c_{1} \rho_{1}(\tau, \omega) \tag{4.1}
\end{equation*}
$$

where ρ_{1} is tempered and given by

$$
\rho_{1}(\tau, \omega)=r(\omega)+\int_{-\infty}^{0} e^{\lambda s}(1+\Psi(s+\tau)) d s
$$

with $\Psi(s)=\|G(s)\|_{\infty}^{2}+\left\|\psi_{1}(s)\right\|_{\infty}+\left\|\psi_{2}(s)\right\|_{\infty}^{2}+\left\|\psi_{4}(s)\right\|_{\infty}^{2}$ and $r(\omega)$ is given in (2.12).

The following Gronwall-type lemma will be used frequently, which can be founded in [26].

Lemma 4.2. Let z, z_{1} be nonnegative locally integrable such that $\dot{z}+a z \leq z_{1}$. Then, for any $\tau \in \mathbb{R}$ and $\mu>0$,

$$
\begin{equation*}
z(\tau) \leq \frac{1}{\mu} \int_{\tau-\mu}^{\tau} e^{a(r-\tau)} z(r) d r+\int_{\tau-\mu}^{\tau} e^{a(r-\tau)} z_{1}(r) d r \tag{4.2}
\end{equation*}
$$

Lemma 4.3. For any $\mathcal{D} \in \mathfrak{D}, \tau \in \mathbb{R}$ and $\omega \in \Omega$, there exist $T \geq 2$ such that

$$
\begin{equation*}
\sup _{s \in[\tau-1, \tau]} \sup _{t \geq T} \sup _{\varepsilon \in\left(0, \varepsilon_{0}\right)}\left\|v^{\varepsilon}\left(s, \tau-t, \theta_{-\tau} \omega, v_{0}\right)\right\|_{p}^{p} \leq c_{2} \rho_{2}(\tau, \omega), \tag{4.3}
\end{equation*}
$$

whenever $v_{0} \in \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right)$, where ρ_{2} is a finite function given by

$$
\rho_{2}(\tau, \omega)=\left(1+e^{\lambda(1-\tau)}\right) \rho_{1}(\tau, \omega)+\int_{-\infty}^{0} e^{\lambda s}\left\|\psi_{1}(s+\tau)\right\|_{\infty}^{2} d s
$$

Proof. We multiply (2.13) with $g|v|^{p-2} v$ and integrating over \mathcal{O} to obtain
(4.4) $\frac{1}{p} \frac{d}{d t}\|v\|_{p}^{p}+\lambda\|v\|_{p}^{p}+\int_{\mathcal{O}} g A_{\varepsilon} v \cdot|v|^{p-2} v d y$

$$
=\left(F_{\varepsilon}(t, y, u),|v|^{p-2} v\right)_{g}+\left(G_{\varepsilon}(t, y),|v|^{p-2} v\right)_{g}-\left(A_{\varepsilon} h_{\varepsilon} z\left(\theta_{t} \omega\right),|v|^{p-2} v\right)_{g} .
$$

The Laplace term is non-negative. Indeed,

$$
\begin{array}{rl}
\int_{\mathcal{O}} & g A_{\varepsilon} v \cdot|v|^{p-2} v d y \\
& =-\frac{1}{\varepsilon} \int_{\mathcal{O}_{\varepsilon}} \Delta_{x} \widetilde{v}|\widetilde{v}|^{p-2} \widetilde{v} d x=\frac{1}{\varepsilon} \int_{\mathcal{O}_{\varepsilon}} \nabla_{x} \widetilde{v} \cdot \nabla_{x}\left(|\widetilde{v}|^{p-2} \widetilde{v}\right) d x \\
& =\frac{p-2}{\varepsilon} \int_{\mathcal{O}_{\varepsilon}} \nabla_{x} \widetilde{v} \cdot|\widetilde{v}|^{p-4}|\widetilde{v}|^{2} \nabla_{x} \widetilde{v} d x+\frac{1}{\varepsilon} \int_{\mathcal{O}_{\varepsilon}} \nabla_{x} \widetilde{v} \cdot|\widetilde{v}|^{p-2} \nabla_{x} \widetilde{v} d x \\
& =\frac{p-1}{\varepsilon} \int_{\mathcal{O}_{\varepsilon}}|\widetilde{v}|^{p-2}\left|\nabla_{x} \widetilde{v}\right|^{2} d x \geq 0 .
\end{array}
$$

In order to estimate the nonlinear term in (4.4), we use the conditions (2.1) and (2.2) to obtain

$$
\begin{aligned}
F_{\varepsilon}(t, y, u) v & =F\left(t, y^{*}, \varepsilon g\left(y^{*}\right) y_{n+1}, u\right) u-F\left(t, y^{*}, \varepsilon g\left(y^{*}\right) y_{n+1}, u\right) h_{\varepsilon} z\left(\theta_{t} \omega\right) \\
& \leq-\alpha_{1}|u|^{p}+\psi_{1}(t)+\left(\alpha_{2}|u|^{p-1}+\left|\psi_{2}(t)\right|\right)\left|h_{\varepsilon} z\left(\theta_{t} \omega\right)\right| \\
& \leq-\frac{\alpha_{1}}{2^{p}}|v|^{p}+c\left|h_{\varepsilon} z\left(\theta_{t} \omega\right)\right|^{p}+\left|\psi_{1}(t)\right|+\left(\alpha_{2}|u|^{p-1}+\left|\psi_{2}(t)\right|\right)\left|h_{\varepsilon} z\left(\theta_{t} \omega\right)\right| \\
& \leq-\frac{\alpha_{1}}{2^{p+1}}|v|^{p}+\left|\psi_{1}(t)\right|+\left|\psi_{2}(t) h_{\varepsilon} z\left(\theta_{t} \omega\right)\right|+c\left|h_{\varepsilon} z\left(\theta_{t} \omega\right)\right|^{p},
\end{aligned}
$$

where $\psi_{1}(t)=\psi_{1}\left(t, y^{*}, \varepsilon g\left(y^{*}\right) y_{n+1}\right)$, and it is similar for $\psi_{2}(t)$. Hence,

$$
\begin{aligned}
& \int_{\mathcal{O}} g F_{\varepsilon}(t, y, u) v|v|^{p-2} d y \leq-\frac{\alpha_{1} \gamma_{1}}{2^{p+1}} \int_{\mathcal{O}}|v|^{2 p-2} d y \\
&+c \gamma_{2} \int_{\mathcal{O}}\left(\left|\psi_{1}(t)\right|+\left|\psi_{2}(t) h_{\varepsilon} z\left(\theta_{t} \omega\right)\right|+\left|h_{\varepsilon} z\left(\theta_{t} \omega\right)\right|^{p}\right)|v|^{p-2} d y
\end{aligned}
$$

By the Young inequality $a b^{p-2} \leq \eta b^{2 p-2}+C(\eta) a^{\mu}$, where $\mu=2-2 / p$ such that $1 \leq \mu<2$, we have

$$
\begin{aligned}
c \gamma_{2}\left|\psi_{1}(t)\right||v|^{p-2} & \leq \frac{\alpha_{1} \gamma_{1}}{2^{p+4}}|v|^{2 p-2}+c\left|\psi_{1}(t)\right|^{\mu} \\
& \leq \frac{\alpha_{1} \gamma_{1}}{2^{p+4}}|v|^{2 p-2}+c\left(\left|\psi_{1}(t)\right|+\left|\psi_{1}(t)\right|^{2}\right) .
\end{aligned}
$$

Similarly, by $h \in C^{2}\left(\bar{Q} \times\left[0, \gamma_{2}\right]\right)$ and so $h \in L^{\infty}(\widetilde{\mathcal{O}})$,

$$
\begin{aligned}
c \gamma_{2}\left|h_{\varepsilon} z\left(\theta_{t} \omega\right)\right|^{p}|v|^{p-2} & \leq \frac{\alpha_{1} \gamma_{1}}{2^{p+4}}|v|^{2 p-2}+c\left(\left|z\left(\theta_{t} \omega\right)\right|^{p}+\left|z\left(\theta_{t} \omega\right)\right|^{2 p}\right) \\
& \leq \frac{\alpha_{1} \gamma_{1}}{2^{p+4}}|v|^{2 p-2}+c \widehat{z}\left(\theta_{t} \omega\right),
\end{aligned}
$$

where $\widehat{z}\left(\theta_{t} \omega\right)$ is given in (2.12). By the generalized Young inequality: $a b c \leq$ $\eta a^{(2 p-2) /(p-2)}+C(\eta) b^{2}+C(\eta) c^{2 p-2}$, we have

$$
|v|^{p-2}\left(c \gamma_{2}\left|\psi_{2}(t)\right|\right)\left|h_{\varepsilon} z\left(\theta_{t} \omega\right)\right| \leq \frac{\alpha_{1} \gamma_{1}}{2^{p+4}}|v|^{2 p-2}+c\left|\psi_{2}(t)\right|^{2}+c \widehat{z}\left(\theta_{t} \omega\right) .
$$

All above estimates imply that

$$
\begin{align*}
& \int_{\mathcal{O}} g F_{\varepsilon}(t, y, u) v|v|^{p-2} d y \tag{4.5}\\
& \quad \leq-\frac{\alpha_{1} \gamma_{1}}{2^{p+2}}\|v\|_{2 p-2}^{2 p-2}+c\left(\left\|\psi_{1}(t)\right\|_{\infty}+\left\|\psi_{1}(t)\right\|_{\infty}^{2}+\left\|\psi_{2}(t)\right\|_{\infty}^{2}\right)+c \widehat{z}\left(\theta_{t} \omega\right)
\end{align*}
$$

where $\|\cdot\|_{\infty}$ denotes the norm in $L^{\infty}(\widetilde{\mathcal{O}})$. The second term on the right side of (4.4) is controlled by

$$
\begin{align*}
\int_{\mathcal{O}} g G_{\varepsilon}(t, y)|v|^{p-2} v d y & \leq \frac{\alpha_{1} \gamma_{1}}{2^{p+4}} \int_{\mathcal{O}}|v|^{2 p-2} d y+c \int_{\mathcal{O}} G_{\varepsilon}^{2}(t, y) d y \tag{4.6}\\
& \leq \frac{\alpha_{1} \gamma_{1}}{2^{p+4}}\|v\|_{2 p-2}^{2 p-2}+c\|G(t)\|_{\infty}^{2}
\end{align*}
$$

The final term of (4.4) is bounded by

$$
\begin{align*}
& -\left(A_{\varepsilon} h_{\varepsilon} z\left(\theta_{t} \omega\right),|v|^{p-2} v\right)_{g}=\int_{\mathcal{O}} g z\left(\theta_{t} \omega\right) A_{\varepsilon} h_{\varepsilon} \cdot|v|^{p-2} v d y \tag{4.7}\\
& \quad \leq \gamma_{2} \int_{\mathcal{O}} g z\left(\theta_{t} \omega\right) A_{\varepsilon} h_{\varepsilon} \cdot|v|^{p-2} v d y \leq \frac{\alpha_{1} \gamma_{1}}{2^{p+4}}\|v\|_{2 p-2}^{2 p-2}+c \widehat{z}\left(\theta_{t} \omega\right)
\end{align*}
$$

where, by $h \in C^{2}\left(\bar{Q} \times\left[0, \gamma_{2}\right]\right)$, we have

$$
\begin{aligned}
\left\|A_{\varepsilon} h_{\varepsilon}\right\|_{g}^{2}=\int_{\mathcal{O}} g \mid A_{\varepsilon} h_{\varepsilon} \|^{2} d y & =\int_{\mathcal{O}_{\varepsilon}} g\left|\Delta_{x} h(x)\right|^{2} d x \\
& \leq \int_{Q \times\left[0, \gamma_{2}\right]} g\left|\Delta_{x} h(x)\right|^{2} d x<+\infty
\end{aligned}
$$

By (4.4)-(4.7), there are constants $c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
\frac{d}{d t}\|v\|_{p}^{p}+\lambda\|v\|_{p}^{p}+c_{1}\|v\|_{2 p-2}^{2 p-2} \leq c_{2}\left(\widehat{\Psi}(t)+\widehat{z}\left(\theta_{t} \omega\right)\right) . \tag{4.8}
\end{equation*}
$$

where $\widehat{\Psi}(t)=\left\|\psi_{1}(t)\right\|_{\infty}+\left\|\psi_{1}(t)\right\|_{\infty}^{2}+\left\|\psi_{2}(t)\right\|_{\infty}^{2}+\|G(t)\|_{\infty}^{2}$. For each $s \in[\tau-1, \tau]$, we apply the Gronwall-type inequality (4.2) with $\mu=s-(\tau-2) \geq 1$ and replace
ω by $\theta_{-\tau} \omega$ in (4.8), the result is

$$
\begin{aligned}
& \left\|v\left(s, \tau-t, \theta_{-\tau} \omega, v_{0}\right)\right\|_{p}^{p} \\
& \leq \int_{\tau-2}^{s} e^{\lambda(\sigma-s)}\left\|v\left(\sigma, \tau-t, \theta_{-\tau} \omega, v_{0}\right)\right\|_{p}^{p} d \sigma+c \int_{\tau-2}^{s} e^{\lambda(\sigma-s)}\left(\widehat{z}\left(\theta_{\sigma-\tau} \omega\right)+\widehat{\Psi}(\sigma)\right) d \sigma \\
& \leq e^{\lambda(1-\tau)} \int_{\tau-t}^{\tau} e^{\lambda \sigma}\left\|v\left(\sigma, \tau-t, \theta_{-\tau} \omega, v_{0}\right)\right\|_{p}^{p} d \sigma+c \int_{-\infty}^{\tau} e^{\lambda(\sigma-s)}\left(\widehat{z}\left(\theta_{\sigma-\tau}\right)+\widehat{\Psi}(\sigma)\right) d \sigma .
\end{aligned}
$$

for all $t \geq T \geq 2$ with the same entry time T as given in Lemma 4.1. Note that $\widehat{\Psi}(\sigma) \leq \Psi(\sigma)+\left\|\psi_{1}(\sigma)\right\|_{\infty}^{2}$. By (4.1) in Lemma 4.1, we obtain (4.3) as required. \square

Lemma 4.4. Let $T:=T(\mathcal{D}, \tau, \omega) \geq 1$ be the entry time, given in Lemmas 4.1 and 4.3 , for any $(\mathcal{D}, \tau, \omega) \in \mathfrak{D} \times \mathbb{R} \times \Omega$. Then

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \sup _{\varepsilon \in\left(0, \varepsilon_{0}\right]} \sup _{t \geq T} \int_{\mathcal{O}\left(\left|v^{\varepsilon}\right| \geq K\right)}\left|v^{\varepsilon}\left(\tau, \tau-t, \theta_{-\tau} \omega, v_{0}\right)\right|^{p} d y=0 \tag{4.9}
\end{equation*}
$$

uniformly in $v_{0} \in \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right)$, where $\mathcal{O}\left(\left|v^{\varepsilon}\right| \geq K\right)=\mathcal{O}_{K} \cup \mathcal{O}_{-K}$ with

$$
\begin{aligned}
\mathcal{O}_{K} & =\mathcal{O}_{K}^{\varepsilon}(s, \tau-t)=\left\{y \in \mathcal{O}: v^{\varepsilon}\left(s, \tau-t, \theta_{-\tau} \omega, v_{0}\right)(y) \geq K\right\} \\
\mathcal{O}_{-K} & =\left\{y \in \mathcal{O}: v^{\varepsilon}\left(s, \tau-t, \theta_{-\tau} \omega, v_{0}\right)(y) \leq-K\right\}
\end{aligned}
$$

Proof. We first show that

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \sup _{s \in[\tau-1, \tau]} \sup _{\varepsilon \in\left(0, \varepsilon_{0}\right]} \sup _{t \geq T} \sup _{v_{0} \in \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right)}\left|\mathcal{O}_{K}^{\varepsilon}\left(s, \tau-t, v_{0}\right)\right|=0, \tag{4.10}
\end{equation*}
$$

where $\left|\mathcal{O}_{K}\right|$ denotes the Lebesgue measure. For this end, by Lemma 4.3, we know that

$$
\left|\mathcal{O}_{K}^{\varepsilon}(s, \tau-t)\right| K^{p} \leq \int_{\mathcal{O}_{K}}\left|v^{\varepsilon}(s, \tau-t)\right|^{p} d y \leq \int_{\mathcal{O}}\left|v^{\varepsilon}(s, \tau-t)\right|^{p} d y \leq C<+\infty
$$

hereafter, we denote by $C=C(\tau, \omega)$ and denote by c a constant. Letting $K \rightarrow$ $+\infty$ in the above inequality yields (4.10).

On the other hand, by the continuity of $s \rightarrow z\left(\theta_{s} \omega\right)$, we have

$$
\sup _{s \in[-1,0]}\left|z\left(\theta_{s} \omega\right)\right|\|h\|_{L^{\infty}\left(Q \times\left[0, \gamma_{2}\right]\right)}=K_{1}<+\infty .
$$

By the condition (2.1), we can take $K_{2}>0$ such that

$$
\begin{equation*}
F(s, x, u) \leq-\alpha_{1} u^{p-1}+\psi_{1}(s, x) u^{-1}, \quad \text { if } u>K_{2} \tag{4.11}
\end{equation*}
$$

Now, let K be large enough such that $K \geq K_{1}+K_{2}+1$, and take the inner product of (2.13) with $g(v-K)_{+}^{p-1}$ in $L^{2}(\mathcal{O})$, where $w_{+}:=\max \{w, 0\}$. The result is

$$
\begin{align*}
& \frac{1}{p} \frac{d}{d s}\left\|(v-K)_{+}\right\|_{p}^{p}+\lambda\left(v,(v-K)_{+}^{p-1}\right)_{g}+\left(A_{\varepsilon} v,(v-K)_{+}^{p-1}\right)_{g} \tag{4.12}\\
&=\left(F_{\varepsilon}(s, y, u),(v-K)_{+}^{p-1}\right)_{g}+\left(G_{\varepsilon}(s, y),(v-K)_{+}^{p-1}\right)_{g} \\
& \quad-\left(A_{\varepsilon} h_{\varepsilon} z\left(\theta_{s-\tau} \omega\right),(v-K)_{+}^{p-1}\right)_{g}
\end{align*}
$$

for all $s \in[\tau-1, \tau]$. It is easy to see that

$$
\begin{equation*}
\left(A_{\varepsilon} v,(v-K)_{+}^{p-1}\right)_{g} \geq 0, \quad \lambda \int_{\mathcal{O}} g v(v-K)_{+}^{p-1} d y \geq \lambda\left\|(v-K)_{+}\right\|_{p}^{p} \tag{4.13}
\end{equation*}
$$

If $v \geq K$, then

$$
u=v+h_{\varepsilon}(y) z\left(\theta_{s-\tau} \omega\right) \geq v-\left|h_{\varepsilon}(y) z\left(\theta_{s-\tau} \omega\right)\right| \geq v-K_{1} \geq K_{2} .
$$

By (4.11),

$$
\begin{aligned}
F(s, x, u) & \leq-\alpha_{1} u^{p-1}+\psi_{1}(s, x) u^{-1} \\
& \leq-\frac{\alpha_{1}}{2^{p}} v^{p-1}+\left|\psi_{1}(s, x)\right| u^{-1}+c\left|h_{\varepsilon} z\left(\theta_{s-\tau} \omega\right)\right|^{p-1} .
\end{aligned}
$$

Therefore, we obtain the following estimates of the nonlinearity,

$$
\begin{align*}
& \int_{\mathcal{O}_{K}^{\varepsilon}} g F_{\varepsilon}\left(s, y^{*}, \varepsilon g\left(y^{*}\right) y_{n+1}, u\right)(v-K)_{+}^{p-1} d y \tag{4.14}\\
& \leq-\frac{\alpha_{1} \gamma_{1}}{2^{p}} \int_{\mathcal{O}_{K}^{\varepsilon}} v^{p-1}(v-K)_{+}^{p-1} d y+\gamma_{2} \int_{\mathcal{O}_{K}^{\varepsilon}}\left|\psi_{1}(s)\right|(v-K)_{+}^{p-2} d y \\
&+c \int_{\mathcal{O}_{K}^{\varepsilon}}\left|h_{\varepsilon} z\left(\theta_{s-\tau} \omega\right)\right|^{p-1}(v-K)_{+}^{p-1} d y \\
& \leq-\frac{\alpha_{1} \gamma_{1}}{2^{p+1}} \int_{\mathcal{O}_{K}^{\varepsilon}} v^{p-1}(v-K)_{+}^{p-1} d y \\
&+c \int_{\mathcal{O}_{K}^{\varepsilon}}\left|\psi_{1}(s)\right|^{2-2 / p} d y+c \int_{\mathcal{O}_{K}^{\varepsilon}}\left|h_{\varepsilon} z\left(\theta_{s-\tau} \omega\right)\right|^{2 p-2} d y \\
& \leq-\frac{\alpha_{1} \gamma_{1}}{2^{p+1}} \int_{\mathcal{O}_{K}^{\varepsilon}} v^{p-1}(v-K)_{+}^{p-1} d y \\
&+c\left(\left\|\psi_{1}(s)\right\|_{\infty}+\left\|\psi_{1}(s)\right\|_{\infty}^{2}\right)\left|\mathcal{O}_{K}^{\varepsilon}\right|+c \widehat{z}\left(\theta_{s-\tau} \omega\right)\left|\mathcal{O}_{K}^{\varepsilon}\right| .
\end{align*}
$$

where $\psi_{1}(s)=\psi_{1}\left(s, y^{*}, \varepsilon g\left(y^{*}\right) y_{n+1}\right)$ and $\|\cdot\|_{\infty}$ denotes the norm in $L^{\infty}(\widetilde{\mathcal{O}})$.
Similarly, we have

$$
\left(G_{\varepsilon}(s, y),(v-K)_{+}^{p-1}\right)_{g} \leq \frac{\alpha_{1} \gamma_{1}}{2^{p+1}} \int_{\mathcal{O}_{K}^{\varepsilon}} v^{p-1}(v-K)_{+}^{p-1} d y+c\|G(s)\|_{\infty}^{2}\left|\mathcal{O}_{K}^{\varepsilon}\right|
$$

By using $A_{\varepsilon} h_{\varepsilon} \in L^{2}(Q)$, we have

$$
\begin{array}{r}
-\left(A_{\varepsilon} h_{\varepsilon} z\left(\theta_{s-\tau} \omega\right),(v-K)_{+}^{p-1}\right)_{g}=\int_{\mathcal{O}_{K}^{\varepsilon}} g A_{\varepsilon} h_{\varepsilon} z\left(\theta_{s-\tau} \omega\right)(v-K)_{+}^{p-1} d y \tag{4.15}\\
\leq \frac{\alpha_{1} \gamma_{1}}{2^{p+1}} \int_{\mathcal{O}_{K}^{\varepsilon}} v^{p-1}(v-K)_{+}^{p-1} d y+c \widehat{z}\left(\theta_{s-\tau} \omega\right)\left|\mathcal{O}_{K}^{\varepsilon}\right|
\end{array}
$$

By (4.12)-(4.15), we can obtain that

$$
\begin{align*}
& \frac{d}{d s}\left\|(v-K)_{+}\right\|_{p}^{p}+C_{2} \int_{\mathcal{O}_{K}^{\varepsilon}} v^{p-1}(v-K)_{+}^{p-1} d y \tag{4.16}\\
& \quad \leq C_{3}\left(\left\|\psi_{1}(s)\right\|_{\infty}+\left\|\psi_{1}(s)\right\|_{\infty}^{2}+\|G(s)\|_{\infty}^{2}+\widehat{z}\left(\theta_{s-\tau} \omega\right)\right)\left|\mathcal{O}_{K}^{\varepsilon}\right|
\end{align*}
$$

where C_{2}, C_{3} are positive and independent of K and ε. Note that

$$
\int_{\mathcal{O}_{K}^{\varepsilon}} v^{p-1}(v-K)_{+}^{p-1} d y \geq \int_{\mathcal{O}_{K}^{\varepsilon}} v^{p-2}(v-K)_{+}^{p} d y \geq K^{p-2}\left\|(v-K)_{+}\right\|_{p}^{p}
$$

then, (4.16) can be rewritten as follows:

$$
\begin{align*}
& \frac{d}{d s}\left\|(v-K)_{+}\right\|_{p}^{p}+C_{2} \int_{\mathcal{O}_{K}^{\varepsilon}} v^{p-1}(v-K)_{+}^{p-1} d y \tag{4.17}\\
& \quad \leq C_{3}\left(\left\|\psi_{1}(s)\right\|_{\infty}+\left\|\psi_{1}(s)\right\|_{\infty}^{2}+\|G(s)\|_{\infty}^{2}+\widehat{z}\left(\theta_{s-\tau} \omega\right)\right)\left|\mathcal{O}_{K}^{\varepsilon}\right|
\end{align*}
$$

By the Gronwall-type inequality (4.2) in Lemma 4.2 with $\mu=1$, we have

$$
\begin{aligned}
& \left\|(v(\tau)-K)_{+}\right\|_{p}^{p} \leq \int_{\tau-1}^{\tau} e^{C_{2} K^{p-2}(s-\tau)}\left\|(v(s)-K)_{+}\right\|_{p}^{p} d s \\
& \quad+C_{3}\left|\mathcal{O}_{K}^{\varepsilon}\right| \int_{\tau-1}^{\tau}\left(\left\|\psi_{1}(s)\right\|_{\infty}+\left\|\psi_{1}(s)\right\|_{\infty}^{2}+\|G(s)\|_{\infty}^{2}+\widehat{z}\left(\theta_{s-\tau} \omega\right)\right) d s \\
& \quad \leq \int_{\tau-1}^{\tau} e^{C_{2} K^{p-2}(s-\tau)}\left\|(v(s)-K)_{+}\right\|_{p}^{p} d s+C_{4}\left|\mathcal{O}_{K}^{\varepsilon}\right|
\end{aligned}
$$

in the last step, we have used $\psi_{1}, G \in L_{\text {loc }}^{2}\left(\mathbb{R}, L^{\infty}(\widetilde{\mathcal{O}})\right)$ and the continuity of $\widehat{z}(\theta \cdot \omega)$. Since $\left\|(v-K)_{+}\right\|_{p}^{p} \leq\|v\|_{p}^{p}$, it follows from Lemma 4.3 that

$$
\sup _{s \in[\tau-1, \tau]} \sup _{t \geq T} \sup _{\varepsilon \in\left(0, \varepsilon_{0}\right]}\left\|\left(v^{\varepsilon}\left(s, \tau-t, \theta_{-\tau} \omega\right)-K\right)_{+}\right\|_{p}^{p} \leq C_{5} .
$$

Therefore, by (4.10), as $K \rightarrow \infty$,

$$
\left\|\left(v^{\varepsilon}\left(\tau, \tau-t, \theta_{-\tau} \omega, v_{0}\right)-K\right)_{+}\right\|_{p}^{p} \leq \frac{C_{5}}{C_{2} K^{p-2}}+C_{4}\left|\mathcal{O}_{K}^{\varepsilon}\right| \rightarrow 0
$$

uniformly in $\varepsilon \in\left(0, \varepsilon_{0}\right], t \geq T$ and $v_{0} \in \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right)$. Note that $v \leq 2(v-K)$ if $v \geq 2 K$. We have

$$
\int_{\mathcal{O}_{2 K}^{\varepsilon}} \mid\left(\left.v^{\varepsilon}\left(\tau, \tau-t, \theta_{-\tau} \omega, v_{0}\right)\right|^{p} d y \leq 2 \gamma_{1}^{-1}\left\|(v-K)_{+}\right\|_{p}^{p} \rightarrow 0\right.
$$

as $K \rightarrow+\infty$, uniformly in $\varepsilon \in\left(0, \varepsilon_{0}\right], t \geq T$ and $v_{0} \in \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right)$. Similarly, the above uniform convergence holds true on $\mathcal{O}_{-2 K}$.

We give the following concept of a bi-spatial random attractor, which is slightly different from the concept given in [24] because we require that the \mathcal{F}-measurability of the attractor holds true in both initial and terminate spaces.

Definition 4.5. A bi-parametric set $\mathcal{A}=\{\mathcal{A}(\tau, \omega)\}$ is said to be a (X, Y) random attractor for a random cocycle ϕ if
(a) $\omega \rightarrow \mathcal{A}(\tau, \omega)$ is \mathcal{F}-measurable in X and in Y respectively;
(b) $\mathcal{A} \in \mathfrak{D}$, and $\mathcal{A}(\tau, \omega)$ is compact in $X \cap Y$;
(c) \mathcal{A} is invariant, i.e. $\phi(s, \tau, \omega) \mathcal{A}(\tau, \omega)=\mathcal{A}\left(\tau+s, \theta_{s} \omega\right)$ for $s \geq 0$;
(d) \mathcal{A} is pullback attracting in Y, i.e. for every $\mathcal{D} \in \mathfrak{D}$,

$$
\lim _{t \rightarrow+\infty} \operatorname{dist}_{Y}\left(\phi\left(t, \tau-t, \theta_{-t} \omega\right) \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right), \mathcal{A}(\tau, \omega)\right)=0
$$

Theorem 4.6. For each $\varepsilon \in\left(0, \varepsilon_{0}\right]$, the cocycle ϕ_{ε}, generated by the problem (2.13), has a unique \mathfrak{D}-pullback (X, Y)-random attractor $\mathcal{A}_{\varepsilon}=\left\{\mathcal{A}_{\varepsilon}(\tau, \omega): \tau \in \mathbb{R}\right.$, $\omega \in \Omega\}$, where $X=L^{2}(\mathcal{O})$ and $Y=L^{p}(\mathcal{O})$.

Proof. By Lemma 4.1, a random absorbing set is given by

$$
\mathcal{K}(\tau, \omega)=\left\{u \in L^{2}(\mathcal{O}):\|u\|^{2} \leq c_{1} \rho_{1}(\tau, \omega)\right\}, \text { for all } \tau \in \mathbb{R}, \omega \in \Omega
$$

It is obvious that $\mathcal{K} \in \mathfrak{D}$, and the absorption is uniform in $\varepsilon \in\left(0, \varepsilon_{0}\right]$. Next, we need to show that ϕ_{ε} is asymptotically compact in Y.

In fact, we prove the stronger eventual compactness in Y. Let $(\mathcal{D}, \tau, \omega) \in$ $\mathfrak{D} \times \mathbb{R} \times \Omega$ and $\varepsilon \in\left(0, \varepsilon_{0}\right]$ be fixed, we define a decreasing family of sets by

$$
\begin{equation*}
B_{\varepsilon}(T):=\bigcup_{t \geq T} \phi_{\varepsilon}\left(t, \tau-t, \theta_{-t} \omega\right) \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right), \quad \text { for all } T>0 . \tag{4.18}
\end{equation*}
$$

Let $T_{0}=T_{0}(\mathcal{D}, \tau, \omega)$ be the entry time given in Lemmas 4.1 and 4.4. By Lemma 4.4, for each $\eta>0$, we can find a $K=K(\eta)>0$ such that

$$
\begin{equation*}
\int_{\mathcal{O}(|v| \geq K)}|v(y)|^{p} d y<\eta^{p}, \quad \text { for all } v \in B_{\varepsilon}\left(T_{0}\right) . \tag{4.19}
\end{equation*}
$$

On the other hand, by Lemmas 4.1, $B_{\varepsilon}\left(T_{0}\right)$ is bounded in $H_{\varepsilon}^{1}(\mathcal{O})$ and so in $H^{1}(\mathcal{O})$ (by Lemma 2.5), which implies that $B_{\varepsilon}\left(T_{0}\right)$ is pre-compact in $L^{2}(\mathcal{O})$. Hence, $B_{\varepsilon}\left(T_{0}\right)$ has a finite net in $L^{2}(\mathcal{O})$ with the same radius $\left(K^{(2-p) / 2} \eta^{p / 2}\right.$ and the finite centers $v_{k} \in B_{\varepsilon}(T), k=1, \ldots, m$. That is, for any $v \in B_{\varepsilon}\left(T_{0}\right)$, we can find a center v_{k} such that

$$
\begin{equation*}
\left\|v-v_{k}\right\|^{2} \leq K^{2-p} \eta^{p} \tag{4.20}
\end{equation*}
$$

We will prove $\left\|v-v_{k}\right\|_{p} \leq c \eta$, by dividing the domain into four parts: $\mathcal{O}=\bigcup_{j=1}^{4} \mathcal{O}_{j}$, where,

$$
\begin{array}{ll}
\mathcal{O}_{1}=\mathcal{O}(|v| \geq K) \cap \mathcal{O}\left(\left|v_{k}\right| \leq K\right), & \mathcal{O}_{2}=\mathcal{O}(|v| \leq K) \cap \mathcal{O}\left(\left|v_{k}\right| \geq K\right) \\
\mathcal{O}_{3}=\mathcal{O}(|v| \geq K) \cap \mathcal{O}\left(\left|v_{k}\right| \geq K\right), & \mathcal{O}_{4}=\mathcal{O}(|v| \leq K) \cap \mathcal{O}\left(\left|v_{k}\right| \leq K\right)
\end{array}
$$

Note that $|v| \geq K \geq\left|v_{k}\right|$ on \mathcal{O}_{1}, and $|v| \leq K \leq\left|v_{k}\right|$ on \mathcal{O}_{2}. By (4.19), we have

$$
\begin{aligned}
& \int_{\mathcal{O}_{1}}\left|v-v_{k}\right|^{p} d y \leq 2^{p} \int_{\mathcal{O}_{1}}\left(|v|^{p}+\left|v_{k}\right|^{p}\right) d y \leq 2^{p+1} \int_{\mathcal{O}(|v| \geq K)}|v|^{p} d y \leq 2^{p+1} \eta^{p} \\
& \int_{\mathcal{O}_{2}}\left|v-v_{k}\right|^{p} d y \leq 2^{p+1} \int_{\mathcal{O}\left(\left|v_{k}\right| \geq K\right)}\left|v_{k}\right|^{p} d y \leq 2^{p+1} \eta^{p}
\end{aligned}
$$

By (4.19) again, we have

$$
\int_{\mathcal{O}_{3}}\left|v-v_{i}\right|^{p} d y \leq 2^{p}\left(\int_{\mathcal{O}(|v| \geq K)}|v|^{p} d y+\int_{\mathcal{O}\left(\left|v_{k}\right| \geq K\right)}\left|v_{k}\right|^{p} d y\right) \leq 2^{p+1} \eta^{p} .
$$

On the other hand, by (4.20), we have

$$
\int_{\mathcal{O}_{4}}\left|v-v_{k}\right|^{p} d y \leq(2 K)^{p-2} \int_{\mathcal{O}_{4}}\left|v-v_{k}\right|^{2} d y \leq(2 K)^{p-2}\left\|v-v_{k}\right\|^{2} \leq 2^{p-2} \eta^{p}
$$

By the estimates mentioned above, $\left\|v-v_{k}\right\|_{p}^{p} \leq 2^{p+3} \eta^{p}$, which implies that $B_{\varepsilon}\left(T_{0}\right)$ has a finite 16η-net in $L^{p}(\mathcal{O})$ with the same centers $v_{k}, k=1, \ldots, m$. Therefore, $B_{\varepsilon}\left(T_{0}\right)$ is pre-compact in $L^{p}(\mathcal{O})$ and so ϕ_{ε} is eventually compact in $L^{p}(\mathcal{O})$ as required.

By the abstract existence result of bi-spatial attractors given in [26] (see [24] in the autonomous case), we know that ϕ_{ε} has a (X, Y)-attractor $\mathcal{A}_{\varepsilon}$, except for \mathcal{F}-measurability in Y. By Lemma 3.5 , the cocycle ϕ_{ε} is \mathcal{F}-measurable in Y. By Lemma 4.3, ϕ_{ε} has a \mathfrak{D}-pullback absorbing set \mathcal{K}_{p} in $L^{p}(\mathcal{O})$ given by

$$
\mathcal{K}_{p}(\tau, \omega)=\left\{u \in L^{p}(\mathcal{O}):\|u\|_{p}^{p} \leq c_{2} \rho_{2}(\tau, \omega)\right\}, \quad \text { for all } \tau \in \mathbb{R}, \omega \in \Omega
$$

It is obvious that \mathcal{K}_{p} is a random set in $L^{p}(\mathcal{O})$ in view of the measurability of the mapping $\omega \rightarrow \rho_{2}(\tau, \omega)$. Then, it follows from [11, Theorem 19] that the attractor $\mathcal{A}_{\varepsilon}$ is \mathcal{F}-measurable in $L^{p}(\mathcal{O})$. Therefore, $\mathcal{A}_{\varepsilon}$ is indeed a (X, Y)-random attractor in the sense of Definition 4.5.

In order to consider the limiting equation (1.3) on Q, we define an operator A_{0} by

$$
D\left(A_{0}\right)=\left\{u \in H^{2}(Q): \frac{\partial u}{\partial \nu_{0}}=0 \text { on } \partial Q\right\}
$$

and, for $u \in D\left(A_{0}\right)$,

$$
A_{0} u=-\frac{1}{g} \sum_{i=1}^{n}\left(g u_{y_{i}}\right)_{y_{i}}, \quad\left(A_{0} u, v\right)_{g}=a_{0}(u, v)=\int_{Q} g \nabla u \cdot \nabla v d y^{*}
$$

Let u^{0} is a solution of problem (1.3). Then, $v^{0}\left(t, \tau, \omega, v_{\tau}^{0}\right)=u^{0}\left(t, \tau, \omega, u_{\tau}^{0}\right)-$ $h_{0}\left(y^{*}\right) z\left(\theta_{t} \omega\right)$ satisfies the following equation:

$$
\left\{\begin{array}{l}
\frac{d v^{0}}{d t}+A_{0} v^{0}+\lambda v^{0}=f_{0}\left(t, y^{*}, u^{0}\right)+G_{0}\left(t, y^{*}\right)-A_{0} h_{0}\left(y^{*}\right) z\left(\theta_{t} \omega\right) \tag{4.21}\\
v^{0}(\tau)=v_{\tau}^{0}, \quad y^{*} \in Q, t \geq \tau
\end{array}\right.
$$

and the solution determines a continuous random cocycle $\phi_{0}\left(t, \tau, \omega, u_{\tau}^{0}\right)$ on $L^{2}(Q)$.
Theorem 4.7. Under the Assumption 2.4, the cocycle ϕ_{0}, generated by equation (4.21), has a unique \mathfrak{D}_{0}-pullback $\left(L^{2}(Q), L^{p}(Q)\right)$ random attractor $\mathcal{A}_{0} \in \mathfrak{D}_{0}$.

5. Upper semicontinuity of bi-spatial random attractors

For a function defined on \mathcal{O}, we consider its average function with respect to the $n+1$-th variable, by using the average operator $\mathcal{M}: L^{2}(\mathcal{O}) \mapsto L^{2}(Q)$,

$$
(\mathcal{M} u)\left(y^{*}\right)=\int_{0}^{1} u\left(y^{*}, y_{n+1}\right) d y_{n+1}
$$

Conversely, for a function u defined on Q, we regard that u is identical to the function $\widehat{u}\left(y^{*}, y_{n+1}\right)=u\left(y^{*}\right),\left(y^{*}, y_{n+1}\right) \in \mathcal{O}=Q \times(0,1)$. The following result can be found in [18]: If $u \in H^{1}(\mathcal{O})$, then $\mathcal{M} u \in H^{1}(Q)$ and

$$
\begin{equation*}
\|u-\mathcal{M} u\|_{L^{2}(\mathcal{O})} \leq c \varepsilon\|u\|_{H_{\varepsilon}^{1}(\mathcal{O})} \tag{5.1}
\end{equation*}
$$

We need some convergence assumptions for both source and force.
Assumption 5.1. There exist two functions $\mu_{1}(\cdot), \mu_{2}(\cdot) \in L_{\text {loc }}^{2}(\mathbb{R})$ such that

$$
\begin{aligned}
\left\|f_{\varepsilon}(t, \cdot, s)-f_{0}(t, \cdot, s)\right\|_{L^{2}(\mathcal{O})} \leq \mu_{1}(t) \varepsilon, & \text { for all } t, s \in \mathbb{R}, \\
\left\|G_{\varepsilon}(t, \cdot)-G_{0}(t, \cdot)\right\|_{L^{2}(\mathcal{O})} \leq \mu_{2}(t) \varepsilon, & \text { for all } t \in \mathbb{R} .
\end{aligned}
$$

Since $h \in C^{2}\left(\bar{Q} \times\left[0, \gamma_{2}\right]\right.$, by the mean valued theorem, we have the same convergence from h_{ε} to h_{0} as

$$
\sup _{y \in \mathcal{O}}\left|h_{\varepsilon}(y)-h_{0}\left(y^{*}\right)\right| \leq c \varepsilon .
$$

Then, under the Assumption 5.1, the following convergence of the cocycle ϕ_{ε} can be found in [20, Theorem 2.2]: Suppose $\left\|v_{0}^{\varepsilon}\right\|_{H_{\varepsilon}^{1}(\mathcal{O})}$ is bounded with respect to $\varepsilon \in\left(0, \varepsilon_{0}\right]$, then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|\phi_{\varepsilon}(t, \tau, \omega) v_{0}^{\varepsilon}-\phi_{0}(t, \tau, \omega) \mathcal{M} v_{0}^{\varepsilon}\right\|_{L^{2}(\mathcal{O})}=0 \tag{5.2}
\end{equation*}
$$

for each $t \geq 0, \tau \in \mathbb{R}$ and $\omega \in \Omega$.
By using the above convergence, [20, Theorem 2.3] further proved the following convergence of the random attractor in $L^{2}(\mathcal{O})$:

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \operatorname{dist}_{L^{2}(\mathcal{O})}\left(\mathcal{A}_{\varepsilon}(\tau, \omega), \mathcal{A}_{0}(\tau, \omega)\right)=0 \tag{5.3}
\end{equation*}
$$

Our main result in this section is to show that the convergence (5.3) holds true in the stronger topology. This type of semi-continuity is different from the semi-continuity come from the varying densities of noise (see [13], [37], [38]).

Theorem 5.2. The random attractor $\mathcal{A}_{\varepsilon}$ is upper semi-continuous in $L^{p}(\mathcal{O})$ at $\varepsilon=0$, that is

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \operatorname{dist}_{L^{p}(\mathcal{O})}\left(\mathcal{A}_{\varepsilon}(\tau, \omega), \mathcal{A}_{0}(\tau, \omega)\right)=0, \quad \text { for all } \tau \in \mathbb{R}, \omega \in \Omega \tag{5.4}
\end{equation*}
$$

Proof. We split the proof into three parts.
Part 1. We show that any sequence $z_{k} \in \mathcal{A}_{\varepsilon_{k}}(\tau, \omega)$ is pre-compact in $L^{p}(\mathcal{O})$, where $\varepsilon_{k} \rightarrow 0$. For this end, we assume without lose of generality that $\varepsilon_{k} \in\left(0, \varepsilon_{0}\right]$ for all $k \in \mathbb{N}$. By Lemma 4.1, each cocycle $\phi_{\varepsilon_{k}}$ has a collective absorbing set $\mathcal{K} \in \mathfrak{D}$ defined by

$$
\begin{equation*}
\mathcal{K}(\tau, \omega):=\left\{u \in L^{2}(\mathcal{O}):\|u\|^{2} \leq c_{1} \rho_{1}(\tau, \omega)\right\} . \tag{5.5}
\end{equation*}
$$

Then, the invariance of $\mathcal{A}_{\varepsilon_{k}}$ and the absorption of \mathcal{K} implies that

$$
\bigcup_{k \in \mathbb{N}} \mathcal{A}_{\varepsilon_{k}}(s, \widehat{\omega}) \subset \mathcal{K}(s, \widehat{\omega}), \quad \text { for all } s \in \mathbb{R}, \widehat{\omega} \in \Omega
$$

Let T be the same entry time given in Lemmas 4.1 and 4.4 when \mathcal{K} is absorbed by itself. By the invariance of $\mathcal{A}_{\varepsilon_{k}}$ and the above inclusion, we know that

$$
z_{k} \in \phi_{\varepsilon_{k}}\left(T, \tau-T, \theta_{-T} \omega\right) \mathcal{K}\left(\tau-T, \theta_{-T} \omega\right), \quad \text { for all } k \in \mathbb{N} .
$$

By Lemma 4.4, for each $\delta>0$ there is a $R=R(\delta)$ such that

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} \int_{\mathcal{O}\left(\left|z_{k}\right| \geq R\right)}\left|z_{k}\right|^{p} d y \leq \delta^{p} \tag{5.6}
\end{equation*}
$$

By Lemma 4.1, we know

$$
\sup _{k}\left\|\phi_{\varepsilon_{k}}\left(T, \tau-T, \theta_{-T} \omega\right) \mathcal{K}\left(\tau-T, \theta_{-T} \omega\right)\right\|_{H_{\varepsilon_{k}}^{1}(\mathcal{O})}^{2} \leq c_{1} \rho_{1}(\tau, \omega)
$$

which, together with the first inequality in Lemma 2.5, implies that

$$
\sup _{k}\left\|z_{k}\right\|_{H^{1}(\mathcal{O})}^{2} \leq \sup _{k} \frac{1}{\eta_{1}}\left\|z_{k}\right\|_{H_{\varepsilon_{k}}^{1}(\mathcal{O})}^{2} \leq c \rho_{0}(\tau, \omega)
$$

Then, by the Sobolev compact embedding, the sequence $\left\{z_{k}\right\}_{k=1}^{\infty}$ has a convergent subsequence (not relabeled) in $L^{2}(\mathcal{O})$. In particular, $\left\{z_{k}\right\}_{k=1}^{\infty}$ is a Cauchy sequence in $L^{2}(\mathcal{O})$. Then, there is a $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|z_{k}-z_{m}\right\|_{L^{2}(\mathcal{O})}^{2} \leq R^{2-p} \delta^{p}, \text { for all } k, m \geq k_{0} \tag{5.7}
\end{equation*}
$$

By the similar method as given in the proof of Theorem 4.6, we split the domain $\mathcal{O}=\bigcup_{j=1}^{4} \mathcal{O}_{j}$ with

$$
\begin{array}{ll}
\mathcal{O}_{1}=\mathcal{O}\left(\left|z_{k}\right| \geq R\right) \cap \mathcal{O}\left(\left|z_{m}\right| \leq R\right), & \mathcal{O}_{2}=\mathcal{O}\left(\left|z_{k}\right| \leq R\right) \cap \mathcal{O}\left(\left|z_{m}\right| \geq R\right) \\
\mathcal{O}_{3}=\mathcal{O}\left(\left|z_{k}\right| \geq R\right) \cap \mathcal{O}\left(\left|z_{m}\right| \geq R\right), & \mathcal{O}_{4}=\mathcal{O}\left(\left|z_{k}\right| \leq R\right) \cap \mathcal{O}\left(\left|z_{m}\right| \leq R\right)
\end{array}
$$

By (5.6), we can calculate as follows:

$$
\begin{aligned}
& \int_{\mathcal{O}_{1}}\left|z_{k}-z_{m}\right|^{p} d y \leq 2^{p+1} \int_{\mathcal{O}\left(\left|z_{k}\right| \geq R\right)}\left|z_{k}\right|^{p} d y \leq 2^{p+1} \delta^{p} \\
& \int_{\mathcal{O}_{2}}\left|z_{k}-z_{m}\right|^{p} d y \leq 2^{p+1} \int_{\mathcal{O}\left(\left|z_{m}\right| \geq R\right)}\left|z^{i}\right|^{p} d y \leq 2^{p+1} \delta^{p} \\
& \int_{\mathcal{O}_{3}}\left|z_{k}-z^{i}\right|^{p} d y \leq 2^{p}\left(\int_{\mathcal{O}\left(\left|z_{k}\right| \geq R\right)}\left|z_{k}\right|^{p} d y+\int_{\mathcal{O}\left(\left|z_{m}\right| \geq R\right)}\left|z^{i}\right|^{p} d y\right) \leq 2^{p+1} \delta^{p}
\end{aligned}
$$

By (5.7)
$\int_{\mathcal{O}_{4}}\left|z_{k}-z_{m}\right|^{p} d y \leq(2 R)^{p-2} \int_{\mathcal{O}}\left|z_{k}-z_{m}\right|^{2} d y \leq(2 R)^{p-2} R^{2-p} \eta^{p} \leq 2^{p+1} \delta^{p}$.
Hence, $\left\|z_{k}-z_{m}\right\|_{p}^{p} \leq 2^{p+3} \delta^{p}$ and so $\left\|z_{k}-z_{m}\right\|_{p} \leq 4 \delta$. Therefore, the subsequence $\left\{z_{k}\right\}_{k=1}^{\infty}$ is a Cauchy sequence and thus convergent in $L^{p}(\mathcal{O})$ as required.

Part 2. We construct an absorbing set $\mathcal{B} \subset H^{1}(\mathcal{O})$ such that $\mathcal{B}_{0}=\overline{\mathcal{M}(\mathcal{B})}$ is a closed tempered set in $L^{2}(Q)$ and so $\mathcal{B}_{0} \in \mathfrak{D}_{0}$ is attracted by the attractor \mathcal{A}_{0} under the topology of $L^{p}(Q)$. For this end, we define two bi-parametric sets in $H^{1}(\mathcal{O})$ and in $L^{2}(Q)$ respectively.

$$
\begin{aligned}
\mathcal{B}(\tau, \omega) & =\left\{u \in H^{1}(\mathcal{O}): u \in \mathcal{K}(\tau, \omega),\|u\|_{H^{1}(\mathcal{O})}^{2} \leq \frac{c_{1}}{\eta_{1}} \rho_{1}(\tau, \omega)\right\} \\
\mathcal{B}_{0}(\tau, \omega) & =\overline{\{\mathcal{M} u: u \in \mathcal{B}(\tau, \omega)\}}
\end{aligned}
$$

where the over-line denotes the closure in $L^{2}(Q)$ and \mathcal{K} is the absorbing set given by (5.5). Since $\mathcal{B}(\tau, \omega) \subset \mathcal{K}(\tau, \omega)$, we have $\mathcal{B} \in \mathfrak{D}$. By Lemmas 2.5 and 4.1, for any $\varepsilon \in\left(0, \varepsilon_{0}\right]$ and $\mathcal{D} \in \mathfrak{D}$,

$$
\begin{aligned}
& \left\|\phi_{\varepsilon}\left(t, \tau-t, \theta_{-t} \omega\right) \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right)\right\|_{H^{1}(\mathcal{O})}^{2} \\
& \quad \leq \eta_{1}^{-1}\left\|\phi_{\varepsilon}\left(t, \tau-t, \theta_{-t} \omega\right) \mathcal{D}\left(\tau-t, \theta_{-t} \omega\right)\right\|_{H_{\varepsilon}^{1}(\mathcal{O})}^{2} \leq c_{1} \eta_{1}^{-1} \rho_{1}(\tau, \omega)
\end{aligned}
$$

provided t is large enough. Hence, $\mathcal{B} \in \mathfrak{D}$ is still a \mathfrak{D}-pullback absorbing set. On the other hand, by (5.1) and by Lemma 2.5 again, we have, for all $u \in \mathcal{B}(\tau, \omega)$,

$$
\|u-\mathcal{M} u\|_{L^{2}(\mathcal{O})}^{2} \leq c \varepsilon^{2}\|u\|_{H_{\varepsilon}^{1}(\mathcal{O})}^{2} \leq c \varepsilon^{2} \frac{\eta_{2}}{\varepsilon^{2}}\|u\|_{H^{1}(\mathcal{O})}^{2} \leq c \frac{\eta_{2}}{\eta_{1}} \rho_{1}(\tau, \omega)
$$

Hence, for all $u \in \mathcal{B}(\tau, \omega)$,

$$
\|\mathcal{M} u\|_{L^{2}(Q)}^{2} \leq 2\left(\|u\|_{L^{2}(\mathcal{O})}^{2}+\|u-\mathcal{M} u\|_{L^{2}(\mathcal{O})}^{2}\right) \leq c \rho_{1}(\tau, \omega) .
$$

Since $\rho_{1}(\tau, \omega)$ is a tempered random variable, the above estimate yields $\mathcal{B}_{0} \in \mathfrak{D}_{0}$ (we can not prove $\mathcal{K}_{0} \in \mathfrak{D}_{0}$, where $\mathcal{K}_{0}=\mathcal{M}(\mathcal{K})$ was used in [20], [21]).

Now, by Theorem 4.7, the bi-spatial attractor \mathcal{A}_{0} attracts $\mathcal{B}_{0} \in \mathfrak{D}_{0}$ under the topology of $L^{p}(Q)$. More precisely, for each $\delta>0$, there is a $T_{0}=T_{0}(\delta)>0$ such that for all $t \geq T_{0}$,

$$
\begin{equation*}
\operatorname{dist}_{L^{p}(Q)}\left(\phi_{0}\left(t, \tau-t, \theta_{-t} \omega\right) \mathcal{B}_{0}\left(\tau-t, \theta_{-t} \omega\right), \mathcal{A}_{0}(\tau, \omega)\right)<\delta \tag{5.8}
\end{equation*}
$$

Part 3. We argue the convergence of random attractors in $L^{p}(\mathcal{O})$ by contradiction. Suppose (5.4) is not true, then, there exist $\delta>0, \tau \in \mathbb{R}, \omega \in \Omega, \varepsilon_{k} \rightarrow 0$ and $z_{k} \in \mathcal{A}_{\varepsilon_{k}}(\tau, \omega)$ such that

$$
\operatorname{dist}_{L^{p}(\mathcal{O})}\left(z_{k}, \mathcal{A}_{0}(\tau, \omega)\right) \geq \delta, \quad \text { for all } k \in \mathbb{N} .
$$

By Part 1 , there is a $z \in L^{p}(\mathcal{O})$ such that, passing to a subsequence,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|z_{k}-z\right\|_{L^{p}(\mathcal{O})}=0 \quad \text { and } \quad \operatorname{dist}_{L^{p}(\mathcal{O})}\left(z, \mathcal{A}_{0}(\tau, \omega)\right) \geq \delta \tag{5.9}
\end{equation*}
$$

By Part $2, \mathcal{B}$ is an absorbing set, which, together with the invariance of $\mathcal{A}_{\varepsilon_{k}}$, implies that

$$
\begin{equation*}
\bigcup_{k} \mathcal{A}_{\varepsilon_{k}}(s, \widetilde{\omega}) \subset \mathcal{B}(s, \widetilde{\omega}), \quad \text { for all } s \in \mathbb{R}, \text { for all } \widetilde{\omega} \in \Omega . \tag{5.10}
\end{equation*}
$$

By Part 2 again, $\mathcal{B} \in \mathfrak{D}$ and so \mathcal{B} can absorb itself. In this case, we let $T=$ $T(\mathcal{B})>0$, independent of ε_{k}, be an entry time such that $T \geq T_{0}$, where $T_{0}=$ $T_{0}(\delta)$ is the attraction time given in (5.8) when \mathcal{A}_{0} attracts \mathcal{B}_{0}.

Now, for each $k \in \mathbb{N}$, by the invariance of $\mathcal{A}_{\varepsilon_{k}}$, there are $\widehat{z}_{k} \in \mathcal{A}_{\varepsilon_{k}}(\tau-T$, $\left.\theta_{-T} \omega\right)$ such that

$$
z_{k}=\phi_{\varepsilon_{k}}\left(T, \tau-T, \theta_{-T} \omega\right) \widehat{z}_{k} .
$$

By Lemma 4.1 and (5.10), there exists another entry time $\widehat{T}=\widehat{T}\left(\mathcal{B}, \tau-T, \theta_{-T} \omega\right)$ such that, for all $t \geq \widehat{T}$ and $k \in \mathbb{N}$,

$$
\begin{align*}
\left\|\widehat{z}_{k}\right\|_{H_{\varepsilon_{k}}^{1}} & \leq\left\|\phi_{\varepsilon_{k}}\left(t, \tau-T-t, \theta_{-t} \theta_{-T} \omega\right) \mathcal{A}_{\varepsilon_{k}}\left(\tau-T-t, \theta_{-t} \theta_{-T} \omega\right)\right\|_{H_{\varepsilon_{k}}^{1}} \tag{5.11}\\
& \leq\left\|\phi_{\varepsilon_{k}}\left(t, \tau-T-t, \theta_{-t} \theta_{-T} \omega\right) \mathcal{B}\left(\tau-T-t, \theta_{-t} \theta_{-T} \omega\right)\right\|_{H_{\varepsilon_{k}}^{1}} \\
& \leq c_{1} \rho_{1}\left(\tau-T, \theta_{-T} \omega\right) .
\end{align*}
$$

This means that $\left\|\widehat{z}_{k}\right\|_{H_{\varepsilon_{k}}^{1}}$ is bounded in k, which together with (5.2) give

$$
\left\|\phi_{\varepsilon_{k}}\left(T, \tau-T, \theta_{-T} \omega\right) \widehat{z}_{k}-\phi_{0}\left(T, \tau-T, \theta_{-T} \omega\right) \mathcal{M} \widehat{z}_{k}\right\|_{L^{2}(\mathcal{O})} \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

that is

$$
\left\|z_{k}-\phi_{0}\left(T, \tau-T, \theta_{-T} \omega\right) \mathcal{M} \widehat{z}_{k}\right\|_{L^{2}(\mathcal{O})} \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

By (5.9) and by the Hölder inequality, we have

$$
\left\|z_{k}-z\right\|_{L^{2}(\mathcal{O})}^{2} \leq|\mathcal{O}|\left\|z_{k}-z\right\|_{L^{p}(\mathcal{O})}^{p} \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

Then, we have

$$
\begin{equation*}
\left\|z-\phi_{0}\left(T, \tau-T, \theta_{-T} \omega\right) \mathcal{M} \widehat{z}_{k}\right\|_{L^{2}(\mathcal{O})} \rightarrow 0, \quad \text { as } k \rightarrow \infty \tag{5.12}
\end{equation*}
$$

Once more, we consider the sequence $\widehat{z}_{k} \in \mathcal{A}_{\varepsilon_{k}}\left(\tau-T, \theta_{-T} \omega\right)$. By (5.11), $\left\|\widehat{z}_{k}\right\|_{H_{\varepsilon_{k}}^{1}(\mathcal{O})}$ is bounded in k, which together with (5.1) imply that

$$
\left\|\widehat{z}_{k}-\mathcal{M} \widehat{z}_{k}\right\|_{L^{2}(\mathcal{O})} \leq c \varepsilon_{k}\left\|\widehat{z}_{k}\right\|_{H_{\varepsilon_{k}}^{1}(\mathcal{O})} \leq C \varepsilon_{k} \rightarrow 0
$$

By Part $1,\left\{\widehat{z}_{k}\right\}$ has a convergent subsequence (denoted by itself) in $L^{p}(\mathcal{O})$ and thus in $L^{2}(\mathcal{O})$. Then, the above convergence shows that the corresponding subsequence $\left\{\mathcal{M} \widehat{z}_{k}\right\}$ is a Cauchy sequence in $L^{2}(\mathcal{O})$ and thus in $L^{2}(Q)$. So, there is a $\widehat{z}_{0} \in L^{2}(Q)$ such that

$$
\mathcal{M} \widehat{z}_{k} \rightarrow \widehat{z}_{0} \quad \text { in } L^{2}(Q) \text { as } k \rightarrow \infty
$$

By the continuity of the operator $\phi_{0}: L^{2}(Q) \mapsto L^{2}(Q)$, we have

$$
\phi_{0}\left(T, \tau-T, \theta_{-T} \omega\right) \mathcal{M} \widehat{z}_{k} \rightarrow \phi_{0}\left(T, \tau-T, \theta_{-T} \omega\right) \widehat{z}_{0} \quad \text { in } L^{2}(Q),
$$

and so in $L^{2}(\mathcal{O})$ by expending the domain. This together with (5.12) implies that $z=\phi_{0}\left(T, \tau-T, \theta_{-T} \omega\right) \widehat{z}_{0}$ in $L^{2}(\mathcal{O})$. So, $z=\phi_{0}\left(T, \tau-T, \theta_{-T} \omega\right) \widehat{z}_{0}$ almost everywhere on \mathcal{O}, which implies

$$
z=\phi_{0}\left(T, \tau-T, \theta_{-T} \omega\right) \widehat{z}_{0} \quad \text { in } L^{p}(\mathcal{O})
$$

By (5.10), we know $\widehat{z}_{k} \in \mathcal{A}_{\varepsilon_{k}}\left(\tau-T, \theta_{-T} \omega\right) \subset \mathcal{B}\left(\tau-T, \theta_{-T} \omega\right)$. Then, by the construction in Part 2, it follows that $\mathcal{M} \widehat{z}_{k} \in \mathcal{B}_{0}\left(\tau-T, \theta_{-T} \omega\right)$ for all $k \in \mathbb{N}$. Hence, the limit $\widehat{z}_{0} \in \mathcal{B}_{0}\left(\tau-T, \theta_{-T} \omega\right)$ in view of the closedness of \mathcal{B}_{0}. By (5.8) in Part 2 and by $T \geq T_{0}$, we have

$$
\operatorname{dist}_{L^{p}(\mathcal{O})}\left(z, \mathcal{A}_{0}(\tau, \omega)\right)=\operatorname{dist}_{L^{p}(Q)}\left(\phi_{0}\left(T, \tau-T, \theta_{-T} \omega\right) \widehat{z}_{0}, \mathcal{A}_{0}(\tau, \omega)\right)<\delta .
$$

This gives a contradiction with (5.9).

References

[1] F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal. 18 (2001), 283-302.
[2] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998
[3] J.M. Arrieta, A.N. Carvalho and G. Lozada-Cruz, Dynamics in dumbbell domains. III. Continuity of attractors, J. Differential Equations 247 (2009), 225-259
[4] J.M. Arrieta, A.N. Carvalho, R.P. Silva and M.C. Pereira, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal. 74 (2011), 5111-5132.
[5] P.W. Bates, K. Lu and B.X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
[6] T. Caraballo, I. Chueshov and P.E. Kloeden, Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal. 38 (2007), 1489-1507.
[7] T. Caraballo and J.A. Langa, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Disrete Contin. Dyn. Syst. 6 (2000), 875-892.
[8] I. Chueshov, Monotone Random Systems Theory and Applications, vol. 1779, Springer Science \& Business Media, 2002.
[9] I. Chueshov and S. Kuksin, Random kick-forced 3D Navier-Stokes equations in a thin domain, Arch. Ration. Mech. Anal. 188 (2008), 117-153.
[10] I. Chueshov and S. Kuksin, Stochastic 3D Navier-Stokes equations in a thin domain and its α-approximation, Phys. D 237 (2008), 1352-1367.
[11] H. Cui, J.A. Langa and Y. Li, Measurability of random attractors for quasi strong-toweak continuous random dynamical systems, J. Dynam. Differential Equations 30 (2018), 1873-1898.
[12] H. Cui and Y. Li, Existence and upper semicontinuity of random attractors for stochastic degenerate parabolic equations with multiplicative noises, Appl. Math. Comput. 271 (2015), 777-789.
[13] H. Cui, Y. Li and J.Yin, Existence and upper semicontinuity of bi-spatial pullback attractors for smoothing cocycles, Nonlinear Anal. 128 (2015), 303-324.
[14] T. Elsken, Attractors for reaction-diffusion equations on thin domains whose linear part is non-self-adjoint, J. Differential Equations 206 (2004), 94-126.
[15] B. Gess, Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise, Annals Probab. 42 (2014), 818-864.
[16] J.K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc. 329 (1992), 185-219.
[17] J.K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl. 71 (1992), 33-95.
[18] J.K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 283-327.
[19] R. Johnson, M. Kamenskil̆ and P. Nistri, Existence of periodic solutions of an autonomous damped wave equation in thin domains, J. Dynam. Differential Equations 10 (1998), 409-424.
[20] D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst. 38 (2018), 187-208.
[21] D. Li, B. WANG and X. Wang, Limiting behavior of non-autonomous stochastic reactiondiffusion equations on thin domains, J. Differential Equations 262 (2017), 1575-1602.
[22] X. Li, C. Sun and F. Zhou, Pullback attractors for a non-autonomous semilinear degenerate parabolic equation, Topol. Methods Nonlinear Anal. 47 (2016), 511-528.
[23] Y. Li, H. Cui and J. Li, Upper semi-continuity and regularity of random attractors on p-times integrable spaces and applications, Nonlinear Anal. 109 (2014), 33-44.
[24] Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations 258 (2015), 504-534.
[25] Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations 245 (2008), 1775-1800.
[26] Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 1203-1223.
[27] Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Memoirs Amer. Math. Soc. 206 (2010), 1-106.
[28] Z. Lian, P. Liu and K. Lu, Existence of SRB measures for a class of partially hyperbolic attractors in Banach spaces, Discrete Contin. Dyn. Syst. 37 (2017), 3905-3920.
[29] V.D. Nguyen and D.K. Tran, Asymptotic behavior for nonautonomous functional differential inclusions with measures of noncompactness, Topol. Methods Nonlinear Anal. 49 (2017), 383-400.
[30] M. Prizzi and K.P. Rybakowski, Recent results on thin domain problems II, Topol. Methods Nonlinear Anal. 19 (2002), 199-219.
[31] G. Raugel and G.R. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503-568.
[32] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for noncompact random dynamical systems, J. Differential Equations 253 (2012), 1544-1583.
[33] B. WANG, Asymptotic behavior of stochastic wave equations with critical exponents on \mathbb{R}^{3}, Trans. Amer. Math. Soc. 363 (2011) 3639-3663.
[34] M. Wang and Y. Tang, Attractors in H^{2} and $L^{2 p-2}$ for reaction-diffusion equations on unbounded domains, Commun. Pure Appl. Anal. 12 (2013), 1111-1121.
[35] X. Wang, K. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations 264 (2018), 378-424.
[36] X. Xiang and S. Zhou, Attractors for second order nonautonomous lattice system with dispersive term, Topol. Methods Nonlinear Anal. 46 (2015), 893-914.
[37] J. Yin and Y. Li, Two types of upper semi-continuity of bi-spatial attractors for nonautonomous stochastic p-Laplacian equations on $R-n$, Math. Methods Appl. Sci. 40 (2017), 4863-4879.
[38] J. Yin, Y. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bispatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl. 450 (2017), 1180-1207.
[39] J. Yin, Y. Li and H. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noise in L^{q}, Appl. Math. Comput. 225 (2013), 526-540.
[40] W. Zhao and Y. Li, ($\left.L^{2}, L^{p}\right)$-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal. 75 (2012), 485-502.

Manuscript received December 4, 2017
accepted January 10, 2018

Fuzhi Li, Yangrong Li (corresponding author) and Renhai Wang
School of Mathematics and Statistics
Southwest University
Chongqing, 400715, P.R. CHINA
E-mail address: copy666@email.swu.edu.cn liyr@swu.edu.cn a624716519@email.swu.edu.cn

[^0]: 2010 Mathematics Subject Classification. Primary: 35B40; Secondary: 37L55, $60 H 15$.
 Key words and phrases. Bi-spatial random attractor; stochastic reaction-diffusion equation; rough noise; thin domain; strong semi-continuity; regularity; symbolical truncation.

 This work was funded by National Natural Science Foundation of China grant 11571283.

