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Abstract. A three-dimensional thermo-visco-elastic system for the
Kelvin–Voigt type material at small strain is considered. The system in-
volves the constant heat conductivity and the specific heat satisfying the
Einstein–Debye (θ3+θ)-law. Such a nonlinear law, relevant at relatively low
temperatures, represents the main novelty of the paper. The existence of
global regular solutions is proved without the small data assumption. The
crucial part of the proof is the strictly positive lower bound on the absolute
temperature θ. The problem remains open in the case of the Debye θ3-law.
The existence of local in time solutions is proved by the Banach successive
approximations method. The global a priori estimates are derived with the
help of the theory of anisotropic Sobolev spaces with a mixed norm. Such
estimates allow to extend the local solution step by step in time.

1. Introduction

The aim. In this paper we study the three-dimensional (3-D) thermo–visco-
elastic system at small strains with the constant heat conductivity k > 0, and
the specific heat (heat capacity) c(θ) satisfying the Einstein–Debye (θ3 + θ)-law,
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c(θ) = c1vθ
3 + c2vθ, where θ > 0 is the absolute temperature and c1v, c2v positive

constants. The system describes homogeneous, isotropic, linearly responding
materials in the Kelvin–Voigt rheology at relatively low temperatures θ � θD,
below the Debye temperature θD. According to the Debye theory the specific
heat c depends on θ/θD with θD as the scaling factor for different materials
(known for most materials, see e.g. the monograph by Kittel [16]).

The present paper continues our previous studies [23], [24], where we ad-
dressed the global regular solvability of thermo-visco-elastic systems with the
specific heat of the forms c(θ) = cvθ, cv = const > 0 in [23], and c(θ) = cvθ

σ,
σ ∈ (1/2, 1] in [24]. Such forms of c(θ) are relevant at very low temperatures
below the range where the Debye law c(θ) = cvθ

3 is appropriate.
The Einstein–Debye (θ3 +θ)-law combining the Einstein θ-law and the Debye

θ3-law is typical for metals at low temperatures at which the electron contribu-
tion becomes significant.

Prior to discussing mathematical motivations and pointing out the associated
technical difficulties for this type of problems, let us add few physical comments
(for more details see Section 2).

Specific heat has a weak temperature dependence at high temperatures θ �
θD above the Debye temperature θD, but decreases down to zero as θ ap-
proaches 0. The constant value of the specific heat of many solids is usually
referred to as Dulong–Petit law. In 1819 Dulong and Petit [26] found experimen-
tally that for many solids at room temperature specific heat is constant.

At this point it is important to emphasize that the global solvability of
3-D thermo-visco-elastic system with constant heat conductivity k and the con-
stant specific heat c is, in spite of great effort through many decades, still remains
open in dimensions n ≥ 2. In dimension n = 1 it was established already at
the beginning of ninetieth of the last century by Slemrod [31], Dafermos [6], and
Dafermos and Hsiao [7]. For detailed references concerning solvability of thermo-
visco-elastic systems we refer to Roubíček [27]–[29], authors’ papers [23], [24], and
the recent review paper by Zvyagin and Orlov [35]. All known results on multi-
dimensional thermo-visco-elasticity deal with a modified energy equation. Mod-
ifications involve either the nonconstant specific heat or the nonconstant heat
conductivity. In view of the Einstein and the Debye theories it seems natural to
consider thermo-visco-elastic systems with the nonlinear temperature-dependent
specific heat. Our primary mathematical goal in this paper was to admit the
Debye θ3-law, c(θ) = cvθ

3. To our best knowledge such problem has not been so
far addressed in the mathematical literature. Unfortunately, in the case of the
θ3-law we have been faced with a serious mathematical obstacle to prove strictly
positive lower bound for the absolute temperature. We have managed to prove
this after adding a linear (possibly small) term c2vθ, c2v = const > 0. In other
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words, we have assumed the Einstein–Debye (θ3 + θ)-law, c(θ) = c1vθ
3 + c2vθ.

Having proved the strict positivity of θ the existence of global regular solutions
to the thermo-visco-elastic system can be concluded by using similar arguments
as in [24]. These arguments, based on the idea of successive improvement of en-
ergy estimates by the application of the theory of anisotropic Sobolev spaces with
a mixed norm, indicate that the main role plays just the term c1vθ

3. Therefore, all
considerations could be repeated provided the lower bound for θ is established.

Finally, let us remark that apart from the mathematical issues the system
under consideration may be of some practical interest in the cryogenic engineer-
ing problems where one needs to understand and characterize the behavior of
various materials on the basis of the mathematical model and recorded materials
properties.

Thermo-visco-elastic system. The system under consideration has the
following form

utt −∇ · [A1εt +A2(ε− θα)] = b in ΩT := Ω× (0, T ),(1.1)

(c1vθ
3 + c2vθ)θt − k∆θ = −θ(A2α) · εt + (A1εt) · εt + g in ΩT ,(1.2)

where

ε ≡ ε(u) =
1

2
(∇u+ (∇u)T ), εt ≡ ε(ut) =

1

2
(∇ut + (∇ut)T ),

and c1v, c2v, k are the positive constants.
Here Ω ⊂ R3 is a bounded domain occupied by a body in a fixed referen-

ce configuration, and (0, T ) is the time interval. The system is completed by
appropriate boundary and initial conditions. We assume

u = 0, n · ∇θ = 0 on ST := S × (0, T ),(1.3)

u|t=0 = u0, ut|t=0 = u1, θ|t=0 = θ0 in Ω,(1.4)

where S is the boundary of Ω and n is the unit outward normal to S.
The field u : ΩT → R3 is the displacement, θ : ΩT → R+ = (0,∞) is the

absolute temperature, the second order tensors ε = (εij)i,j=1,2,3 and εt =

((εt)ij)i,j=1,2,3 denote, respectively, the fields of the linearized strain and the
strain rate.

Equation (1.1) is the linear momentum balance with the stress tensor given by
a linear thermo-visco-elastic law of the Kelvin–Voigt type (cf. [10, Chapter 5.4])

S = A1εt +A2(ε− θα).

The fourth order tensors

A1 = ((A1)ijkl)i,j,k,l=1,2,3 and A2 = ((A2)ijkl)i,j,k,l=1,2,3



164 I. Pawłow — W.M. Zajączkowski

are, respectively, the linear viscosity and the elasticity tensors, defined by

(1.5) ε 7→ Amε = λm tr εI + 2µmε, m = 1, 2,

where λ1, µ1 are the viscosity constants and λ2, µ2 are the Lamé constants, both
λ1, µ1 and λ2, µ2 with the values within the elasticity range

(1.6) µm > 0, 3λm + 2µm > 0, m = 1, 2,

I = (δij)i,j=1,2,3 is the identity tensor, and trε denotes the trace of ε.
The second order symmetric tensor α = (αij)i,j=1,2,3 with constant entries

αij represents the thermal expansion. The vector field b : ΩT → R3 is the exter-
nal body force.

Equation (1.2) is the energy balance in which the linear Fourier law for the
heat flux q = −k∇θ with the constant heat conductivity k > 0, and the Einstein–
Debye law for the specific heat, c(θ) = c1vθ

3 + c2vθ, with constant c1v, c2v > 0, have
been adopted.

The first two nonlinear terms on the right-hand side of (1.2) represent heat
sources created by the deformation of the material due to thermal expansion and
by the viscosity. The field g : ΩT → R is the external heat source. The boundary
conditions in (1.3) mean that the body is fixed at the boundary S and is there
thermally isolated. The initial conditions (1.4) prescribe displacement, velocity
and temperature at t = 0.

We remark that since our main goal is to focus on the existence of global
regular solutions we have assumed the simplest homogeneous boundary condi-
tions (1.3). However, with some additional technical complications, other types
of nonhomogeneous boundary conditions can be considered as well.

The system (1.1)–(1.2) can be derived by various arguments of thermody-
namics, see e.g. [13], [21], [27], [3]. In Section 2 we summarize its thermodynamic
basis. As a main point we put emphasis on the Debye and the Einstein–Debye
laws of the specific heat.

Above and hereafter the summation convention over the repeated indices is
used. Vectors (tensors of the first order), tensors of the second order (referred
to simply as tensors), and tensors of higher order are denoted by bold letters.
A dot designates the scalar product, irrespective of the space in question, e.g.
for u = (ui)i=1,2,3, v = (vi)i=1,2,3, S = (Sij)i,j=1,2,3, R = (Rij)i,j=1,2,3, A =

(Aijkl)i,j,k,l=1,2,3, ε = (εij)i,j=1,2,3, we have

u · v = uivi, S ·R = SijRij , Su = (Sijuj)i=1,2,3,

Aε = (Aijklεkl)i,j=1,2,3, (Aε) · ε = Aijklεklεij ,

where the summation convention is used.
The term field means a function of a material point x ∈ R3 and time t. For

the reader’s convenience we use the notation ut (instead of u̇) for the material
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time derivative of the field u (with respect to t holding x fixed). The operators
∇ and ∇· denote the material gradient and the divergence (with respect to x
holding t fixed). For the divergence we use the convention of the contraction
over the last index, e.g.,

∇ · (Aε) =

(
∂

∂xj
(Aijklεkl)

)
i=1,2,3

.

We write

f,i =
∂f

∂xi
, i = 1, 2, 3, ft =

∂f

∂t
, ε = (εij)i,j=1,2,3,

F,ε(ε, θ) =

(
∂F (ε, θ)

∂εij

)
i,j=1,2,3

, F,θ(ε, θ) =
∂F (ε, θ)

∂θ
,

where the space and the time derivatives are material.
For simplicity, whenever there is no danger of confusion, we omit arguments

(ε, θ) of the function f(ε, θ). The specification of tensor indices is omitted as
well. For vector b = (bi)i=1,2,3 and tensor B = (Bij)i,j=1,2,3 we denote

|b| = (bibi)
1/2, |B| = (BijBij)

1/2.

Linear elasticity and viscosity operators. For the further analysis it is
convenient to formulate problem (1.1)–(1.4) in terms of the linear viscosity and
elasticity operators, Q1 and Q2, defined by

(1.7) u 7→ Qmu = ∇ · (Amε(u)) = µm∆u+ (λm + µm)∇(∇ · u), m = 1, 2,

with the domains D(Qm) = H2(Ω) ∩H1
0(Ω).

For the notational simplicity we introduce also the second order symmetric
tensor B = (Bij) defined by

(1.8) B := −A2α = −((A2)ijklαkl).

Then system (1.1)–(1.2) takes the form

(1.9)
utt −Q1ut = Q2u+∇ · (θB) + b in ΩT ,

(c1vθ
3 + c2vθ)θt − k∆θ = θB · εt + (A1εt) · εt + g in ΩT ,

with the boundary and initial conditions (1.3), (1.4).

Assumptions and their implications. Throughout we shall assume that

(A1) Ω ⊂ R3 is a bounded domain with the boundary S of class at least C2;
T > 0 is an arbitrary finite number;

(A2) α = (αij)i,j=1,2,3 is a second order symmetric tensor with constant en-
tries αij ;

(A3) The fourth order tensors A1 and A2 are defined by (1.5) with the coef-
ficients µm, λm, m = 1, 2, satisfying (1.6).
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We list the implications of assumption (A3) which are used in the further
analysis. The conditions (1.5), (1.6) ensure the symmetry of tensors Am

(1.10) (Am)ijkl = (Am)jikl = (Am)klij , m = 1, 2,

and their coercivity and boundedness

(1.11) am∗|ε|2 ≤ (Amε) · ε ≤ a∗m|ε|2, m = 1, 2,

where am∗ = min{3λm+2µm, 2µm} and a∗m = max{3λm+2µm, 2µm}. Moreover,
(1.6) ensures the following properties of operators Qm, m = 1, 2:

• Qm are strongly elliptic (property holding true under weaker assumption
µm > 0, λm + 2µm > 0, (see [25, Section 7])) and satisfy the estimate
(see [20, Lemma 3.2]):

(1.12) cm‖u‖H2(Ω) ≤ ‖Qmu‖L2(Ω) for u ∈ D(Qm), m = 1, 2,

with the positive constants cm depending on Ω. Since clearly,

‖Qmu‖L2(Ω) ≤ cm‖u‖H2(Ω), cm > 0,

it follows that the norms ‖Qmu‖L2(Ω) and ‖u‖H2(Ω) are equivalent on
D(Qm).
• The operators Qm are self-adjoint on D(Qm):

(1.13) (Qmu,v)L2(Ω) = −µm(∇u,∇v)L2(Ω)

− (λm + µm)(∇ · u,∇ · v)L2(Ω) = (u,Qmv)L2(Ω)

for u,v ∈ D(Qm).
• The operators Qm are positive on D(Qm):

(1.14) (−Qmu,u)L2(Ω) = µm‖∇u‖2L2(Ω) + (λm + µm)‖∇ · u‖2L2(Ω) ≥ 0

for u ∈ D(Qm). Hence, there exist the fractional powers Q1/2
m with the

domains D(Q1/2
m ) = H1

0(Ω), satisfying

(1.15) (Q1/2
m u,Q1/2

m v)L2(Ω) = (−Qmu,v)L2(Ω) = (u,−Qmv)L2(Ω)

for u,v ∈ D(Qm).

Let us also notice that by (1.11) and the Korn inequality

(1.16) d1/2‖u‖H1(Ω) ≤ ‖ε(u)‖L2(Ω) for u ∈H1
0(Ω), d > 0,

it follows that

(1.17) ‖Q1/2
m u‖2L2(Ω) = µm‖∇u‖2L2(Ω) + (λm + µm)‖∇ · u‖2L2(Ω)

= (Amε(u), ε(u))L2(Ω) ≥ am∗‖ε(u)‖2L2(Ω) ≥ am∗d‖u‖
2
H1(Ω).

Thus, the norms ‖Q1/2
m u‖L2(Ω) and ‖u‖H1(Ω) are equivalent on D(Q1/2

m ).
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Main result. This result is analogous to that proved in [24].

Theorem 1.1 (Existence). Let assumptions (A1)–(A3) formulated above be
satisfied, and

b ∈ L10+(ΩT ) ∩L5,12(ΩT ), u0 ∈W 2
5+(Ω),

u1 ∈ B2−2/5+

5+,5+ (Ω), g ∈ L5+(0, T ;L∞(Ω)), g ≥ 0,

θ0 ∈ H1(Ω) ∩B2−2/5+

5+,5+ (Ω) ∩ L∞(Ω), θ0 ≥ θ > 0,

where θ is a constant. Then there exists a global solution to problem (1.1)–(1.4)
such that

ut ∈W 2,1
5+ (ΩT ) and θ ∈W 2,1

5+ (ΩT ),

where 5+ is a number larger than 5 but close to 5. The spaces used above are
defined in Section 3. Moreover,

θ(t) ≥ θ exp(−at) ≡ θ∗(t) for t ≤ T,

where a is a positive constant given by a = |B|/
(
2a1∗min

{
c1v, c

2
v

})
.

Plan of the paper. In Section 2 we present the thermodynamic basis of
system (1.1)–(1.2). In Section 3 we define spaces used in this paper, in particular
the anisotropic Sobolev spaces with a mixed norm. We recall the corresponding
imbeddings and interpolations as well as the trace and the inverse trace the-
orems for the Sobolev–Slobodetskĭı spaces with a mixed norm. Moreover, we
present auxiliary results on the solvability of linear parabolic initial-boundary
value problems in such spaces. Section 4 is devoted to the proof of a global
positive infimum of temperature. In Section 5, applying the Banach method of
successive approximations, we state the local existence of solutions such that
ut ∈W 2,1

5+ (Ωt) and θ ∈W 2,1
5+ (Ωt), where t > 0 is sufficiently small. In the proof

we can use exactly the same arguments as in [24, Section 5]. In Section 6 we de-
rive a priori global estimates such that ut ∈W 2,1

5+ (Ωt) and θ ∈ W 2,1
5+ (Ωt) where

t > 0 is arbitrary finite. In this case the derivation is much shorter than in [24].
Combining the results of sections 5 and 6 in section 7 we conclude the global

existence of solutions.

2. Thermodynamic basis

We recall (see [23], [24]) the thermodynamic basis of the thermo-visco-elastic
system (1.1)–(1.2) with the special emphasis put onto the Debye θ3-law and the
Einstein–Debye (θ3 + θ)-law of the specific heat.

The system (1.1)–(1.2) represents the local forms of the balance laws for the
linear momentum and the internal energy in a referential description, with the
referential mass density assumed constant, normalized to unity, %0 = 1:

(2.1) utt −∇ · S = b, et +∇ · q − S · εt = g.
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Here S is the stress tensor, q is the referential heat flux, and e is the specific
internal energy.

The system is governed by two thermodynamic potentials. The first one is the
specific free energy f = f̂(ε, θ) which by a thermodynamic requirement is strictly
concave with respect to θ > 0 for all ε. The second one is the dissipation potential
D = D̂(εt,∇θ; ε, θ), which by a thermodynamic requirement is nonnegative,
convex in (εt,∇θ) – variables and such that D(0,0; ε, θ) = 0 for all (ε, θ). In
[14] and [3] D is referred to as the pseudopotential of dissipation.

The only difference of the present paper in comparison with [23], [24] is the
form of the thermal part f∗(θ) of the free energy

(2.2) f(ε, θ) = f∗(θ) +W (ε, θ),

where

(2.3) f∗(θ) = − c
1
v

12
θ4 − c2v

2
θ2, c1v, c

1
v = const > 0.

The second term in (2.2) represents the elastic energy

(2.4) W (ε, θ) =
1

2
ε · (A2ε)− θε · (A2α).

In [23] it has been assumed that

(2.5) f∗(θ) = −cv
2
θ2, cv = const > 0,

whereas in [24]

(2.6) f∗(θ) = − cv
σ(σ + 1)

θσ+1

with cv = const > 0 and 1/2 < σ ≤ 1.
The paper [24] provides an essential improvement of the theoretical results

from [23].
The thermal energy (2.3) is associated with the Einstein–Debye law of the

specific heat. The case c2v = 0 corresponds to the Deby law. Both cases are
relevant at low temperature range; see comments below.

In view of thermodynamic relations

(2.7)

η = −f,θ = η∗(θ) + ε · (A2α),

e = f + θη = e∗(θ) +
1

2
ε · (A2ε),

c = e,θ = c∗,
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in case of (2.3) we have

(2.8)

η∗(θ) =
c1v
3
θ3 + c2vθ,

e∗(θ) = f∗(θ) + θη∗(θ) =
c1v
4
θ4 +

c2v
2
θ2,

c∗(θ) = e∗,θ = c1vθ
3 + c2vθ.

According to (2.1)2 and (2.7)3 this gives rise to the term (c1vθ
3 + c2vθ)θt in tem-

perature equation (1.2).

Remarks on the theories of specific heat. There exists extensive liter-
ature in solid state physics on the theories of specific heat (see, e.g., [2], [5], [16],
[19], [30], [12]). It seems to be of interest to compile some basic facts on the four
well-known models of the specific heat:

• the classical Dulong–Petit model (1819) [26];
• the quantum mechanical Einstein model (1907) [11];
• the Debye model (1912) [8] expanding the Einstein model;
• the Einstein–Debye model for metals at low temperatures.

In the Dulong–Petit model the specific heat is constant. It is known to show
poor agreement with the experiment except at high temperatures. The Einstein
model yields good agreement with the experiment at very high and very low
temperatures, but not in between. The Debye theory provides a more accurate
model. The thermal energy expression from the Debye theory of the specific heat
is of the form (in our notation)

(2.9) e∗(θ) = c
θ4

θ3
D

∫ θD/θ

0

x3

expx− 1
dx,

where θD is the Debye temperature and c a positive physical constant. Thus, the
Debye specific heat is the function of the ratio ξ = θ/θD, given by

(2.10) c∗(θ) = e∗,θ = cD

(
θ

θD

)
,

where

(2.11) D(ξ) = 4ξ3

∫ 1/ξ

0

1

expx− 1
dx− 1

ξ(exp 1/ξ − 1)

is known as the Debye specific heat function. Even though the integral in (2.9)
and (2.11) cannot be evaluated in closed form, the low and high temperature
limits can be assessed.

For the high temperature case where θ � θD, the value of x is very small
throughout the range of integral. This justifies using the apprximation to the



170 I. Pawłow — W.M. Zajączkowski

exponential by the exponential series exp(x) ∼= 1 + x. This reduces the energy
expression (2.9) to (see, e.g. [30, Chapter 7])

(2.12) e∗(θ) = c
θ4

θ3
D

∫ θD/θ

0

x2 dx =
c

3

θ4

θ3
D

(
θD
θ

)3

=
c

3
θ.

Hence, in this case

(2.13) c∗(θ) = e∗,θ =
c

3
,

which yields the constant Dulong–Petit specific heat.
For low temperatures where θ � θD, the exponential in the denominator

becomes very large before reaching the limit, implying that the integrand in
(2.9) is very small near the upper limit. This makes it plausible to approximate
the integral by increasing the limit to infinity to make use of the standard integral∫ ∞

0

x3

expx− 1
dx =

π4

15
.

Then the energy becomes

(2.14) e∗(θ) =
cπ4

15

θ4

θ3
D

,

so that the corresponding specific heat is

(2.15) c∗(θ) = e∗,θ = c1

(
θ

θD

)3

, where c1 =
4π4

15
c.

This yields the Debye θ3-law for the specific heat (see e.g. [2, Section 4.3]).
This θ3-form of the specific heat at low temperatures is known to agree

with experiment for nonmetals. For metals the electronic specific heat becomes
significant at low temperatures and results in the additional linear term in θ

(2.16) c∗(θ) = c1

(
θ

θD

)3

+ c2θ, c2 = const > 0.

Such form of the specific heat is referred to as the Einstein–Debye specific heat.
The θ3 term arises from the lattice vibrations, and the linear term from the
electrons conduction. The Einstein contribution c2θ becomes dominating at
very low temperatures.

The dissipation potential. For system (1.1)–(1.2) it has exactly the same
form as in [23], [24]

(2.17) D =
1

2θ
εt · (A1εt) +

k

2
θ2

∣∣∣∣∇ 1

θ

∣∣∣∣2,
where A1 is the fourth order viscosity tensor given by (1.5), and k > 0 is the
constant heat conductivity.
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In particular, the free energy (2.2) and the dissipation potential (2.17) lead
to the same formulas for the stress tensor S and the heat flux q. Moreover, the
Clausius-Duhem inequality is satisfied

(2.18) ηt +∇ · q
θ

= σ +
g

θ
≥ g

θ
,

where

(2.19) σ :=
∂D

∂∇(1/θ)
· ∇ 1

θ
+
∂D
∂εt
· εt = kθ2

∣∣∣∣∇1

θ

∣∣∣∣2 +
1

θ
(A1εt) · εt ≥ 0

is the specific entropy production. This inequality together with the positive
lower bound for temperature constitute the basis of energy estimates in the
existence proof, see Sections 4–6.

3. Notation and auxiliary results

For readers convenience this section recalls basic facts from [24, Section 3]
and adds new ones.

Notation. Let Ω ⊂ Rn, n ≥ 1, be a domain in Rn with boundary S. Let
ΩT = Ω×(0, T ), ST = S×(0, T ) with T > 0 finite. ByW k

p (Ω), k ∈ N∪{0} ≡ N0,
p ∈ [1,∞), we denote the Sobolev space with the finite norm

‖u‖Wk
p (Ω) =

( ∑
|α|≤k

∫
Ω

|Dα
xu|p dx

)1/p

,

where α = (α1, · · · , αn) is a multi-index, αi ∈ N0, |α| = α1 + . . . + αn, Dα
x =

∂α1
x1
. . . ∂αnxn . Let H

k(Ω) = W k
2 (Ω).

Next, we introduce the anisotropic Lebesgue spaces Lp,p0(ΩT ) = Lp0(0, T ;

Lp(Ω)), p, p0 ∈ [1,∞], with the finite norm

‖u‖Lp,p0 (ΩT ) =

(∫ T

0

‖u(t)‖p0Lp(Ω) dt

)1/p0

.

Moreover, W k,k/2
p,p0 (ΩT ), k, k/2 ∈ N0, p, p0 ∈ [1,∞] are Sobolev spaces with

a mixed norm, which are the completion of C∞(ΩT )-functions under the finite
norm

‖u‖
W
k,k/2
p,p0

(ΩT )
=

(∫ T

0

( ∑
|α|+2a≤k

∫
Ω

|Dα
x∂

a
t u|p dx

)p0/p
dt

)1/po

.

ByW s,s/2
p,p0 (ΩT ), s ∈ R+, p, p0 ∈ [1,∞], we denote the Sobolev–Slobodetskĭı space

with the finite norm

‖u‖
W
s,s/2
p,p0

(ΩT )
=

∑
|α|+2a≤[s]

‖Dα
x∂

a
t u‖Lp,p0 (ΩT )

+

[ ∫ T

0

(∫
Ω

∫
Ω

∑
|α|+2a=[s]

|Dα
x∂

a
t u(x, t)−Dα

x′∂
a
t u(x′, t)|p

|x− x′|n+p(s−[s])
dx dx′

)p0/p
dt

]1/p0
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+

[ ∫ T

0

∫ T

0

(∫
Ω

∑
|α|+2a=[s]

|Dα
x∂

a
t u(x, t)−Dα

x∂
a
t′u(x, t′)|p

|t− t′|1+p(s/2−[s/2])
dx

)p0/p
dt dt′

]1/p0

,

where a ∈ N0 and [s] is the integer part of s. For s odd the one before last term
in the above norm vanishes whereas for s even the two last terms vanish.

We use also the notation Lp(Ω
T ) = Lp,p(Ω

T ), W s,s/2
p (ΩT ) = W

s,s/2
p,p (ΩT ),

and so on.
By Blp,p0(Ω), l ∈ R+, p, p0 ∈ [1,∞) we denote the Besov space of functions

making the following norm finite

‖u‖Blp,p0 (Ω) = ‖u‖Lp(Ω) +

( n∑
i=1

∫ ∞
0

‖∆m
i (h,Ω)∂kxiu‖

p0
Lp(Ω)

h1+(l−k)p0
dh

)1/p0

,

where k ∈ N0, m ∈ N, m > l − k > 0, ∆j
i (h,Ω)u, j ∈ N, h ∈ R+, is the

finite difference of the order j of the function u(x) with respect to xi, with
∆1
i (h,Ω)u = ∆i(h,Ω)u = u(x1, . . . , xi−1, xi + h, xi+1, . . . , xn) − u(x1, . . . , xn),

∆j
i (h,Ω)u = ∆i(h,Ω)∆j−1

i (h,Ω)u and ∆j
i (h,Ω)u = 0 for xi + jh 6∈ Ω.

From Golovkin [15] it is known that the norms of the Besov space Blp,p0(Ω)

are equivalent for different m and k satisfying the condition m > l − k > 0.
By Cα,α/2(ΩT ), α ∈ (0, 1), we denote the anisotropic Hölder space of func-

tions making the following norm finite

‖u‖Cα,α/2(ΩT ) = sup
ΩT
|u(x, t)|

+ sup
x′,x′′,t

|u(x′, t)− u(x′′, t)|
|x′ − x′′|α

+ sup
x,t′,t′′

|u(x, t′)− u(x, t′′)|
|t′ − t′′|α/2

.

By δ we denote a small positive number, and by c a generic positive constant
which changes its value from formula to formula and depends at most on the
imbedding constants, constants of the considered problem, and the regularity of
the boundary.

By ϕ = ϕ(σ1, . . . , σk), k ∈ N, we denote a generic function which is a positive
increasing function of its arguments σ1, . . . , σk, and may change its form from
formula to formula.

Boldface L,W , B are used for the corresponding spaces of vector and tensor
valued functions.

Auxiliary results. We use the following interpolation lemma

Lemma 3.1. (see [1, Chapter 4, Section 18]) Let u ∈ W s,s/2
p,p0 (ΩT ), s ∈ R+,

p, p0 ∈ [1,∞], Ω ⊂ R3. Let σ ∈ R+ ∪ {0}, and

κ =
3

p
+

2

p0
− 3

q
− 2

q0
+ |α|+ 2a+ σ < s.
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Then Dα
x∂

a
t u ∈W

σ,σ/2
q,q0 (ΩT ), q ≥ p, q0 ≥ p0, and there exists ε ∈ (0, 1) such that

‖Dα
x∂

a
t u‖Wσ,σ/2

q,q0
(ΩT )

≤ εs−κ‖u‖
W
s,s/2
p,p0

(ΩT )
+ cε−κ‖u‖Lp,p0 (ΩT ).

As a special case of Lemma 3.1 we need

Lemma 3.2. (see [1, Chapter 4, Section 18]) Let u ∈ W s
p (Ω), s ∈ R+, p ∈

[1,∞], Ω ⊂ R3. Let σ ∈ R+ ∪ {0}, and

κ =
3

p
− 3

q
+ |α|+ σ < s.

Then Dα
xu ∈Wσ

q (Ω), q ≥ p, and there exists ε ∈ (0, 1) such that

‖Dα
xu‖Wσ

q (Ω) ≤ εs−κ‖u‖W s
p (Ω) + cε−κ‖u‖Lp(Ω).

Lemma 3.3 (Imbedding between Besov spaces [1, Chapter 3, Section 18]).
Let u ∈ Bσ−2/r2

r1,r2 (Ω). Then u ∈ Bσ
′−2/r′2

r′1,r
′
2

(Ω), Ω ⊂ R3, if

3

r1
+

2

r2
− 3

r′1
− 2

r′2
+ σ′ ≤ σ,

where r′1 ≥ ri, i = 1, 2, and σ ≥ σ′.

Let us consider the problem

(3.1)

ut −Qu = f in ΩT ,

u = 0 on ST ,

u|t=0 = u0 in Ω,

where Ω ⊂ R3 and

Qu = µ∆u+ ν∇(∇ · u)

with µ > 0, ν > 0. Let us notice that Q replaces Q1, so µ = µ1, ν = λ1 + µ1.
Hence assumption (1.6) implies that µ > 0 and ν > 0.

Lemma 3.4 (Parabolic system in W 2,1
p,p0(ΩT ) [17], [22], [33], [32]).

(a) Assume that f ∈ Lp,p0(ΩT ), u0 ∈ B2−2/p0
p,p0 (Ω), p, p0 ∈ (1,∞), and

S ∈ C2. If 2 − 2/p0 − 1/p > 0 the compatibility condition u0|S = 0 is
assumed. Then there exists a unique solution to problem (3.1) such that
u ∈W 2,1

p,p0(ΩT ) and

(3.2) ‖u‖W 2,1
p,p0

(ΩT ) ≤ c
(
‖f‖Lp,p0 (ΩT ) + ‖u0‖B2−2/p0

p,p0
(Ω)

)
with constant c depending on Ω, S, p, p0.

(b) Assume that f = ∇ · g + b, g = (gij), b = (bi), g, b ∈ Lp,p0(ΩT ), and
u0 ∈ B1−2/p0

p,p0 (Ω). Assume the compatibility condition

u0|S = 0 if 1− 2/p0 − 1/p > 0.
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Then there exists a unique solution to (3.1) such that u ∈ W 1,1/2
p,p0 (ΩT )

and

(3.3) ‖u‖
W

1,1/2
p,p0

(ΩT )
≤ c
(
‖g‖Lp,p0 (ΩT ) + ‖b‖Lp,p0 (ΩT ) + ‖u0‖B1−2/p0

p,p0
(Ω)

)
with a constant c depending on Ω, S, p, p0.

Let us consider the problem

(3.4)

α(x, t)θt −∆θ = f in ΩT ,

n · ∇θ = 0 on ST ,

θ|t=0 = θ0 in Ω.

Lemma 3.5 (see [18, Chapter 4], [24], [32]). Assume that f ∈ Lp,p0(ΩT ), θ0 ∈
B

2−2/p0
p,p0 (Ω), p, p0 ∈ (1,∞), Ω ∈ Rn, S ∈ C2. Assume that 0 < α0 ≤ α ≤ α∗ <

∞, where α0 and α∗ are constants, α ∈ Cδ,δ/2(ΩT ), αt ∈ L3/2µ,1/(1−µ)(Ω
T ),

µ ∈ (0, 1). Then there exists a solution to problem (3.4) such that θ ∈W 2,1
p,p0(ΩT )

and the following estimate holds

(3.5) ‖θ‖W 2,1
p,p0

(ΩT ) ≤ ϕ(1/α0, α∗, ‖α‖Cδ,δ/2(ΩT ), ‖αt‖L3/2µ,1/(1−µ)(ΩT ))

· (‖f‖Lp,p0 (ΩT ) + ‖θ0‖B2−2/p0
p,p0

(Ω)
).

Remark 3.6. The above result is a special case of the more general theorem
due to Denk, Hieber, and Prüss [9, Theorem 2.3].

Remark 3.7. The constant c in (3.2), (3.3) and the function ϕ in (3.5) do
not depend on T . For T small the proof of these facts is evident. For T large it
can be deduced by applying the arguments of the proof of Theorem 3.1.1 in [34,
Chapter 3].

4. Lower bound for temperature

The existence of the lower positive bound on temperature ensures not only
the thermodynamic correctness of the model but is also of basic importance for
the proof of global estimates of the solutions. To show such property we use the
ideas of the proof of Lemma 4.1 [23].

Lemma 4.1. Assume that equation (1.2), boundary condition (1.3)2 and ini-
tial condition (1.4)3 hold, g ≥ 0, θ0 ≥ θ > 0, where θ is a constant, as well
as k, c1v, c2v are positive constants. Assume that the coercivity and bounded-
ness condition (1.11) hold for viscosity tensor A1. Then there exists a positive
constant

a ≡ |B|
2a1·∗min{c1v, c2v}

,

where B = −A2α, and a1∗ is defined in (1.11), such that

(4.1) θ(t) ≥ θ exp(−at) ≡ θ∗(t) for t ∈ [0, T ].
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Proof. For m ∈ R+ we define the truncation θm = max{θ, 1/m} and
Ωm(t) = {x ∈ Ω : θ(x, t) > 1/m}. Multiplying (1.2) by −θ−%m with % > 4

(admissible test function) and integrating over Ωm(t) gives

(4.2) −
[
c1v

∫
Ωm(t)

θ3θtθ
−%
m dx+ c2v

∫
Ωm(t)

θθtθ
−%
m dx

]
+ k

∫
Ωm(t)

θ−%m ∆θ dx

+

∫
Ωm(t)

(A1εt) · εtθ−%m dx+

∫
Ωm(t)

gθ−%m dx =

∫
Ωm(t)

θθ−%m (A2α) · εt dx.

Now we examine the terms on the left-hand side of (4.2). The first term is
equal to

−
[
c1v

∫
Ωm(t)

θ3
mθm,tθ

−%
m dx+ c2v

∫
Ωm(t)

θmθm,tθ
−%
m dx

]
(4.3)

=
c1v

%− 4

∫
Ω

∂tθ
4−%
m dx+

c2v
%− 2

∫
Ω

∂tθ
2−%
m dx

=
c1v

%− 4

d

dt

∫
Ω

θ4−%
m dx+

c2v
%− 2

d

dt

∫
Ω

θ2−%
m dx,

because ∂tθ4−%
m = ∂tθ

2−%
m = 0 for x ∈ Ω \ Ωm(t) = {x ∈ Ω : θm(x, t) = 1/m}.

The second term equals

(4.4) k

∫
Ωm(t)

θ−%m ∆θm dx=k

∫
Ω

θ−%m ∆θm dx=
4k%

(%− 1)2

∫
Ω

∣∣∣∣∇( 1

θ
(%−1)/2
m

)∣∣∣∣2dx,
since ∇θm = ∇θ for x ∈ Ωm(t) and ∇θm = 0 for x ∈ Ω \ Ωm(t). On account
of (1.11) the third term is bounded from below by

(4.5) a1∗

∫
Ωm(t)

|εt|2

θ%m
dx.

The fourth term is nonnegative because g ≥ 0.
In view of the boundedness of tensorsA2 and α the integral on the right-hand

side of (4.2) is estimated by the Cauchy inequality∫
Ωm(t)

θ

θ%m
(A2α) · εt dx =

∫
Ωm(t)

θm

θ
%/2
m

(A2α) · εt
θ
%/2
m

dx(4.6)

≤ δ

2

∫
Ωm(t)

|εt|2

θ%m
dx+

|B|
2δ

∫
Ωm(t)

θ2−%
m dx,

B = −A2α. Setting δ = a1∗ and incorpording (4.3)–(4.7) into (4.2) we arrive at

(4.7)
c1v

%− 4

d

dt

∫
Ω

dx

θ%−4
m

+
c2v

%− 2

d

dt

∫
Ω

dx

θ%−2
m

+
4k%

(%− 1)2

∫
Ω

∣∣∣∣∇( 1

θ
(%−1)/2
m

)∣∣∣∣2 dx
+
a1∗

2

∫
Ωm(t)

|εt|2

θ%m
dx ≤ |B|

2a1∗

∫
Ωm(t)

θ2−%
m dx ≤ |B|

2a1∗

∫
Ω

dx

θ%−2
m

,

where in the last inequality we taken into account that θm > 0 in Ω.
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Let us introduce the positive quantities

(4.8) X1(t) =

(∫
Ω

dx

θ%−4
m

)1/(%−4)

, X2(t) =

(∫
Ω

dx

θ%−2
m

)1/(%−2)

.

By (4.8) we infer from (4.7) the inequality

(4.9)
c1v

%− 4

d

dt
X%−4

1 (t) +
c2v

%− 2

d

dt
X%−2

2 (t) ≤ |B|
2a1∗

X%−2
2 (t).

Let us set now

(4.10) Y (%, t) =
c1v

%− 4
X%−4

1 (t) +
c2v

%− 2
X%−2

2 (t).

Then (4.9) yields

(4.11)
d

dt
Y (%, t) ≤ a(%− 2)Y (%, t),

where a ≡ |B|/
(
2a1∗min

{
c1v, c

2
v

})
. Integrating (4.11) with respect to time from

0 to t leads to

(4.12) Y (%, t) ≤ exp[a(%− 2)t]Y (%, 0).

Hence, using the form of Y (%, t), we get

(4.13) X2(t) ≤ exp(at)

·
[(

c1v
c2v

)1/(%−2)(
%− 2

%− 4

)1/(%−2)

·X(%−4)/(%−2)
1 (0) +X2(0)

]
,

or equivalently,

(4.14) ‖θ−1
m (t)‖L%−2(Ω) ≤ exp(at)

·
[(

c1v
c2v

)1/(%−2)(
%− 2

%− 4

)1/(%−2)

‖θ−1
m (0)‖(%−4)/(%−2)

L%−4(Ω) + ‖θ−1
m (0)‖L%−2(Ω)

]
.

Letting %→∞, (4.14) implies the bound

(4.15) θm(t) ≥ θm(0) exp(−at) for t ∈ [0, T ].

Further, letting m → ∞ and noting that for sufficiently large m, θm(0) =

max{θ0, 1/m} ≥ θ > 0, we conclude the bound (4.1). �

5. Local existence

To prove the local existence of solutions we use the following Banach succes-
sive approximation method:

(5.1) u(n+1),tt −∇ · (A1ε(u(n+1),t)) = ∇ · [A2ε(u(n)) +Bθ(n)] + b in ΩT ,

(5.2) [c1vθ
3
(n) + c2vθ(n)]θ(n+1),t − k∆θ(n+1) = θ(n)B · ε(u(n),t)

+A1ε(u(n),t) · ε(u(n),t) + g in ΩT ,
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u(n+1) = 0, n · ∇θ(n+1) = 0 on ST ,(5.3)

u(n+1)|t=0 = u0, u(n+1),t = u1, θ(n+1)|t=0 = θ0 in Ω,(5.4)

where u(n), θ(n), n ∈ N ∪ {0} are treated as given.
Moreover, the zero approximations (u(0), θ(0)) are constructed by an exten-

sion of the initial data in such a way that

u(0)|t=0 = u0, u(0),t|t=0 = u1, θ(0)|t=0 = θ0 in Ω,(5.5)

u(0) = 0, n · ∇θ(0) = 0 on ST .(5.6)

We note that problem (5.1)–(5.6) and that analysed in [24, Section 5] differ
only by the presence of the additional term c1vθ

3
(n) in (5.2) which has the same

properties as c2vθ(n). For this reason in order to prove the uniform bounded-
ness of the sequence {u(n), θ(n)} we can use exactly the same arguments as in
Lemma 5.1 [24].

We have

Lemma 5.1 (Boundedness of the approximation). Let

X0(t) = ‖u(0),t‖W 2,1
p,p0

(Ωt) + ‖θ(0)‖W 2,1
q,q0

(Ωt),

where u(0), θ(0) are introduced by (5.5), be finite. Let θ0 ≥ θ > 0. Further, let

D(t) = ‖u0‖W 2
p(Ω) +‖u1‖B2−2/p0

p,p0
(Ω)

+‖θ0‖B2−2/q0
q,q0

(Ω)
+‖b‖Lp,p0 (Ωt) +‖g‖Lq,q0 (Ωt)

be finite, and

3/p+ 2/p0 < 1, 3/q + 2/q0 < 1 + 3/p+ 2/p0.

Assume that there exists a constant A and time t sufficiently small such that

X0(t) ≤ A, ϕ(tαA,D(t)) ≤ A,

where α > 0 and the nonlinear function ϕ appears in the proof of Lemma 5.1
[24, (5.22)], and ctδ/2A ≤ θ, δ > 0. Then

(5.7) Xn(t) = ‖u(n),t‖W 2,1
p,p0

(Ωt) + ‖θ(n)‖W 2,1
q,q0

(Ωt) ≤ A for any n ∈ N.

To show the convergence of the sequences {u(n), θ(n)} we introduce the dif-
ferences

(5.8) Un(t) = u(n)(t)− u(n−1)(t), ϑn(t) = θ(n)(t)− θ(n−1)(t),

n ∈ N, which are solutions to the problem

(5.9)

Un+1,tt −∇ · (A1ε(Un+1,t)) = ∇ · [A2ε(Un) +Bϑn] in ΩT ,

Un+1 = 0 on ST ,

Un+1|t=0 = 0, Un+1,t|t=0 = 0 in Ω,
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and

(c1vθ
3
(n) + c2vθ(n))ϑn+1,t − k∆ϑn+1 = −c1v(θ3

(n) − θ
3
(n−1))θ(n),t

− c2vϑnθ(n),t + ϑnB · ε(u(n),t) + θ(n−1)B · ε(U (n),t)

+A1ε(Un,t) · ε(u(n),t) +A1ε(u(n−1),t) · ε(Un,t) in ΩT ,(5.10)

n · ∇ϑn+1 = 0 on ST ,

ϑn+1|t=0 = 0 in Ω.

Let

(5.11) Yn(t) = ‖Un,t‖W 2,1

p′,p′0
(Ωt) + ‖ϑn‖W 2,1

q′,q′0
(Ωt).

As for the uniform boundedness, we can repeat the arguments of the correspond-
ing proof of the convergence of approximation of [24, Lemma 5.3]. This lemma
required (see [24, (5.30)]) several technical restrictions on the indices p, p0, q,
q0, p′, p′0, q′, q′0 of the involved Sobolev spaces with a mixed norm W 2,1

p,p0(Ωt),
W 2,1
q,q0(Ωt), W 2,1

p′,p′0
(Ωt), W 2,1

q′,q′0
(Ωt). As noted in [24, Corollary 5.5] these restric-

tions and the restrictions of Lemma 5.1 can be satisfied for the following special
choice:

(5.12) p = p0 = 5+, q = q0 = 5+, p′ = p′0 = 5, q′ = q′0 = 5,

where 5+ is any number larger than 5 possibly close to 5. Then we have

Lemma 5.2 (Convergence of the approximation). Let the assumptions of
Lemma 5.1 be satisfied and (5.12) holds. Then there exists a positive constant
d = d(A) and a > 0 such that

(5.13) Yn+1(t) ≤ dtaYn(t).

From Lemmas 5.1 and 5.2 it follows that

Theorem 5.3 (Local existence). Let the assumptions of Lemmas 5.1 and
(5.2) hold. Then there exists a local solution to problem (1.1)–(1.4) such that
ut ∈W 2,1

5+ (ΩT̃ ), θ ∈W 2,1
5+ (ΩT̃ ), where T̃ is sufficiently small.

6. Global estimates

In this section we prove some global estimates on an arbitrary finite time
interval (0, T ) for a regular local solution. All estimates use the regularity of
local solutions. By Lemma 4.1 we know that there exists the lower positive
bound on the temperature

(6.1) θ(t) ≥ θ∗ := θ∗(T ) > 0 for t ≤ T.

Throughout we assume that assumptions (A1)–(A3) of Theorem 1.1 hold.
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Lemma 6.1 (Energy estimates). Assume that

u0 ∈H1(Ω), u1 ∈ L2(Ω), θ0 ∈ L4(Ω),

b ∈ L2(Ωt), g ∈ L1(Ωt), g ≥ 0, t ≤ T.

Then solutions to problem (1.1)–(1.4) satisfy the estimate

(6.2) ‖u(t)‖2H1(Ω) + ‖ut(t)‖2L2(Ω) + ‖θ(t)‖4L4(Ω) ≤ c(t)(‖u0‖2H1(Ω)

+ ‖u1‖2L2(Ω) + ‖θ0‖4L4(Ω) + ‖b‖2L2(Ωt) + ‖g‖L1(Ωt)) ≡ c1(t),

where c(t) is an increasing positive function.

Proof. Multiplying (1.1) by ut and integrating over Ω yields

(6.3)
1

2

d

dt
‖ut‖2L2(Ω) +

∫
Ω

(A1εt) · εt dx

−
∫

Ω

[∇ · (A2ε)] · ut dx+

∫
Ω

θB · εt dx =

∫
Ω

b · ut dx,

where we recall (see (1.8)) that B := −A2α. Integrating (1.2) over Ω implies

(6.4)
c1v
4

d

dt

∫
Ω

θ4 dx+
c2v
2

d

dt

∫
Ω

θ2 dx =

∫
Ω

θB ·εt dx+

∫
Ω

(A1εt) ·εt dx+

∫
Ω

g dx.

From the properties of the operator A2 (see (1.5)) we have

−
∫

Ω

[∇ · (A2ε)] · ut dx = −
∫

Ω

[µ2∆u · ut + (λ2 + µ2)∇(∇ · u) · ut] dx(6.5)

=
1

2

d

dt
[µ2‖∇u‖2L2(Ω) + (λ2 + µ2)‖∇ · u‖2L2(Ω)],

where the boundary condition (1.3)1 was used. Applying (6.5) in (6.3) gives

(6.6)
1

2

d

dt
[‖ut‖2L2(Ω) + µ2‖∇u‖2L2(Ω) + (λ2 + µ2)‖∇ · u‖2L2(Ω)]

+

∫
Ω

(A1εt) · εt dx+

∫
Ω

θB · εt dx =

∫
Ω

b · ut dx.

By adding (6.4) and (6.6) we have

(6.7)
d

dt

[
c1v
4
‖θ‖4L4(Ω) +

c2v
2
‖θ‖2L2(Ω) +

1

2
‖ut‖2L2(Ω) + µ2‖∇u‖2L2(Ω)

+ (λ2 + µ2)‖∇ · u‖2L2(Ω)

]
=

∫
Ω

b · ut dx+

∫
Ω

g dx.

Integrating (6.7) with respect to time, using the lower bound (1.17) for the sum
of the last two terms in the squared parenthesis, and eventually applying the
Gronwall inequality we get (6.2) which concludes the proof. �
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To derive “stronger” estimates for u and θ we apply the regularity theory of
parabolic systems in Sobolev spaces with a mixed norm, stated in Lemmas 3.4
and 3.5. Let us first consider the viscoelasticity system (1.1), (1.3)1, (1.4)1,2,
expressed in the form

(6.8)

utt −Q1ut = ∇ · (A2ε+ θB) + b in ΩT ,

ut = 0 on ST ,

ut|t=0 = u1, u|t=0 = u0 in Ω,

where B is defined by (1.8).
We have

Lemma 6.2. Assume that

θ ∈ Lp,r(Ωt), b ∈ Lp,r(Ωt),

u0 ∈W 1
p(Ω), u1 ∈ B1−2/r

p,r (Ω), p, r ∈ (1,∞), t ≤ T.

Then for solutions to problem (1.1)–(1.4) the following inequality holds

(6.9) ‖εt′‖Lp,r(Ωt)

≤ c(t)
(
‖θ‖Lp,r(Ωt) + ‖b‖Lp,r(Ωt) + ‖u0‖W 1

p(Ω) + ‖u1‖B1−2/r
p,r (Ω)

)
≡ c2(t, p, r) + c(t)‖θ‖Lp,r(Ωt).

Proof. Applying Lemma 3.4 (b) to problem (6.8), using the boundedness
of tensors A2, B we have

‖εt′‖Lp,r(Ωt) ≤ c‖ut′‖W 1,1/2
p,r (Ωt)

≤ c(‖ε‖Lp,r(Ωt) + ‖θ‖Lp,r(Ωt) + ‖b‖Lp,r(Ωt) + ‖u1‖B1−2/r
p,r (Ω)

).

Using the Gronwall lemma to the latter inequality we conclude (6.9). �

Now, using (6.2) in (6.9) implies the estimate

(6.10) ‖εt′‖L4,r(Ωt) ≤ c(t)c
1/4
1 (t) + c2(t, 4, r) ≡ c3(t, r), r ∈ (1,∞).

We have also the following

Lemma 6.3. Let ∇θ ∈ Lp,r(Ω
t), b ∈ Lp,r(Ω

t), u1 ∈ B2−2/r
p,r (Ω), u0 ∈

W 2
p(Ω), p, r ∈ (1,∞), t ≤ T . Then for solutions to problem (1.1)–(1.4) the

following inequality holds

(6.11) ‖εt′‖W 1,1/2
p,r (Ωt)

≤ c‖ut′‖W 2,1
p,r(Ωt)

≤ c(t)(‖∇θ‖Lp.r(Ωt) + ‖b‖Lp,r(Ωt) + ‖u0‖W 2
p(Ω) + ‖u1‖B2−2/r

p,r (Ω)
)

≡ c(t)‖∇θ‖Lp,r(Ωt) + c4(t, p, r).
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Proof. Applying Lemma 3.4 (a) to problem (6.8) and the boundedness of
A2, B yields

‖εt′‖W 1,1/2
p,r (Ωt)

≤ c(‖∇ε‖Lp,r(Ωt) + ‖∇θ‖Lp,r(Ωt) + ‖b‖Lp,r(Ωt) + ‖u1‖B2−2/r
p,r (Ω)

).

Hence, by the Gronwall lemma, (6.11) follows. �

On account of (6.10) we obtain “better” estimates on θ.

Lemma 6.4. Let (6.10) for r = 2 holds true and the assumptions of Lem-
ma 6.1 be satisfied. Let θ0 ∈ L5(Ω) and g ∈ L5/4,1(Ωt). Then the following
inequality holds

(6.12) ‖θ(t)‖5L5(Ω) + ‖θ(t)‖3L3(Ω) + ‖∇θ‖2L2(Ωt) ≤ [c
1/2
1 (t)c3(t, 2)

+ c
1/4
1 (t)c23(t, 2) + ‖g‖5/4L5/4,1(Ωt) + ‖θ0‖5L5(Ω)] ≡ c5(t).

Proof. Multiplying (1.2) by θ, integrating with respect to time and using
(1.3)2, (1.4)3 gives

(6.13)
∫

Ω

θ5 dx+

∫
Ω

θ3 dx+

∫
Ωt
|∇θ|2 dx dt′ ≤ c

∫
Ωt
θ2|εt′ | dx dt′

+ c

∫
Ωt
θ|εt′ |2 dx dt′ + c

∫
Ωt
gθ dx dt′ + c

∫
Ω

θ5
0 dx+ c

∫
Ω

θ3
0 dx.

The first term on the right-hand side of (6.13) is bounded by∫ t

0

dt′
∫

Ω

θ2|εt′ | dx ≤
∫ t

0

‖θ‖2L4(Ω)‖εt′‖L2(Ω) dt
′

≤ c1/21 (t)

∫ t

0

‖εt′‖L2(Ω) dt
′ ≤ c1/21 (t)t1/2c3(t, 2),

and the second one by∫ t

0

dt′
∫

Ω

θ|εt′ |2 dx ≤
∫ t

0

‖θ‖L4(Ω)‖εt′‖2L8/3(Ω) dt
′ ≤ c1/41 (t)c23(t, 2).

The third term is bounded by∫ t

0

‖θ‖L5(Ω)‖g‖L5/4(Ω)dt
′ ≤ sup

t
‖θ‖L5(Ω)‖g‖L5/4,1(Ωt)

≤ δ sup
t
‖θ‖5L5(Ω) +

c

δ
‖g‖5/4L5/4,1(Ωt),

for δ > 0. Applying the above inequalities in (6.13) we conclude (6.12). This
completes the proof. �

Let us note that from (6.9) and (6.12) it follows that

(6.14) ‖εt′‖L5,r(Ωt) ≤ c2(t, 5, r) + c(t) c
1/5
5 (t) ≡ c6(t, r), r ∈ (1,∞).

We continue with further estimates for θ.
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Lemma 6.5. Let the assumptions of Lemma 6.4 be satisfied, and the estimate
(6.14) holds. Moreover, assume that θ0 ∈ L15(Ω), g ∈ L36/25,12(Ωt), t ≤ T .
Then

(6.15) ‖θ(t)‖15
L15(Ω) +

∫ t

0

‖θ‖12
L36(Ω) dt

′ +

∫
Ωt
|∇θ6|2 dt′

≤ c
(
c56(t, 12) + c24

6 (t, 12) + c(12, t)

+ ‖g‖12
L36/25,12(Ωt) + ‖θ0‖15

L15(Ω)

)
≡ c7(t).

Proof. Multiplying (1.2) by θα−1, where α > 1, integrating the result
over Ω, taking into account the boundedness of tensors B, A1 and the boundary
condition (1.3)2, we obtain

(6.16)
c1v

α+ 3

d

dt

∫
Ω

θα+3 dx+
c2v

α+ 1

d

dt

∫
Ω

θα+1 dx+
4k(α− 1)

α2

∫
Ω

|∇θα/2|2 dx

≤ c
∫

Ω

θα|εt| dx+ c

∫
Ω

θα−1|εt|2 dx+

∫
Ω

gθα−1 dx.

Integration of (6.16) with respect to time gives

(6.17)
1

α+ 3

∫
Ω

θα+3 dx+
1

α+ 1

∫
Ω

θα+1 dx+
4(α− 1)

α2

∫
Ωt
|∇θα/2|2 dx dt′

≤ c
∫

Ωt
θα|εt′ | dx dt′ + c

∫
Ωt
θα−1|εt′ |2 dx dt′ +

∫
Ωt
gθα−1 dx dt′

+
c

α+ 3
‖θ0‖α+3

Lα+3(Ω) +
c

α+ 1
‖θ0‖α+1

Lα+1(Ω).

Prior to deal with the terms on the right-hand side of (6.17) we first estimate
from below the third term on the left-hand side by applying a Sobolev imbedding.
Setting u = θα/2 this term takes the form

4(α− 1)

α2

∫ t

0

∫
Ω

|∇u|2 dx dt′.

Now we add to the both sides of (6.17) the term

2(α− 1)

α2

∫ t

0

∫
Ω

u2 dx dt′.

Then we have

2(α− 1)

α2

∫ t

0

∫
Ω

(|∇u|2 + u2) dx dt′ ≥ 2c(α− 1)

α2

∫ t

0

‖u‖2L6(Ω) dt
′(6.18)

=
2c(α− 1)

α2

∫ t

0

‖θ‖αL3α(Ω) dt
′.

The additional term on the right-hand side of (6.17) equals

2(α− 1)

α2

∫ t

0

|θα/2|2 dx dt′ =
2(α− 1)

α2

∫ t

0

∫
Ω

θα dx dt′,
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so, by applying the Hölder and the Young inequalities, it is bounded by

δ1 sup
t

∫
Ω

θα+3 dx+ c(1/δ1, α, t), δ1 > 0.

Consequently, employing (6.18) in (6.17) gives

1

α+ 3
‖θ‖α+3

Lα+3(Ω) +
1

α+ 1
‖θ‖α+1

Lα+1(Ω)(6.19)

+
2c(α− 1)

α2

∫ t

0

‖θ‖αL3α(Ω) dt
′ +

2(α− 1)

α2

∫
Ωt
|∇θα/2|2 dx dt′

≤ c
∫ t

0

‖θ‖αLαλ1 (Ω)‖εt′‖Lλ2 (Ω)dt
′ + c

∫ t

0

‖θ‖α−1
L(α−1)µ1

(Ω)‖εt′‖
2
L2µ2 (Ω) dt

′

+ c

∫ t

0

‖g‖Lν1 (Ω)‖θ‖α−1
L(α−1)ν2

(Ω) dt
′

+
c

α+ 3
‖θ0‖α+3

Lα+3(Ω) +
c

α+ 1
‖θ0‖α+1

Lα+1(Ω) + c(α, t),

where 1/λ1 + 1/λ2 = 1, 1/µ1 + 1/µ2 = 1, 1/ν1 + 1/ν2 = 1.
On account of (6.14) we can assume that λ2 = 5, so λ1 = 5/4. Setting

5α/4 = α + 3, we get α = 12. Then the first term on the right-hand side of
(6.19) is bounded by

δ2

∫ t

0

‖θ‖α+3
Lα+3(Ω) dt

′ +
c

δ2
c
(α+3)/3
6 (t, 12), δ2 > 0.

In the second term on the right-hand side of (6.19) we assume that µ2 = 5/2,
µ1 = 5/3 and (α − 1)µ1 ≤ 3α, so 5(α − 1)/3 ≤ 3α. We note that the latter
inequality is satisfied for any α > 1. Hence, the second term is bounded by

δ3

∫ t

0

‖θ‖αL3α(Ω) dt
′ +

c

δ3

∫ t

0

‖εt′‖2αL5(Ω) dt
′ ≤ δ3

∫ t

0

‖θ‖αL3α(Ω) dt
′ +

c

δ3
c2α6 (t, 12),

where (6.14) is used.
In the third term on the right-hand side of (6.19) we assume that ν2 =

3α/(α− 1) so ν1 = 3α/(2α+ 1). Then this term is bounded by

δ4

∫ t

0

‖θ‖αL3α(Ω) dt
′ +

c

δ4

∫ t

0

‖g‖αL3α/(2α+1)(Ω) dt
′, δ4 > 0.

From the above considerations it follows that we can take α = 12. Employing
the obtained estimates in (6.19), choosing δk, k = 1, . . . , 4, appropriately, in
particular assuming that δ2, δ3, δ4 are sufficiently small, we arrive at (6.15).
This concludes the proof. �

Let us note that using (6.15) in (6.9) yields

(6.20) ‖εt′‖L15,r(Ωt) ≤ c2(t, 15, r) + c(t)c
1/15
7 (t) ≡ c8(t, r), r ∈ (1,∞).
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We proceed now to prove that θ ∈ L∞(0, t;Lα(Ω)) for any finite α. For
this purpose we repeat and improve appropriately the arguments of the proof of
Lemma 6.5.

Lemma 6.6. Let (6.15) and (6.20) with r = α ∈ (1,∞) hold. Moreover,
assume that

θ0 ∈ Lα+3(Ω) and g ∈ L3α/(2α+1),α(Ωt), t ≤ T.

Then, for α <∞,

1

α+ 3
‖θ(t)‖α+3

Lα+3(Ω) +
1

α+ 1
‖θ(t)‖α+1

Lα+1(Ω)(6.21)

+
4k(α− 1)

α2

∫
Ωt
|∇θα/2|2 dx dt′

≤ c (c7(t), c8(t, α)) + c‖g‖αL3α/(2α+1),α(Ωt)

+
c

α+ 3
‖θ0‖α+3

Lα+3(Ω) ≡ c9(t, α).

Proof. Let us turn to the inequality (6.17) from the proof of Lemma 6.5.
We proceed now as follows. The first term on the right-hand side of (6.17) we
express in the form ∫ t

0

∫
Ω

θα−1θ|εt′ | dx dt′.

On account of (6.15) and (6.20) it is estimated by∫ t

0

‖θ‖α−1
L15(α−1)/13(Ω)‖θ‖L15(Ω)‖εt′‖L15(Ω) dt

′

≤ c1/15
7 (t)

∫ t

0

‖θ‖α−1
L15(α−1)/13(Ω)‖εt′‖L15(Ω) dt

′

≤ δ1
∫ t

0

‖θ‖αL3α(Ω) dt
′ + c

(
1/δ1, c

1/15
7 (t)

) ∫ t

0

‖εt′‖αL15(Ω) dt
′

≤ δ1
∫ t

0

‖θ‖αL3α(Ω) dt
′ + c

(
1/δ1, c

1/15
7 (t), cα8 (t, α)

)
,

for δ1 > 0, where we used the relation 15(α − 1)/13 ≤ 3α, holding true for any
finite α. Similarly, the second term on the right-hand side of (6.17) is bounded
by ∫ t

0

‖θ‖α−1
L15(α−1)/13(Ω)‖εt′‖

2
L15(Ω) dt

′(6.22)

≤ δ2
∫ t

0

‖θ‖αL3α(Ω)dt
′ + c(1/δ2)

∫ t

0

‖εt′‖2αL15(Ω)dt
′

≤ δ2
∫ t

0

‖θ‖αL3α(Ω)dt
′ + c(1/δ2) c2α8 (t, α).
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for δ2 > 0. Finally, the third term on the right-hand side of (6.17) is bounded by∫ t

0

‖θ‖α−1
L3α(Ω)‖g‖L3α/(2α+1)(Ω)dt

′ ≤ δ3
∫ t

0

‖θ‖αL3α(Ω) dt
′ +

1

δ3

∫ t

0

‖g‖αL3α/(2α+1)(Ω) dt
′,

for δ3 > 0. Employing the above estimates in (6.17), and setting δk sufficiently
small, we arrive at (6.21). �

Let us note that from (6.21) it follows in particular that

(6.23) ‖θ‖L∞(0,t:Lα(Ω)) ≤ [(α+ 3)c9(t, α)]1/(α+3) ≡ c10(t, α) for any α <∞.

We obtain now an estimate on θt.

Lemma 6.7. Let the assumptions of the previous lemmas be satisfied, in par-
ticular the lower bound (6.1) holds, θ0 ∈ H1(Ω) and g ∈ L2(Ωt), g ≥ 0, t ≤ T .
Then

(6.24) ‖θt′‖2L2(Ωt) + ‖θ‖2L∞(0,t;H1(Ω)) ≤ c(1/θ∗)(c
2
10(t, 4)c28(t, 4) + c48(t, 4))

+ c(1/θ∗)‖g‖2L2(Ωt) + c‖θ0‖2H1(Ω) ≡ c
2
11(t).

Proof. Multiplying (1.2) by θt, integrating over Ωt, t ≤ T , using boundary
condition (1.3)2, the boundedness of tensors A1, B = −A2α, and the global
lower bound (6.1) for θ, we get

(6.25) ‖θt′‖2L2(Ωt) +
k

2
‖∇θ(t)‖2L2(Ω) ≤

c

θ3
∗

[ ∫
Ωt
θ|εt′ | |θt′ | dx dt′

+

∫
Ωt
|εt′ |2|θt′ | dx dt′ +

∫
Ωt
|g| |θt′ | dx dt′

]
+
k

2
‖ θ0‖2H1(Ω).

Therefore, by the Young inequality, we have

(6.26) ‖θt′‖2L2(Ωt) +
k

2
‖∇θ(t)‖2L2(Ω) ≤

c

θ6
∗

[ ∫
Ωt
θ2|εt′ |2 dx dt′

+

∫
Ωt
|εt′ |4dxdt′ +

∫
Ωt
|g|2dxdt′

]
+
k

2
‖θ0‖2H1(Ω).

Hence, on account of estimates (6.20) and (6.23) we conclude (6.24). �

We shall apply now the elliptic regularity result. In view of estimate (6.24)
we express (1.2), (1.3)2 in the form of the following elliptic problem

(6.27)
k∆θ = (c1vθ

3 + c2vθ)θt − θB · εt − (A1εt) · εt − g in Ω, t ≤ T,

n · ∇θ = 0 on S, t ≤ T.

We have
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Lemma 6.8. Assume that estimates (6.20), (6.23), (6.24), and the lower
bound (6.1) for θ hold. Then for problem (6.27) the following estimate is satisfied

(6.28) ‖θ‖L2(0,t;W 2
% (Ω)) ≤ c310

(
t,

6%

2− %

)
c11(t)

+ c10(t, 4) c8(t, 2) + c28(t, 4) + c‖g‖L2(Ωt) ≡ c12(t, %)

for % < 2−, where 2− stands for a number less than but very close to 2.

Proof. We estimate the terms on the right-hand side of (6.27)1. First, by
the Hölder inequality, using (6.23) and (6.24) we have

(∫ t

0

∫
Ω

(|θ3θt′ |% dx)2/% dt′
)1/2

≤
(∫ t

0

‖θ‖6L6%/(2−%)(Ω)‖θt′‖
2
L2(Ω) dt

′
)1/2

≤ sup
t
‖θ‖3L6%/(2−%)(Ω)‖θt′‖L2(Ωt) ≤ c310

(
t,

6%

2− %

)
c11(t),

where % < 2 but is very close to 2. Similarly,(∫ t

0

∫
Ω

(|θθt′ |% dx)2/% dt′
)1/2

≤
(∫ t

0

‖θ‖2L2%/(2−%)(Ω)‖θt′‖
2
L2(Ω) dt

′
)1/2

≤ sup
t
‖θ‖L2%/(2−%)(Ω)‖θt′‖L2(Ωt) ≤ c10

(
t,

2%

2− %

)
c11(t) ≤ c10

(
t,

6%

2− %

)
c11(t).

Finally, using the boundedness of tensors B, A1, and applying (6.20), (6.23)
yield (∫ t

0

∫
Ω

|θB · εt′ |2 dx dt′
)1/2

≤ c sup
t
‖θ‖L4(Ω)

(∫ t

0

‖εt′‖2L4(Ω) dt
′
)1/2

≤ c10(t, 4)c8(t, 2),

and (∫ t

0

∫
Ω

|(A1εt′) · εt′ |2 dx dt′
)1/2

≤ c
(∫ t

0

‖εt′‖4L4(Ω) dt
′
)1/2

= c‖εt′‖2L4(Ωt) ≤ c
2
8(t, 4).

On account of the above estimates we conclude (6.28) and thereby complete the
proof. �

From (6.24) and (6.28) it follows that

(6.29) ‖θ‖W 2,1
%,2 (Ωt) ≤ c11(t) + c12(t, %) ≡ c13(t, %) for % < 2−.
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Hence, by the imbedding (see Lemma 3.1) it follows that ∇θ ∈ L5%/3(Ωt),
% < 2−. Consequently, due to (6.11),

(6.30) ‖εt′‖W 1,1/2

5%/3
(Ωt)
≤ c(t)(c13(t, %) + c4(t, 5%/3, 5%/3)) ≡ c14(t, %), % < 2−.

Further, by the imbedding, we have the estimates

(6.31) ‖εt′‖Lq(Ωt) ≤ cc14(t, %) for q < 10, % < 2−,

and

(6.32) ‖εt′‖L2(0,t;L∞(Ω)) ≤ cc14(t, %),

which holds for 3/2 < % < 2−. The latter estimate plays the key role in getting
L∞(ΩT )-norm bound for θ.

Lemma 6.9 (L∞(ΩT )-norm bound on θ). Assume that θ0 ∈ L∞(Ω), g ∈
L1(0, t;L∞(Ω)), g ≥ 0, t ≤ T , and estimate (6.32) holds. Then

(6.33) ‖θ‖L∞(Ωt) ≤ ϕ(c14(t, 2−), ‖θ0‖L∞(Ω), ‖g‖L1(0,t;L∞(Ω))) ≡ c15(t).

Proof. Multiplying (1.2) by θr, r > 1, integrating over Ω, and using (6.32),
we get

c1v‖θ‖r+3
Lr+4(Ω)

d

dt
‖θ‖Lr+4(Ω) + c2v‖θ‖r+1

Lr+2(Ω)

d

dt
‖θ‖Lr+2(Ω)(6.34)

+
4kr

(r + 1)2

∫
Ω

∣∣∇θ(r+2)/2
∣∣2 dx

≤ c[‖εt‖L∞(Ω)‖θ‖r+1
Lr+1(Ω)

+ ‖εt‖2L∞(Ω)‖θ‖
r
Lr(Ω) + ‖g‖L∞(Ω)‖θ‖rLr(Ω)].

Taking into account that θ ≥ θ∗ > 0 we deduce from (6.34) that

(6.35) c1v‖θ‖r+3
Lr+4(Ω)

d

dt
‖θ‖Lr+4(Ω) + c2v‖θ‖r+1

Lr+2(Ω)

d

dt
‖θ‖Lr+2(Ω)

≤ c(1/θ∗)[‖εt‖L∞(Ω) + ‖εt‖2L∞(Ω) + ‖g‖L∞(Ω)]‖θ‖r+4
Lr+4(Ω)

≡ α(t)‖θ‖r+4
Lr+4(Ω).

Expressing (6.35) in the form

d

dt

[
c1v
r + 4

‖θr+4
Lr+4(Ω) +

c2v
r + 2

‖θ‖r+2
Lr+2(Ω)

]
≤ α(t)

c1v
(r + 4)

[
c1v
r + 4

‖θ‖r+4
Lr+4(Ω) +

c2v
r + 2

‖θ‖r+2
Lr+2(Ω)

]
,

and introducing the notation

Y (t) =
c1v
r + 4

‖θ(t)‖r+4
Lr+4(Ω) +

c2v
r + 2

‖θ(t)‖r+2
Lr+2(Ω),
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we have

(6.36)
d

dt
Y (t) ≤ α(t)(r + 4)

c1v
Y (t).

Integrating (6.36) with respect to time yields

Y (t) ≤ Y (0) exp

(
r + 4

c1v

∫ t

0

α(t′) dt′
)
, t ≤ T.

From the above inequality we get

c1v
r + 4

‖θ(t)‖r+4
Lr+4(Ω) ≤ Y (0) exp

(
r + 4

c1v

∫ t

0

α(t′) dt′
)
.

Hence,

(6.37) ‖θ(t)‖Lr+4(Ω) ≤
(
r + 4

c1v
Y (0)

)1/(r+4)

exp

(
1

c1v

∫ t

0

α(t′) dt′
)

≤
(
‖θ0‖Lr+4(Ω) +

c2v
c1v

(
r + 4

r + 2

)
‖θ0‖(r+2)/(r+4)

Lr+2(Ω)

)
exp

(
1

c1v

∫ t

0

α(t′) dt′
)
.

Now, letting r →∞ in (6.37) we conclude (6.33). �

To prove the Hölder continuity of θ we follow exactly the arguments from
[24, Lemma 6.14 and Corollary 6.15] related to thermo-visco-elasticity with the
specific heat c = cvθ

σ, σ ∈ (1/2, 1]. Consequently, we have

Lemma 6.10 (Hölder continuity of θ). Assume that θ(t) ≥ θ∗ > 0 for t ≤ T .
Let M = ‖θ‖L∞(Ωt) ≤ c15(T ) (see (6.33)), ‖θ0‖L∞(Ω) < k, and M − k < δ

for some sufficiently small δ > 0. Let g ∈ Lλ(Ωt), εt′ ∈ L2λ(Ωt), where λ =

1/(1− 2(1 + κ)/r), 2/r+3/q = 3/2, q, r are positive numbers, and κ > 0. Then

(6.38) θ ∈ Cβ,β/2(Ωt), β ∈ (0, 1), t ≤ T,

where β depends on θ∗, M , δ, κ, r.

To prove the global existence of solutions to problem (1.1)–(1.4) we need the
existence of local solutions and a global estimate in the norms in which the local
existence is proved. More precisely, we are going to obtain a global estimate for
ut ∈W 2,1

5+ (Ωt) and θ ∈W 2,1
5+ (Ωt).

Lemma 6.11 (Global a priori estimates compatible with estimates for local
solution). Assume that b ∈ L15,∞(Ωt), u0 ∈ W 2

5+(Ω), u1 ∈ B2−2/5+

5+,5+ (Ω), g ∈

L5+(0, t;L∞(Ω)), g ≥ 0, θ0 ∈ H1(Ω) ∩B2−2/5+

5+,5+ (Ω) ∩ L∞(Ω). Then solutions to
problem (1.1)–(1.4) satisfy the estimates

‖ut‖W 2,1

5+
(Ωt) ≤ ϕ(t, 1/θ∗, d(t)),(6.39)

‖θ‖W 2,1

5+
(Ωt) ≤ ϕ(t, 1/θ∗, d(t)),(6.40)
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where, for t ≤ T ,

d(t) = ‖b‖L15,∞(Ωt) + ‖u0‖W 2
5+

(Ω) + ‖u1‖
B

2−2/5+

5+,5+
(Ω)

+ ‖g‖L5+ (0,t;L∞(Ω)) + ‖θ0‖
H1(Ω)∩B2−2/5+

5+,5+
(Ω)∩L∞(Ω)

.

Proof. In Section 5 we proved the existence of local solutions such that
ut ∈ W 2,1

5+ (Ωt), θ ∈ W 2,1
5+ (Ωt) for t sufficiently small. Then εt ∈ W 1,1/2

5+ (Ωt).
To prove the global existence we need a global estimate for solutions to problem
(1.1)–(1.4) in these classes. For this purpose let us recall estimates from Lemmas
6.1–6.10. From (6.2) we have

(6.41) ‖u(t)‖H1(Ω) + ‖ut(t)‖2L2(Ω) + ‖θ(t)‖4L4(Ω)

≤ c(t)
(
‖u0‖2H1(Ω) + ‖u1‖2L2(Ω) + ‖θ0‖4L4(Ω) + ‖b‖2L2(Ωt) + ‖g‖L1(Ωt)

)
.

Let θ ∈ Lp,r(Ωt). Then (6.9) yields

(6.42) ‖εt‖Lp,r(Ωt) ≤ c(t)(‖θ‖Lp,r(Ωt)+‖b‖Lp,r(Ωt)+‖u0‖W 1
p(Ω)+‖u1‖B1−2/r

p,r (Ω)
).

Estimate (6.41) implies that θ ∈ L4,r(Ω
t), r ∈ (1,∞). Then (6.42) implies that

(6.43) ‖εt‖L4,r(Ωt)

≤ ϕ1(‖u0‖W 1
4(Ω), ‖u1‖B1−2/r

4,r (Ω)
, ‖b‖L4,r(Ωt), ‖θ0‖L4(Ω), ‖g‖L1(Ωt)),

where ϕ1 is an increasing positive function. Later on we shall always denote by
ϕk, k ∈ N, an increasing positive function of its arguments.

Let ∇θ ∈ Lp,r(Ωt). Then from (6.11) it follows that

(6.44) ‖εt‖W 1,1/2
p,r (Ωt)

≤ c‖ut‖W 2,1
p,r(Ωt)

≤ c(t)
(
‖∇θ‖Lp,r(Ωt) + ‖b‖Lp,r(Ωt) + ‖u0‖W 2

p(Ω) + ‖u1‖B2−2/r
p,r (Ω)

)
,

where p, r ∈ (1,∞) and will be chosen appropriately later on. From Lemma 6.4
and (6.41), (6.43) we get

(6.45) ‖θ(t)‖L5(Ω) + ‖∇θ‖L2(Ω)

≤ ϕ2

(
‖u0‖W 1

4(Ω), ‖u1‖L4(Ω), ‖b‖L4,2(Ωt), ‖g‖L5/4,1(Ωt), ‖θ0‖L5(Ω)

)
.

Using (6.45) in (6.42) yields

(6.46) ‖εt‖L5,r(Ωt)

≤ ϕ3(‖u0‖W 1
5(Ω), ‖u1‖B1−2/r

5,r (Ω)
, ‖b‖L5,r(Ωt), ‖g‖L5/4,1(Ωt), ‖θ0‖L5(Ω)),

for r ≥ 2. Further, applying (6.5) with r = 24, Lemma 6.5 provides the estimate

(6.47) ‖θ(t)‖L15(Ω) + ‖θ‖L36,12(Ωt)

≤ ϕ4

(
‖u0‖W 1

5(Ω), ‖u1‖B1−2/24
5,24 (Ω)

, ‖b‖L5,24(Ωt), ‖g‖L36/25,12(Ωt), ‖θ0‖L15(Ω)

)
.
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Employing (6.47) in (6.42) we have

(6.48) ‖εt‖L15,r(Ωt) ≤ ϕ5

(
‖u0‖W 1

15(Ω), ‖u1‖B1−2/24
15,r (Ω)

,

‖b‖L15,r(Ωt)∩L5,24(Ωt), ‖g‖L36/25,12(Ωt), ‖θ0‖L15(Ω)

)
.

Now we use Lemma 6.6. The estimate (6.21) holds true provided εt ∈ L15,2α(Ωt)

with α ≥ 12 (see (6.15)). Then (6.21) takes the form

(6.49) ‖θ(t)‖Lα+3(Ω) + ‖∇θα/2‖2/αL2(Ωt) ≤ ϕ6

(
‖u0‖W 1

15(Ω), ‖u1‖B1−2/2α
15,2α (Ω)

,

‖b‖L15,2α(Ωt), ‖g‖L3α/(2α+1),α(Ωt), ‖θ0‖Lα+3(Ω)

)
.

Continuing, Lemma 6.7 yields

(6.50) ‖θt‖L2(Ωt) + ‖θ‖L∞(0,t;H1(Ω)) ≤ ϕ7

(
1/θ∗, ‖u0‖W 1

15(Ω),

‖u1‖B1−2/2α
15,2α (Ω)

, ‖b‖L15,2α(Ωt), ‖g‖L2,α(Ωt), ‖θ0‖Lα+3(Ω)∩H1(Ω)

)
.

In the next step we use Lemma 6.8. It implies that

(6.51) ‖θ‖L2(0,t;W 2
% (Ω)) ≤ ϕ7, % < 2,

where ϕ7 is defined by (6.50) with α arbitrary large. Hence, (6.50) and (6.51)
imply

(6.52) ‖θ‖W 2,1
%,2 (Ωt) ≤ ϕ7

with α arbitrary large (see (6.50)) and % < 2. Hence, by the imbedding from
Lemma 3.1 it follows that ∇θ ∈ L5%/3(Ωt), % < 2. Consequently, due to (6.44),

(6.53) ‖εt‖W 1,1/2

5%/3
(Ωt)
≤ c
(
ϕ7 + ‖u0‖W 2

5%/3
(Ω) + ‖u1‖B2−2/(5%/3)

5%/3,5%/3
(Ω)

)
≡ ϕ8(1/θ∗, ‖u0‖W 1

15(Ω)∩W 2
5%/3

(Ω), ‖u1‖B1−2/2α
15,2α (Ω)∩B2−2/(5%/3)

5%/3,5%/3
(Ω)
,

‖b‖L15,2α(Ωt), ‖g‖L2,α(Ωt), ‖θ0‖Lα+3(Ω)∩H1(Ω)

)
,

where % < 2 and α = 6%/(2− %). Further, Lemma 6.9 yields the estimate

(6.54) ‖θ‖L∞(Ωt) ≤ c(ϕ8 + ‖g‖L1(0,t;L∞(Ω)) + ‖θ0‖L∞(Ω)),

where the following imbeddings were used

(6.55) ‖εt‖Lq(Ωt) + ‖εt‖L2(0,t;L∞(Ω)) ≤ c‖εt‖W 1,1/2

5%/3
(Ωt)

for 3/2 < % < 2, where q < 5/(3/%− 1).
Finally, Lemma 6.10 implies that θ ∈ Cβ,β/2(Ωt), β ∈ (0, 1) for g ∈ Lλ(Ωt),

εt ∈ L2λ(Ωt), λ = 1/(1− 2(1 + κ)/r), 2/r + 3/q = 3/2, κ > 0. Hence, we can
choose λ = 2. Moreover, θ0 ∈ Cβ(Ω).

Since θ is the Hölder continuous we can apply the theory of parabolic equa-
tions described by Lemmas 3.4 and 3.5. However, looking for u ∈W 2,1

5+ (Ωt) we
need that ∇θ ∈ L5+(Ωt). Because, up to now, we have not proved such estimate
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for θ we consider problem (1.2), (1.3)2, (1.4)3 for θ. By (6.48) it follows that
εt ∈ L15,2α(Ωt), α ≥ 12 and θ ∈ L∞(Ωt). In result we have

(6.56) ‖θ‖W 2,1
σ (Ωt) ≤ ϕ9

(
‖θ‖L∞(Ωt), ‖εt‖L2σ(Ωt), ‖g‖Lσ(Ωt), ‖θ0‖W 2−2/σ

σ (Ω)

)
,

for σ = 5+. Hence, by the imbedding,

‖∇θ‖Lδ(Ωt) ≤ c‖θ‖W 2,1

5+
(Ωt) for any δ > 1.

Then problem (1.1), (1.3)1,2, (1.4)1,2 implies

(6.57) ‖ut‖W 2,1

5+
(Ωt)

≤ c
(
‖∇θ‖L5+ (Ωt), ‖b‖L5+ (Ωt), ‖u1‖

W
2−2/5+

5+
(Ω)
, ‖uu0‖W 2

5+
(Ω)

)
.

therefore (6.56) and (6.57) imply (6.39), (6.40), respectively. �

7. Global existence

Proof of Theorem 1.1. Theorem 5.3 provides the local existence of solu-
tions to problem (1.1)–(1.4) such that ut ∈W 2,1

5+ (Ωt) and θ ∈W 2,1
5+ (Ωt), where t

is sufficiently small. By virtue of Lemma 6.11 we have global a priori estimates
for problem (1.1)–(1.4) such that ut ∈ W 2,1

5+ (Ωt) and θ ∈ W 2,1
5+ (Ωt) for any t

finite. These estimates are compatible with the estimates for local solutions on
the time interval of the local existence. This implies a possibility of extension of
the local solution for any finite time. �
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