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HETEROCLINIC SOLUTIONS

OF ALLEN–CAHN TYPE EQUATIONS

WITH A GENERAL ELLIPTIC OPERATOR

Karol Wroński

Abstract. We consider a generalization of the Allen–Cahn type equation

in divergence form −div(∇G(∇u(x, y))) + Fu(x, y, u(x, y)) = 0. This is
more general than the usual Laplace operator. We prove the existence and

regularity of heteroclinic solutions under standard ellipticity and m-growth

conditions.

1. Introduction

The Allen–Cahn equation is a well-known elliptic partial differential equation

considered by many authors in the form:

−∆u(x, y) + Fu(x, y, u) = 0

where F is a double-well potential of u and has some other standard properties

like periodicity in x and y (see the next section for details). Here we are not

interested in the Dirichlet problem but in the existence of heteroclinic solutions

in the whole of R2. This problem was widely studied and there are many articles

that contain the existence theorems about such solutions. As an example we can

take [11] where the authors show the existence and multiplicity of heteroclinic

and some other special types of solutions. Earlier in [1] and [2] the problem was

solved in a more simple form where F (x, u) = f(x)F (u).
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In this article it is shown that the Laplace operator in the Allen–Cahn equa-

tion can be replaced with a much more general elliptic operator in a divergence

form which needs only to have properties which are usually called “standard

growth conditions”. This was already done by the authors of [6] but they as-

sumed quadratic growth of the operator and worked in W 1,2
loc . All results on

Allen–Cahn equation and many similar problems refer to the famous article by

Moser [9] later generalized by Bangert [3] where he considered minima of a very

general functional in the form
∫
F (x, u(x), ux(x)) dx periodic in first n+ 1 vari-

ables and having quadratic growth in last n variables. Some interesting results

for double-well type potentials were also obtained by Valdinoci [12] and Bessi [4].

Here it will be proved that the Allen–Cahn equation with a generalized el-

liptic operator with higher growth also has heteroclinic solutions. Our result is

different from all cited above as they consider Laplace operator or operators with

quadratic growth. We mainly generalize some results of [11] and the methods

of proofs are in many situations the same. However it is not a straightforward

generalization as −div(∇G(∇u(x, y))) is not a linear operator — this difficulty

is seen especially in Lemma 5.2. Also regularity results need some additional

assumptions, namely (G1) and (G2).

2. Preliminaries

Consider a quasilinear elliptic equation in the divergence form:

(AC) −div(∇G(∇u(x, y))) + Fu(x, y, u(x, y)) = 0

where u : R2 → R and F ∈ C2(R3,R) satisfies the following conditions customary

for an Allen–Cahn problem:

(F1) F is 1-periodic in x and y,

(F2) F (x, y, 0) = F (x, y, 1) = 0 for all (x, y) ∈ R2,

(F3) F (x, y, s) > 0 for all (x, y) ∈ R2 and s ∈ (0, 1),

(F4) F (x, y, s) > 0 for all (x, y, s) ∈ R3.

As an example of such F one can take F (x, y, s) = s2(1− s)2 or sin2(πs).

We also assume that G ∈ C2,α(R2,R) satisfies the following standard growth

and ellipticity conditions:

(G1) ν1|p|m ≤ G(p) ≤ ν2(1 + |p|)m for some positive constants ν1, ν2 and for

every p ∈ R2,

(G2) ν1(1 + |p|)m−2
∑
i=1,2

ξ2
i ≤

∑
i,j∈{1,2}

∂2G

∂pi∂pj
(p)ξiξj ≤ ν2(1 + |p|)m−2

∑
i=1,2

ξ2
i ,

for some positive constants ν1, ν2 and every p, ξ ∈ R2,

(G3)

∣∣∣∣∂G∂pi (p)
∣∣∣∣ ≤ µ(1 + |p|)m−1 for some positive µ and every p ∈ R2.
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An easy example of a function satisfying such conditions is G(p) = |p|2+|p|m.

Unfortunately we cannot simply take G(p) = |p|m (for which div(∇G(∇u)) is

equal to the m-Laplacian operator) because then (G2) would not be satisfied.

When m = 2 and G = ‖ · ‖2 it is easy to see that div(∇G(∇u(x, y))) = ∆u(x, y)

and the equation (AC) becomes the standard Allen–Cahn problem considered

in [11]. In that paper the variational problem is solved using the Sobolev space

W 1,2
loc (R × [0, 1]) and its subspace E1(R × [0, 1]) consisting of functions u such

that

lim
x→−∞

u(x, y) = 0, lim
x→∞

u(x, y) = 1

and periodic in y.

In this work we are concerned with a generalization of Allen–Cahn equation

where the function G in the elliptic operator can be much more complicated

then ‖ · ‖2. For that reason instead of W 1,2 we use Sobolev spaces W 1,m with

m as in growth conditions on G. Notice that we do not assume m > 2 but only

m > 1, so elements of W 1,m may even be not continuous but in fact we obtain

C2,α solutions using some regularity theorems.

It is easy to see that the problem (AC) has two trivial constant solutions equal

to 0 and 1. We will search for solutions of equation (AC) which are heteroclinic

in x (i.e. convergent to 0 as x→ −∞ and to 1 as x→∞) and periodic in y. As

the domain of solutions is R2 and the heteroclinic solutions are not integrable

on their domain there is a problem in the variational formulation of (AC). To

solve this we introduce a space E1 which contains functions u ∈W 1,m
loc (R2) that

are 1-periodic in y and ‖∇u‖Lm(R×[0,1]) < ∞. The space E1 is equipped with

the norm

(2.1) ‖u‖E1
= ‖u‖Lm([0,1]2) + ‖∇u‖Lm(R×[0,1]).

Convergence in the norm ‖ · ‖E1
obviously implies convergence in metric of

W 1,m
loc (R2). Consequently, E1 is a closed normed subspace of the complete and

reflexive space W 1,m
loc (R2) so it is also a reflexive Banach space. On such a space

we can formulate variational problem. To do this we introduce some notation.

For every function u : R2 → R and every integer k we define a function τku by

(2.2) τku(x, y) = u(x− k, y).

The operator L is given by L(u) = G(∇u) + F (x, y, u) and the functional I is

defined by

(2.3) I(u) =

∫ 1

0

dy

∫
R
L(u) dx.

Sometimes we will write I in an alternative way: ak(u) =
∫ 1

0
dy
∫ k+1

k
L(u) dx

and then I(u) =
∑
k∈Z

ak(u).



732 K. Wroński

We will search for a minimum of I on a set Γ of heteroclinic functions:

(2.4) Γ(0, 1) =
{
u ∈ E1 : τ−1u > u a.e.

∧ lim
k→−∞

τ−ku = 0 ∧ lim
k→+∞

τ−ku = 1 in Lmloc

}
.

We also need to define the minimum of I as c(0, 1) = min
u∈Γ(0,1)

I(u). Note that

u ∈ Γ(0, 1) if and only if τku ∈ Γ(0, 1) and I(u) = I(τku).

Now we can state the main theorem of this article:

Theorem 2.1. There exists a function v ∈ Γ(0, 1) which is a classical solu-

tion of (AC) such that I(v) = c(0, 1) and 0 < v < 1.

3. Solving a variational problem

It is obvious that I(v) ≥ 0 for all v ∈ Γ(0, 1) (because G and F are non-

negative) so there exists the infimum c(0, 1) ≥ 0. By {uj} we will denote the

minimizing sequence of I in Γ(0, 1). The sequence I(uj) is convergent so there

exists M such that I(uj) < M for all j. This implies that {uj} is a bounded

sequence in E1 because∫ 1

0

dy

∫
R
‖∇uj‖m dx ≤

∫ 1

0

dy

∫
R
G(∇uj) + F (x, y, uj) dx = I(uj) < M

and
∫∫

[0,1]2
|uj | dx dy is bounded by 1 as uj ∈ Γ(0, 1).

The minimizing sequence {uj} can be chosen in many ways because applying

τk to uj does not change values of I(uj). Therefore we can assume that uj were

chosen to satisfy inequalities:

(3.1)

∫∫
[0,1]2

uj dx dy >
1

2
and

∫ 1

0

dy

∫ k

k−1

uj dx ≤
1

2
for all k ≤ 0.

This is possible because every uj can be replaced by τ−kjuj where kj is the

smallest k such that ∫ 1

0

dy

∫ k

k−1

uj dx >
1

2
.

Such k exists because∫ 1

0

dy

∫ k

k−1

uj dx→ 0 as kj → −∞

and ∫ 1

0

dy

∫ k

k−1

uj dx→ 1 as kj → +∞.

This normalization was done in order to use it in the proof of Lemma 3.1.

As E1 is reflexive there exist v ∈ E1 and a subsequence of {uj} (still denoted

by {uj}) which converges weakly to v in E1. From this subsequence we can
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obviously choose another subsequence convergent strongly in Lmloc and pointwise

almost everywhere.

Unfortunately I is an improper integral so it does not need to have all good

properties typical for functionals written by an integral over a bounded set. This

is the reason why we need to prove many facts that would be obvious for minima

of some better functionals.

Below we show that the limit of the minimizing sequence is in fact a minimum

of I. We first prove that I(v) ≤M (so I(v) is finite). For every j, n we have∫ 1

0

dy

∫ n

−n
L(uj) dx < M.

By the weak lower semicontinuity of this functional for bounded domains (see

for example Theorem 8.11 of [5]) we get∫ 1

0

dy

∫ n

−n
L(v) dx ≤M for every n.

Letting n→∞ we conclude that∫ 1

0

dy

∫
R
L(v) dx ≤M.

Lemma 3.1. v ∈ Γ(0, 1).

Proof. For every j, τ−1uj ≥ uj and uj → v almost everywhere so τ−1v ≥ v
almost everywhere. We shall prove that τ−kv → 1 in Lmloc as k → +∞. The

sequence τ−kv is bounded in W 1,m
loc (R × [0, 1]) because I(τ−kv) = I(v) ≤ M .

There exists v∗∞ such that τ−kv → v∗∞ weakly in W 1,m
loc (R×[0, 1]), strongly in Lmloc

and v∗∞ ∈W 1,m([0, 1]2). Also, we have that ak(v) = a0(τ−kv)→ a0(v∗∞) because

I(v) is finite and therefore ak(v)→ 0. By the definition of a0: v∗∞ = const and∫∫
[0,1]2

F (x, y, v∗∞) dx dy = 0.

This means that v∗∞ = 0 or v∗∞ = 1. From (3.1) we obtain v∗∞ = 1. �

Now we show that I(v) = c(0, 1). It is obvious that I(v) ≥ c(0, 1). For a fixed

ε > 0 and sufficiently large j we have

n∑
−n

ak(uj) ≤ I(uj) ≤ c(0, 1) + ε for every n.

Taking j →∞ we obtain

n∑
−n

ak(v) ≤ c(0, 1) + ε for every n.

When n→∞ we get I(v) ≤ c(0, 1) + ε for every ε > 0 so I(v) = c(0, 1).



734 K. Wroński

Definition 3.2. For every r ≤ 1/2 and z ∈ R× [0, 1] we define a set

Z(Br(z), v) = {u ∈ E1 : u = v on B1/2 −Br(z)}

and on this set we define

ΦBr(z),v(u) =

∫∫
Br(z)

L(u) dx dy.

It is easy to check that Z(Br(z), v) is a closed subset of E1. The minimum

of ΦBr(z),v on Z(Br(z), v) will be called c(Br(z), v) and by M(Br(z), v) we will

call the set of w ∈ Z(Br(z), v) for which ΦBr(z),v(w) = c(Br(z), v).

Proposition 3.3. For every z ∈ R × [0, 1] and ε ∈ (0, 1/2) v is the unique

minimum of ΦBε(z),v on Z(Bε(z), v).

The proof will be done in Section 5.

We now apply Proposition 3.3 to obtain that v is a weak solution of (AC)

on Bε(z). For every ϕ ∈ C1(Bε(z)) for which suppϕ ⊂ Bε(z) we have v + tϕ ∈
Z(Bε, v) so ΦBε(z),v(v + tϕ) ≥ ΦBε(z),v(v). As a consequence we get

d

dt
ΦBε(z),v(v + tϕ)

∣∣∣∣
t=0

=

∫∫
Bε(z)

∇G(∇v)∇ϕ+ Fu(x, y, u)ϕdx dy = 0

and therefore v is a weak solution of (AC) on every B1/2(z).

4. Regularity of weak solutions

The first problem in proving the regularity results comes from the fact that

equation (AC) is formulated on R2. To solve it we introduced the functional

I defined using one integral over R × [0, 1] and so we cannot state whether its

minimum is a weak solution.

At this moment we can apply Theorem 3.1 of [7] to show that the found

minimum v is Hölder continuous.

To obtain a weak solution we used a functional Φ defined by integration over

a bounded set. In the first step we search for its minimum on a set Z(Br(z), v).

Notice that by Definition 3.2 on B1/2(z) \ Br(z) one has u = v. Therefore we

consider the Dirichlet problem with Hölder continuous boundary data.

Well-known facts from regularity theory (see for example [8, Chapter 5, The-

orem 6.1]) say that the solution of this local problem is in fact a classical C2,α

solution on Br(z). For that purpose we need growth conditions (G1)–(G3). Note

that we do not assume anything on the growth of F whereas in “natural growth

conditions” in [8] there are some assumptions on it. This is due to the fact that

when searching for heteroclinic solutions we know that, for s ∈ (0, 1), F (x, y, s)

is positive, bounded and has bounded derivatives.

Regularity of a minimum of ΦBε(z),v is important in proofs of some lemmas in

Section 5, especially we need a C2,α solution in Lemma 5.2 where the maximum
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principle is used. Notice that before we prove Proposition 3.3 we do not know if

v is a minimum of ΦBε(z),v so now it does not have to be C2,α. Proposition 3.3

states that unique minimum of ΦBε(z),v is in fact equal to v and therefore the

proposition has to be proved to state that v ∈ C2,α.

5. Properties of weak solutions (proof of Proposition 3.3)

In this section some properties of local weak solutions of (AC) will be derived.

In conclusion we will get the proof of Proposition 3.3. The proofs of Lemmas 5.1,

5.3–5.5 are almost the same as in [11] but we still write them in order to show

that the more general setting of the problem does not change the methods.

We already know that τ−kv → 0 (respectively to 1) in L2 as k → −∞
(respectively to +∞). Due to the regularity of v this convergence can be replaced

by pointwise limits: lim
x→−∞

v(x, y) = 0 and lim
x→+∞

v(x, y) = 1. To finish the proof

of Theorem 2.1 we only need to show the sharp inequalities: 0 < v < 1 and

v < τ−1v. This will be done after Lemma 5.3.

Lemma 5.1. For every radius r < 1/2 there exists w ∈ Z(Br(z), v) such that

ΦBr(z),v(w) = c(Br(z), v).

Proof. The procedure is almost the same as in the case of finding a weak

solution v in E1. We choose a minimizing sequence {uj} ⊂ Z(Br(z), v). This

sequence is bounded in the reflexive space W 1,m(B1/2(z)), so there exists a sub-

sequence weakly convergent to some w ∈W 1,m(B 1
2
(z)). As Z(Br(z), v) is convex

and closed in W 1,m(B1/2(z)) we get that w ∈ Z(Br(z), v). ΦBr(z),v is defined

by the integral on a bounded domain so ΦBr(z),v(w) = c(Br(z), v). The same

arguments that we used before show that w is a classical C2 solution. �

The next result is based on Lemma 4.2 of [9].

Lemma 5.2. M(Br(z), v) is an ordered set, i.e. if ϕ,ψ ∈ M(Br(z), v) and

ϕ 6≡ ψ then ϕ < ψ or ϕ > ψ in Br(z).

Proof. Let us define χ = max{ϕ,ψ} and ξ = min{ϕ,ψ}. Notice that

ΦBr(z),v(χ) + ΦBr(z),v(ξ) = ΦBr(z),v(ϕ) + ΦBr(z),v(ψ) = 2c(Br(z), v)

hence χ and ξ belong to M(Br(z), v). It is also obvious that χ ≥ ξ and if ϕ 6≡ ψ
then χ 6≡ ξ. By Theorem 2.5.3 of [10] either χ > ξ or χ ≡ ξ in Br(z). If χ > ξ

then there is no point z0 ∈ Br(z) where ϕ(z0) = ψ(z0) so by continuity we have

ϕ < ψ or ϕ > ψ in Br(z). In the case when χ ≡ ξ we easily get ϕ ≡ ψ. �

Lemma 5.3. M(Br(z), v) contains the smallest element (in the sense of the

order defined in Lemma 5.2).
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Proof. For every ξ ∈ Br(z) take wz(ξ) = inf
w∈M(Br(z),v)

w(ξ). We will prove

that this infimum is in fact a minimum and thus wz ∈M(Br(z), v).

Let us assume that there exist ξ0 ∈ Br(z) and w ∈ M(Br(z), v) such that

wz(ξ0) = w(ξ0). By Lemma 5.2 if it were true for ξ0 then wz ≡ w and the proof

is completed.

If such ξ0 does not exist we take any ξ0 ∈ Br(z) and a sequence of wn(ξ0)

convergent to wz(ξ0). Order in M(Br(z), v) makes the sequence {wn} nonin-

creasing. It is also bounded in W 1,m(B1/2(z)), hence weakly convergent to wz
which is in M(Br(z), v) (because it is convex and closed in W 1,m(Br(z))). �

For the next lemma we will need some new notation. Let us define points

zn = z+ (n, 0) for n ∈ Z and a new function ṽ such that for every j ∈ Z we have

ṽ = wzj in B1/2(zj) and ṽ = v in R× [0, 1]−
⋃
n∈Z

Bε(zn).

Lemma 5.4. The function ṽ defined above is an element of Γ(0, 1).

Proof. We prove the inequality ṽ ≤ τ−1ṽ. If it were not true then for some

j there would exist a point (x0, y0) ∈ Bε(zj) such that

wzj (x0, y0) > τ−1wzj (x0, y0) = wzj+1
(x0 + 1, y0).

For every (x, y) ∈ B1/2(zj) we can define

ψ(x, y) = wzj+1
(x+ 1, y), φ(x, y) = wzj (x, y)

and χ = max{ψ, φ}, ξ = min{ψ, φ}. Inequalities ξ = φ = v ≤ τ−1v = ψ = χ

hold on B1/2(zj) − Bε(zj). Moreover, ξ ∈ Z(Bε(zj), v) and ξ ∈ Z(Bε(zj+1), v)

so

ΦBε(zj)(ξ) + ΦBε(zj)(χ) = ΦBε(zj)(φ) + ΦBε(zj)(ψ) = 2c(Bε(zj), v)

and

ΦBε(zj)(χ) = ΦBε(zj+1)(τ1χ).

Consequently, we have χ ∈M(Bε(zj), v) and τ1χ ∈M(Bε(zj+1), v). The defini-

tion of ṽ and Lemma 5.2 give χ ≥ wzj = φ and therefore

wzj (x0, y0) ≤ χ(x0, y0) ≤ ψ(x0, y0) = wzj+1
(x0 + 1, y0)

which contradicts the definition of (x0, y0). �

As a consequence of the above lemma I(v) ≤ I(ṽ) and hence for all j ∈ Z we

have: ∫∫
Bε(zj)

L(v) dx dy ≤
∫∫

Bε(zj)

L(ṽ) dx dy =

∫∫
Bε(zj)

L(wzj ) dx dy = c(bε(zj)).

Taking j = 0 we get ∫∫
Bε(z)

L(v) dx dy = c(bε(z))
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and taking ε = r we have ΨBr(z)(v) = c(Br(z)).

The last lemma in this section finishes the proof of Proposition 3.3.

Lemma 5.5. Function v is the only element in Z(Br(z), v) which minimizes

ΦBr(z).

Proof. For every domain D ⊂ Br(z) we can find a minimizer ψ of ΨD such

that ψ = v in Br(z) \ D. We need to show that ψ is unique and ψ = v. To

do it we start from the obvious inequality ΨD(ψ) ≤ ΨD(v). This also implies

ΨBr(z)(ψ) ≤ ΨBr(z)(v). Since ψ ∈ Z(Br(z), v) we get ΨBr(z)(ψ) ≥ ΨBr(z)(v)

and thus ψ ∈M(Br(z), v). As ψ = v in Br(z) \D by Lemma 5.2 we have ψ = v

in Br(z). �

6. Finishing the proof of Theorem 2.1

We already know that v ∈ E1 is also an element of Γ[0, 1] and therefore v is

a classical solution of (AC). It remains to show sharp inequalities: 0 < v < 1 and

τ−1v < v. Analogously to the proof of Lemma 5.2 we find that both inequalities

are consequences of Theorem 2.5.3 of [10].
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