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GLOBAL AND LOCAL STRUCTURES

OF OSCILLATORY BIFURCATION CURVES

WITH APPLICATION

TO INVERSE BIFURCATION PROBLEM

Tetsutaro Shibata

Abstract. We consider the bifurcation problem

−u′′(t) = λ(u(t) + g(u(t))), u(t) > 0, t ∈ I := (−1, 1), u(±1) = 0,

where g(u) = g1(u) := sin
√
u and g2(u) := sinu2(= sin(u2)), and λ > 0

is a bifurcation parameter. It is known that λ is parameterized by the
maximum norm α = ‖uλ‖∞ of the solution uλ associated with λ and is
written as λ = λ(g, α). When g(u) = g1(u), this problem has been proposed
in Cheng [4] as an example which has arbitrary many solutions near λ =
π2/4. We show that the bifurcation diagram of λ(g1, α) intersects the
line λ = π2/4 infinitely many times by establishing the precise asymptotic
formula for λ(g1, α) as α → ∞. We also establish the precise asymptotic
formulas for λ(gi, α) (i = 1, 2) as α → ∞ and α → 0. We apply these
results to the new concept of inverse bifurcation problems.
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1. Introduction

This paper is concerned with the following nonlinear eigenvalue problems:

−u′′(t) = λ(u(t) + g(u(t))), t ∈ I := (−1, 1),(1.1)

u(t) > 0, t ∈ I,(1.2)

u(−1) = u(1) = 0,(1.3)

where g(u) is an oscillatory nonlinear term and λ > 0 is a parameter. If

u+ g(u) > 0 for u > 0, it is known from [13] that, for any given α > 0, there

exists a unique solution pair (λ, uα) of (1.1)–(1.3) with α = ‖uα‖∞ and λ is

parameterized by α as λ = λ(α). Furthermore, λ(α) is continuous in α > 0.

Since λ also depends on g, we write λ = λ(g, α).

The study of the global and local structures of bifurcation diagrams is one of

the main interest in the field of nonlinear eigenvalue problems, and many topics

arising from mathematical biology, engineering, etc. have been investigated by

many authors. We refer to [2], [3], [5], [6] and the references therein.

In particular, when the equations contain oscillatory nonlinear terms, some-

times the bifurcation curves have the oscillatory structures, which reflect the

oscillatory properties of the nonlinear terms. We refer to [7], [9], [11], [14]–[16]

and the references therein.

Relevant to the viewpoint above, the equation (1.1)–(1.3) with g(u) = sin
√
u

has been proposed in Cheng [4] as a model problem which has arbitrary many

solutions near λ = π2/4.

Theorem 1.1 ([4, Theorem 6]). Let g(u) = g1(u) = sin
√
u (u ≥ 0). Then,

for any integer r ≥ 1, there is δ > 0 such that if λ ∈ (π2/4− δ, π2/4 + δ), then

(1.1)–(1.3) has at least r distinct solutions.

Certainly, Theorem 1.1 gives us the information about the structure of the

solution set of (1.1)–(1.3), and it is quite natural for us to expect that λ(g1, α)

oscillates and intersects the line λ = π2/4 infinitely many times for α � 1.

In this paper, we first prove that the expectation above is valid. Precisely, we

establish the asymptotic formula for λ(g1, α) as α → ∞, which gives us the well

understanding why λ(g1, α) intersect the line λ = π2/4 infinitely many times.

We also obtain the asymptotic formula for λ(g1, α) as α → 0. These two formulas

clarify the whole structure of λ(g1, α).

We next calculate the asymptotic length L(g1, α) of λ(g1, α) as α → ∞,

where

(1.4) L(g, α) :=

∫ 2α

α

√
1 + (λ′(g, s))2 ds.

This concept was introduced in [15] as a new idea to distinguish two unknown

nonlinear terms g and g̃ by the difference between L(g, α) and L(g̃, α) for α � 1.



Global and Local Structures of Oscillatory Bifurcation Curves 605

Now we state our main results.

Theorem 1.2. Let g(u) = g1(u) = sin
√
u. Then as α → ∞,

λ(g1, α) =
π2

4
− π3/2α−5/4 cos

(√
α− 3

4
π

)
+ o(α−5/4),(1.5)

λ′(g1, α) =
1

2
π3/2α−7/4 sin

(√
α− 3

4
π

)
+ o(α−7/4),(1.6)

L(g1, α) = α+
1

40

(
1− 1

4
√
2

)
α−5/2 + o(α−5/2).(1.7)

Theorem 1.3. Let g(u) = g1(u) = sin
√
u.

(a) As α → 0, the following asymptotic formula for λ(g1, α) holds:

(1.8) λ(g1, α) =
3

4
C2

1

√
α+

3

2
C1C2α+O(α3/2),

where

(1.9) C1 :=

∫ 1

0

1√
1− s3/2

ds, C2 := −3

8

∫ 1

0

1− s2

(1− s3/2)3/2
ds.

(b) Let v0 be a unique classical solution of the following equation:

−v′′0 (t) =
3

4
C2

1

√
v0(t), t ∈ I,(1.10)

v0(t) > 0, t ∈ I,(1.11)

v0(−1) = v0(1) = 0.(1.12)

Furthermore, let vα(t) := uα(t)/α. Then vα → v0 in C2(I) as α → 0.

For the uniqueness of the positive solution of (1.10)–(1.12), we refer to [1].

By Theorems 1.2 and 1.3, we see that the shape of λ(g1, α) is like in Figure 1

below.

α

λ

o

π2/4

λ(g1, α)

Figure 1. Bifurcation curve for λ(g1, α) with g1(u).

When we consider an oscillatory nonlinear term g(u), the most natural one is

g(u) = sinu, which has been already considered in [15]. In general, it seems quite

difficult to treat the case gn(u) = sinun, where n > 2 is an integer. Therefore,

the second purpose of this paper is to consider the case where g(u) = sinu2.
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Theorem 1.4. Let g(u) = g2(u) = sinu2. Then, as α → ∞,

λ(g2, α) =
π2

4
− π3/2

2
α−2 cos

(
α2 − 3

4
π

)
+ o(α−2),(1.13)

λ′(g2, α) =
π3/2

α
sin

(
α2 − 3

4
π

)
+ o(α−1),(1.14)

L(g2, α) = α+
π3

8α
+ o(α−1).(1.15)

Theorem 1.5. Let g(u) = g2(u) = sinu2. Then, as α → 0,

(1.16) λ(g2, α) =
π2

4
− 1

3
πA1α+

(
1

9
A2

1 +
1

6
πA2

)
α2 + o(α2),

where

(1.17) A1 =

∫ 1

0

1− s3

(1 − s2)3/2
ds, A2 =

∫ 1

0

(1− s3)2

(1 − s2)5/2
ds.

α

λ

o

π2/4

λ(g2, α)

Figure 2. Bifurcation curve for λ(g2, α).

We now consider an application of the asymptotic length obtained above to

the inverse bifurcation problem, which has been proposed in [15]. Assume that

there is an unknown nonlinear term g̃(u). Then is it possible to distinguish gi

(i = 1, 2) and g̃ by using L(gi, α) and L(g̃, α)?

The advantage to consider L(g, α) in the inverse problem is as follows. On

the theoretical side, we encounter the difficulty to obtain the precise shape of

bifurcation curves. However, on the practical side, it sometimes happens that

it is rather easy to measure the length of these curves. Therefore, if we can

distinguish two unknown nonlinear terms from the information to get easily,

then this approach may give us the new light to inverse bifurcation problems.

However, without any conditions on g̃, it is quite difficult to treat the prob-

lem above. Therefore, we assume that g̃(u) ∈ C1([0,∞)) satisfies the following

assumption (A.1), which was introduced in [15].

(A.1) g̃(0) = g̃′(0) = 0, g̃′(u) ≥ 0 for u > 0 and g̃(u) = Cum for u ≥ 1, where

C > 0 and 0 < m < 1 are constants.
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α

λ

o

π2/4

λ(g̃, α)

Figure 3. Bifurcation curve for λ(g̃, α) with g̃(u) � Cum.

Then can we distinguish g̃(u) from gi(u) (i = 1, 2) by L(g, α)?

Theorem 1.6 ([15]). Let g̃(u) satisfy (A.1). Then, as α → ∞,

(1.18) L(g̃, α) = α+
22m−3 − 1

2(2m− 3)
A(m)2α2m−3 + o(α2m−3),

where

(1.19) A(m) :=
(1−m)πCC(m)

1 +m
, C(m) =

∫ 1

0

1− sm+1

(1− s2)3/2
ds.

By Theorems 1.4 and 1.6, we can distinguish g2 and g̃. On the contrary, if

we put m = 1/4 and C = 5/(6
√
2πC(1/4)), then we see from Theorems 1.2 and

1.6 that the second terms of L(g1, α) and L(g̃, α) coincide. From this point, we

might go to a more precise consideration of the concept of the asymptotic length

of the bifurcation curves.

The proofs of Theorems 1.2 and 1.5 basically depend on the time-map argu-

ment and the asymptotic formulas for Bessel functions. In particular, the key

tool of the proof of Theorem 1.2 is the asymptotic formula for the Bessel func-

tions obtained in [12]. From this point of view, the proofs of Theorems 1.2 and

1.5 are different from those used in [14]–[16].

2. Proof of (1.5) in Theorem 1.2

In what follows, we eliminate g from λ(g, α) and write λ = λ(α) for simplicity.

In this section, let α � 1. Furthermore, we denote by C the various positive

constants independent of α. For u ≥ 0, let g(u) = g1(u) = sin
√
u and

(2.1) G(u) =

∫ u

0

g(s) ds = 2 sin
√
u− 2

√
u cos

√
u.
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It is known that if (uα, λ(α)) ∈ C2(I)× R+ satisfies (1.1)–(1.3), then

uα(t) = uα(−t), 0 ≤ t ≤ 1,(2.2)

uα(0) = max
−1≤t≤1

uα(t) = α,(2.3)

u′
α(t) > 0, −1 < t < 0.(2.4)

By (1.1), we have (
u′′
α(t) + λ

(
uα(t) + sin

√
uα(t)

))
u′
α(t) = 0.

By this and putting t = 0, we obtain

1

2
u′
α(t)

2 + λ

(
1

2
uα(t)

2 +G(uα(t))

)
= constant = λ

(
1

2
α2 +G(α)

)
.

This along with (2.4) implies that for −1 ≤ t ≤ 0,

(2.5) u′
α(t) =

√
λ
√
α2 − uα(t)2 + 2(G(α) −G(uα(t))).

For 0 ≤ s ≤ 1, we have

(2.6)

∣∣∣∣G(α) −G(αs)

α2(1− s2)

∣∣∣∣ = ∣∣∣∣
∫ α

αs
g(t)dt

α2(1− s2)

∣∣∣∣ ≤ α(1− s)

α2(1− s2)
≤ α−1.

By (2.5), (2.6), putting s := uα(t)/α and by Taylor expansion, we obtain

√
λ =

∫ 0

−1

u′
α(t)√

α2 − uα(t)2 + 2(G(α) −G(uα(t)))
dt(2.7)

=

∫ 1

0

1√
1− s2 + 2(G(α) −G(αs))/α2

ds

=

∫ 1

0

1√
1− s2

1√
1 + 2(G(α)−G(αs))/(α2(1 − s2))

ds

=

∫ 1

0

1√
1− s2

{
1− G(α) −G(αs)

α2(1− s2)
(1 + o(1))

}
ds

=
π

2
− 1

α2
(1 + o(1))

∫ 1

0

G(α)−G(αs)

(1− s2)3/2
ds.

We put

(2.8) K(α) :=

∫ 1

0

G(α) −G(αs)

(1− s2)3/2
ds.

Lemma 2.1. As α → ∞,

(2.9) K(α) =
√
πα3/4 cos

(√
α− 3

4
π

)
+ o(α3/4).

It is clear that (1.5) in Theorem 1.2 follows immediately from (2.7) and

Lemma 2.1. We prove Lemma 2.1 by the series of several lemmas.
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Lemma 2.2. K(α) =
√
2α3/2R(α) for α � 1, where

(2.10) R(α) :=

∫ π/2

0

√
1− cos2 θ

2
cos2 θ cos(

√
α sin θ) dθ.

Proof. We put s = sin θ in (2.8). Then, by integration by parts, we obtain

K(α) =

∫ π/2

0

1

cos2 θ
(G(α) −G(α sin θ)) dθ(2.11)

=

∫ π/2

0

(tan θ)′(G(α) −G(α sin θ)) dθ

=[tan θ(G(α) −G(α sin θ))]
π/2
0

+ α

∫ π/2

0

tan θ(cos θ sin
√
α sin θ) dθ.

By l’Hôpital’s rule, we obtain

(2.12) lim
θ→π/2

sin
√
α− sin

√
α sin θ −√

α cos
√
α+

√
α sin θ cos

√
α sin θ

cos θ

= lim
θ→π/2

α cos θ sin
√
α sin θ

2 sin θ
= 0.

By this and (2.11), we obtain

(2.13) K(α) = αL(α) := α

∫ π/2

0

sin θ sin
√
α sin θ dθ.

We put t =
√
sin θ. Then by (2.13) and integration by parts, we obtain

L(α) =

∫ 1

0

2t3√
1− t4

sin
√
αt dt = −

∫ 1

0

(
√
1− t4)′ sin

√
αt dt(2.14)

=
√
α

∫ 1

0

√
1− t4 cos(

√
αt) dt (put t = sin θ again)

=
√
α

∫ π/2

0

√
1− sin4 θ cos(

√
α sin θ) cos θ dθ

=
√
α

∫ π/2

0

√
1 + sin2 θ cos2 θ cos(

√
α sin θ) dθ

=
√
2α

∫ π/2

0

√
1− cos2 θ

2
cos2 θ cos(

√
α sin θ) dθ. =

√
2αR(α).

Thus the proof is complete. �

Let ν be a positive integer, and Jν(x) be the Bessel function. Then we see

from [12, Theorem 4] that for x > 0,

(2.15) Jν(x) =

√
2

πx
cos(x − wν) + θcµx−3/2,
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where wν = (2ν + 1)π/4, θ is a number with the absolute value not exceeding

one, µ = |ν2 − (1/4)| and

c = 4/5 (0 < x <
√
µ, ν > 1/2),

c = 2/π (x ≥ √
µ, ν > 1/2).

Lemma 2.3. For α � 1,

(2.16) R(α) =

√
π

2
α−3/4 cos

(√
α− 3

4
π

)
+ o(α−3/4).

Proof. We know from [8, p. 424] that for n = 0, 1, . . .,

(2.17)

∫ π/2

0

cos2(n+1) θ cos(x sin θ) dθ =
π

2
(2n+ 1)!!x−(n+1)Jn+1(x).

We know that for |x| < 1,

(2.18)
√
1− x = 1−

∞∑
n=1

(2n− 3)!!

n! 2n
xn.

Let N > 0 be an integer specified later. By (2.10), (2.15), (2.17) and (2.18),

Taylor expansion and Lebesgue’s convergence theorem, we have

R(α) =

∫ π/2

0

{
1−

∞∑
n=1

(2n− 3)!!

n! 2n
cos2n θ

2n

}
cos2 θ cos(

√
α sin θ) dθ(2.19)

=
π

2
√
α
J1(

√
α)−

N∑
n=1

(2n− 3)!!

(2n)!!

π

2

(2n+ 1)!!

2nα(n+1)/2
Jn+1(

√
α)

−
∞∑

n=N+1

∫ π/2

0

(2n− 3)!!

(2n)!!

cos2(n+1) θ

2n
cos(

√
α sin θ) dθ

:=

√
π

2
α−3/4 cos

(√
α− 3

4
π

)
+O(α−5/4)−Q1 −Q2.

Here

(2n+ 1)!! = (2n+ 1)(2n− 1) · · · 3 · 1, (n = 1, 2, . . .),

(2n)!! = (2n) · (2n− 2) · · · 4 · 2, (n = 1, 2, . . .),

(2n− 3)!! = (2n− 3)(2n− 5) · · · 3 · 1, (n = 2, 3, . . .),

(2n− 3)!! = 1, (n = 1).

We show that Q1 and Q2 are remainder terms. We first calculate Q2. Clearly,

for n ∈ N,

(2.20)

∫ π/2

0

cos2(n+1) θ|cos(√α sin θ)| dθ <
π

2
.
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By this, we obtain

|Q2| ≤
∞∑

n=N+1

(2n− 3)!!

(2n)!!

1

2n

∫ π/2

0

cos2(n+1) θ|cos(√α sin θ)| dθ(2.21)

≤
∞∑

n=N+1

π

2

1

2n
=

π

2

1

2N+1
.

We next calculate Q1. By (2.15), (2.17) and (2.19), we have

Q1 =

N∑
n=1

(2n− 3)!!

(2n)!!

π

2

(2n+ 1)!!

2nα(n+1)/2

√
2

πα1/2
(2.22)

×
{
cos(

√
α− wn+1) + θc

(
n2 + 2n+

3

4

)
α−1/2

}

=

√
π

2

1

α5/4

N∑
n=1

(2n− 3)!!

(2n)!!

(2n+ 1)!!

2nα(n−1)/2

×
{
cos(

√
α− wn+1) + θc

(
n2 + 2n+

3

4

)
α−1/2

}
.

We choose N satisfying N ≤ α1/6 < N + 1. Then, for 1 ≤ n ≤ N , we have

(2.23)
(2n+ 1)!!

2nα(n−1)/2
=

n+ (1/2)

α1/2
· n− (1/2)

α1/2
· . . . · (5/2)

α1/2
· 3
2
< 1.

Moreover,

(2.24)

N∑
n=1

(
n2 + 2n+

3

4

)
α−1/2 ≤ C.

By this, we obtain

(2.25) |Q1| ≤ Cα−5/4N ≤ Cα−13/(12).

Furthermore, for α � 1, we have 2−(N+1) = o(α−3/4). Then by this, (2.19),

(2.21) and (2.25), we obtain

(2.26) R(α) =

√
π

2
α−3/4 cos

(√
α− 3

4
π

)
+ o(α−3/4).

This implies (2.16). �

Now Lemma 2.1 follows from Lemmas 2.2 and 2.3. Then we obtain (1.5) of

Theorem 1.1 from (2.7) and Lemma 2.1. Thus the proof is complete. �

3. Proofs of (1.6) and (1.7) in Theorem 1.2

In this section, let α � 1. By direct calculation, we obtain

(3.1) λ′(α) = 2
√
λ(α)

d

dα

(√
λ(α)

)
.
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We see from (3.1) that (1.6) in Theorem 1.2 follows from (1.5), (3.1) and the

following Lemma 3.1.

Lemma 3.1. As α → ∞,

(3.2)
d

dα

(√
λ(α)

)
=

1

2

√
πα−7/4 sin

(√
α− 3

4
π

)
+ o(α−7/4).

By (2.6), (2.7), Lemma 2.1 and Lebesgue’s convergence theorem, we have

d

dα

(√
λ(α)

)
=

d

dα

∫ 1

0

1√
1− s2 + 2(G(α) −G(αs))/α2

ds

(3.3)

=− 1

α2
(1 + o(1))

∫ 1

0

g(α)− sg(αs)

(1− s2)3/2
ds

+
2

α3
(1 + o(1))

∫ 1

0

G(α) −G(αs)

(1− s2)3/2
ds

= − 1

α2
(1 + o(1))

∫ 1

0

g(α)− sg(αs)

(1− s2)3/2
ds+

2

α3
(1 + o(1))K(α)

:= − 1

α2
(1 + o(1))M(α) +O(α−9/4).

Therefore, Lemma 3.1 follows from (3.3) and the following Lemma 3.2.

Lemma 3.2. As α → ∞,

(3.4) M(α) = −
√
π

2
α1/4 sin

(√
α− 3

4
π

)
+ o(α1/4).

Lemma 3.2 is proved by a series of lemmas.

Lemma 3.3. As α → ∞,

(3.5) M(α) =
1

2
α1/2M1(α) +O(α−1/4),

where

(3.6) M1(α) :=

∫ π/2

0

sin3/2 θ cos
√
α sin θ dθ.

Proof. By putting s = sin θ in (3.3), (2.12), (2.14), (2.16) and Lemma 2.3,

we obtain

M(α) =

∫ 1

0

sin
√
α− s sin

√
αs

(1− s2)3/2
ds(3.7)

=

∫ π/2

0

1

cos2 θ

{
sin

√
α− sin θ sin

√
α sin θ

}
dθ

=
[
tan θ

{
sin

√
α− sin θ sin

√
α sin θ

}]π/2
0

+

∫ π/2

0

tan θ

{
cos θ sin

√
α sin θ
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+
1

2
α1/2 sin1/2 θ cos θ cos

√
α sin θ

}
dθ

=
1

2
α1/2

∫ π/2

0

sin3/2 θ cos
√
α sin θ dθ +

∫ π/2

0

sin θ sin
√
α sin θ dθ

:=
1

2
α1/2M1(α) + L(α) =

1

2
α1/2M1(α) +O(α−1/4).

Thus the proof is complete. �

Lemma 3.4. As α → ∞,

(3.8) M1(α) = −√
πα−1/4 sin

(√
α− 3

4
π

)
+ o(α−1/4).

Proof. The proof is divided into several steps.

Step 1. By putting t =
√
sin θ and integration by parts, (2.14) and (2.16),

we obtain

M1(α) = 2

∫ 1

0

t4√
1− t4

cos
√
αt dt =

∫ 1

0

2t3√
1− t4

(t cos
√
αt) dt(3.9)

=−
∫ 1

0

{(1− t4)1/2}′(t cos√αt) dt

=− [
(1 − t4)1/2t cos

√
αt
]1
0

+

∫ 1

0

(1− t4)1/2{cos√αt−√
αt sin

√
αt} dt

=

∫ 1

0

(1 − t4)1/2{cos√αt−√
αt sin

√
αt} dt

=−√
α

∫ 1

0

(1− t4)1/2t sin
√
αt dt+

√
2R(α)

=−√
α

∫ 1

0

(1− t4)1/2t sin
√
αt dt+O(α−3/4).

By this, (2.18) and putting t = sin θ, we obtain

M1(α) = −√
α

∫ π/2

0

(1 + sin2 θ)1/2(1 − sin2 θ)1/2(3.10)

· sin θ sin(√α sin θ) cos θ dθ +O(α−3/4)

= −√
α

∫ π/2

0

(1 + sin2 θ)1/2

· cos2 θ sin θ sin(√α sin θ) dθ +O(α−3/4)

= −
√
2α

∫ π/2

0

√
1− cos2 θ

2

· cos2 θ sin θ sin(√α sin θ) dθ +O(α−3/4)
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= −
√
2α

∫ π/2

0

{
1−

∞∑
n=1

(2n− 3)!!

n! 2n
cos2n θ

2n

}
· cos2 θ sin θ sin(√α sin θ) dθ +O(α−3/4)

= −
√
2α

∫ π/2

0

cos2 θ sin θ sin(
√
α sin θ)dθ

+
√
2α

∫ π/2

0

∞∑
n=1

(2n− 3)!!

n! 2n
cos2n θ

2n

· cos2 θ sin θ sin(√α sin θ) dθ +O(α−3/4)

:= −
√
2αM2(α) +

√
2α

N∑
n=1

(2n− 3)!!

n! 2n
1

2n
Qn

+
√
2α

∞∑
n=N+1

(2n− 3)!!

n! 2n
1

2n
Qn +O(α−3/4)

:= −
√
2αM2(α) +

√
2αM3(α) +

√
2αM4(α) +O(α−3/4),

where N � 1 will be an integer specified later, and

(3.11) Qn :=

∫ π/2

0

cos2(n+1) θ sin θ sin(
√
α sin θ) dθ.

Step 2. We show that −√
2αM2(α) is the leading term of M1(α). By (2.15)

and (2.17), we have

M2(α) =

∫ π/2

0

cos2 θ sin θ sin(
√
α sin θ) dθ(3.12)

=

∫ π/2

0

(
− 1

3
cos3 θ

)′
sin(

√
α sin θ) dθ

=

[
− 1

3
cos3 θ sin(

√
α sin θ)

]π/2
0

+
1

3

√
α

∫ π/2

0

cos4 θ cos(
√
α sin θ) dθ

=
1

3

√
α

∫ π/2

0

cos4 θ cos(
√
α sin θ) dθ =

1

3

√
α
π

2

3!!

(
√
α)2

J2(
√
α)

=
1√
α

π

2

{√
2

π
√
α
cos

(√
α− 5

4
π

)
+O(α−3/4)

}

=

√
π

2
α−3/4 sin

(√
α− 3

4
π

)
+ o(α−3/4).



Global and Local Structures of Oscillatory Bifurcation Curves 615

Step 3. We show that
√
2αM3(α) and

√
2αM4(α) in (3.10) are negligible.

By using integration by parts, (2.16) and (2.17), we obtain

Qn =

∫ π/2

0

(
− 1

2n+ 3
cos2n+3 θ

)′
sin(

√
α sin θ) dθ(3.13)

=

[(
− 1

2n+ 3
cos2n+3 θ

)
sin(

√
α sin θ)

]π/2
0

+
1

2n+ 3

√
α

∫ π/2

0

cos2(n+2) θ cos(
√
α sin θ) dθ

=
1

2n+ 3

√
α
(2n+ 3)!!

α(n+2)/2
Jn+2(

√
α)

=
1

2n+ 3

√
α
(2n+ 3)!!

α(n+2)/2

×
[√

2

π
√
α
cos

(√
α− π

2
(n+ 2)− 1

4
π

)
+ θcµα−3/4

]
.

We choose N satisfying N + 1 ≤ α1/6 < N + 2. Recall that c and θ are the

constants defined in Lemma 2.1. Then by (3.13), we obtain

Qn ≤√
α
(2n+ 1)!!

α(n+2)/2

{
Cα−1/4 + θc

(
n2 + 4n+

15

4

)
α−3/4

}
(3.14)

≤C
√
α
(2n+ 1)!!

α(n+2)/2

{
α−1/4 +

(
n2 + 4n+

15

4

)
α−3/4

}
.

By this and (3.10), we obtain

|M3(α)| ≤C

N∑
n=1

√
α
(2n− 3)!!

(2n)!!

(2n+ 1)!!

2nαn/6

1

α(n+3)/3
(3.15)

×
(
α−1/4 +

(
n2 + 4n+

15

4

)
α−3/4

)
≤Cα−13/12N ≤ Cα−11/12.

Since |Qn| ≤ π/2 for n ∈ N, we have

(3.16) |M4(α)| ≤ C2−N ≤ Cα−1.

By (3.10), (3.12), (3.15) and (3.16), we obtain (3.8). Thus the proof is

complete. �

Lemma 3.1 follows from Lemmas 3.2–3.4. Then we obtain (1.6) in Theo-

rem 1.2 by (1.5), (3.1) and Lemma 3.1. Thus the proof is complete. �
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Proof of (1.7). By (1.4), (1.6) and Taylor expansion, for α � 1, we obtain

L(g1, α) =

∫ 2α

α

√
1 +

1

4
π3s−7/2(1 + o(1)) sin2

(√
s− 3

4
π

)
ds(3.17)

=

∫ 2α

α

{
1 +

1

8
π3(1 + o(1))s−7/2 sin2

(√
s− 3

4
π

)}
ds

=α+
1

4
π3(1 + o(1))

∫ √
2α

√
α

t−6 sin2
(
t− 3

4
π

)
dt.

By integration by parts, we obtain∫ √
2α

√
α

t−6 sin2
(
t− 3

4
π

)
dt =

1

2

∫ √
2α

√
α

t−6(sin t+ cos t)2 dt(3.18)

=
1

2

∫ √
2α

√
α

t−6 dt+
1

2

∫ √
2α

√
α

t−6 sin 2t dt

=
1

10

(
1− 1

4
√
2

)
α−5/2 +

1

2

∫ √
2α

√
α

t−6

(
− 1

2
cos 2t

)′
dt

=
1

10

(
1− 1

4
√
2

)
α−5/2 +

[
− 1

4
t−6 cos 2t

]√2α

√
α

− 3

2

∫ √
2α

√
α

t−7 cos 2t dt

=
1

10

(
1− 1

4
√
2

)
α−5/2 +O(α−3).

By this and (3.17), we obtain (1.7). �

4. Proof of Theorem 1.3

In this section, let 0 < α 	 1.

Proof of Theorem 1.3 (a). By (2.7),

√
λ =

∫ 1

0

α√
α2(1− s2) + 2α3/2(G(α) −G(αs))/α3/2

ds(4.1)

=α1/4

∫ 1

0

1√
α1/2(1− s2) + 2(G(α) −G(αs))/α3/2

ds.

By Taylor expansion, for 0 ≤ s ≤ 1, we have

G(α) −G(αs) =

∫ α

αs

sin
√
t dt =

∫ α

αs

(√
t− 1

6
t3/2 +O(α5/2)

)
dt

=
2

3
α3/2(1− s3/2)− 1

15
α5/2(1− s5/2) +O(α7/2)(1 − s)

=
2

3
α3/2(1− s3/2)− 1

15
α5/2(1 + o(1))(1 − s5/2).
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By this and (4.1), we obtain

√
λ =α1/4

∫ 1

0

1√
α1/2(1− s2) + 4(1−s3/2)

3 − 2α(1+o(1))(1−s5/2)
15

ds(4.2)

=

√
3

2
α1/4

×
∫ 1

0

1
√
1− s3/2

√
1 + α1/2 3(1−s2)

4(1−s3/2)
− α(1 + o(1)) 1−s5/2

10(1−s3/2)

ds

=

√
3

2
α1/4

∫ 1

0

1√
1− s3/2

(
1− α1/2 3(1− s2)

8(1− s3/2)
+O(α)

)
ds

=

√
3

2
α1/4(C1 + C2α

1/2 +O(α)),

where C1 and C2 are constants defined in (1.9). �

Proof of Theorem 1.3 (b). By (1.1) and Theorem 1.3 (a), we see that vα
satisfies

(4.3) −v′′α(t) =
3

4
C2

1 (1 + o(1))

(
α1/2vα(t) +

1√
α
sin

√
αvα(t)

)
.

By this, we see that ‖v′′α‖∞ ≤ C, ‖v′α‖∞ ≤ C, ‖vα‖∞ = 1. We choose an arbitrary

subsequence of {vα}, which is denoted by {vα} again, for simplicity. Let α → 0.

By these inequalities, (4.4) and Ascoli–Arzelà theorem, we can choose a subse-

quence of {vα}, which is denoted by {vα} again, such that vα → v0 in C2(I).

This implies that v0 is a classical solution of (1.10)–(1.12). Then, by a standard

compactness argument, we see that vα → v0 in C2(I) as α → 0. �

5. Proof of Theorem 1.4

In this section, let g(u) = g2(u) = sinu2 and α � 1. We know that

(5.1) G(u) =

∫ u

0

sin t2 dt =

√
π

2
S(u),

where S(u) is the Fresnel sine integral defined by

(5.2) S(u) =

√
2

π

∫ u

0

sinx2 dx.

Further, let C(α) be the Fresnel cosine integral defined by

(5.3) C(α) =

√
2

π

∫ α

0

cosx2 dx.
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Then we know (cf. [8, pp. 898–899]) that as α → ∞,

(5.4)

S(α) =
1

2
− 1√

2πα
cos2 α+O(α−2),

C(α) =
1

2
+

1√
2πα

sin2 α+O(α−2).

Since (2.6) also holds in this case, for α � 1, we have (2.7). We calculate (2.7)

by (2.8).

Lemma 5.1. As α → ∞,

(5.5) K(α) =

∫ 1

0

G(α)−G(αs)

(1− s2)3/2
ds =

√
π

2
cos

(
α2 − 3

4
π

)
+ o(1).

Proof. For 0 ≤ θ ≤ π/2, we put

(5.6) P (θ) :=

∫ α

α sin θ

sin t2 dt.

We put s = sin θ in (5.5). Then by (5.5) and integration by parts, we obtain

K(α) =

∫ π/2

0

1

cos2 θ
P (θ) dθ(5.7)

=[tan θ P (θ)]
π/2
0 + α

∫ π/2

0

tan θ sin(α sin θ)2 cos θ dθ

:=K1(α) + αK2(α).

By l’Hôpital’s rule, we have

(5.8) lim
θ→π/2

P (θ)

cos θ
= lim

θ→π/2

α cos θ sin(α sin θ)2

sin θ
= 0.

So we see that K1(α) = 0. Now we calculate K2.

K2(α) =

∫ π/2

0

sin θ sin(α sin θ)2 dθ(5.9)

=

∫ π/2

0

sin θ sin(α2 − α2 cos2 θ) dθ

= sinα2

∫ π/2

0

sin θ cos(α2 cos2 θ) dθ

− cosα2

∫ π/2

0

sin θ sin(α2 cos2 θ) dθ

:=K21(α) sinα
2 −K22(α) cosα

2.

Putting t = cos θ, we obtain by (5.4) that as α → ∞,

(5.10) K21(α) =

∫ 1

0

cos(α2t2) dt =
1

α

∫ α

0

cosx2 dx =

√
π

2

1

2α
(1 + o(1)).
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By the same calculation as that to obtain (5.10), we obtain

(5.11) K22(α) =

∫ 1

0

sin(α2t2) dt =
1

α

√
π

2
S(α) =

√
π

2

1

2α
(1 + o(1)).

By (5.9)–(5.11), we obtain

K(α) =αK2 =
1

2

√
π

2
(1 + o(1))(sinα2 − cosα2)(5.12)

=

√
π

2
cos

(
α2 − 3

4
π

)
+ o(1).

This implies (5.5). �

By Lemma 5.1 and (2.7), we obtain (1.13) in Theorem 1.4. �

We next prove (1.14). We apply (3.1) to the proof. By (2.6), (2.7), (3.3) and

Lemma 5.1, we have

(
√
λ)′ = − 1

α2
(1 + o(1))

∫ 1

0

g(α)− sg(αs)

(1− s2)3/2
ds+

2

α3
(1 + o(1))K(α)(5.13)

:= − 1

α2
(1 + o(1))T (α) +O(α−3).

Lemma 5.2. As α → ∞,

(5.14) T (α) = −√
πα sin

(
α2 − 3

4
π

)
+ o(α).

Proof. By putting s = sin θ, integration by parts and l’Hôpital’s rule, for

α � 1, we obtain (cf. (5.8))

T (α) =

∫ π/2

0

1

cos2 θ
(sinα2 − sin θ sin(α sin θ)2) dθ(5.15)

= [tan θ(sinα2 − sin θ sin(α sin θ)2)]
π/2
0

−
∫ π/2

0

tan θ
(− cos θ sin(α sin θ)2

− 2α2 sin2 θ cos θ cos(α sin θ)2
)
dθ

=

∫ π/2

0

sin θ sin(α sin θ)2 dθ + 2α2

∫ π/2

0

sin3 θ cos(α sin θ)2 dθ

:=K2(α) + 2α2T2(α).
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Then

T2(α) =

∫ π/2

0

sin3 θ cos(α2 − α2 cos2 θ) dθ(5.16)

= cosα2

∫ π/2

0

sin3 θ cos(α2 cos2 θ) dθ

+ sinα2

∫ π/2

0

sin3 θ sin(α2 cos2 θ) dθ

:=T21(α) cosα
2 + T22(α) sinα

2.

By putting x = cos θ, (5.10), (5.11) and integration by parts, we obtain

T21(α) =

∫ π/2

0

(1 − cos2 θ) sin θ cos(α2 cos2 θ) dθ(5.17)

=

∫ 1

0

(1− x2) cos(α2x2) dx

=

∫ 1

0

cos(α2x2) dx−
∫ 1

0

x · (x cos(α2x2)) dx

=

√
π

2

1

2α
(1 + o(1)) −

∫ 1

0

x ·
(

1

2α2
sin(α2x2)

)′
dx

=

√
π

2

1

2α
(1 + o(1))−

[
x · 1

2α2
sin(α2x2)

]1
0

+
1

2α2

∫ 1

0

sin(α2x2) dx

=

√
π

2

1

2α
(1 + o(1))− 1

2α2
sinα2 +

1

2α2

√
π

2

1

2α
(1 + o(1))

=

√
π

2

1

2α
(1 + o(1)).

By the same calculation as that above, we also obtain

(5.18) T22(α) =

√
π

2

1

2α
(1 + o(1)).

By (5.16)–(5.18), we obtain

(5.19) T2 =

√
π

2α
sin

(
α2 +

1

4
π

)
+ o(α−1).

By (5.9), (5.15) and (5.19), we obtain

T (α) =
√
πα sin

(
α2 +

1

4
π

)
+ o(α) = −√

πα sin

(
α2 − 3

4
π

)
+ o(α). �

By (3.1), (5.13) and Lemma 5.2, we obtain (1.14). �
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Proof of (1.15). By (1.14) and Taylor expansion, we have

L(g2,α) =

∫ 2α

α

√
1 +

π3

t2
(1 + o(1)) sin2

(
t2 − 3π

4

)
dt(5.20)

=

∫ 2α

α

{
1 +

π3

2t2
(1 + o(1)) sin2

(
t2 − 3π

4

)}
dt

=α+
π3

4
(1 + o(1))

∫ 2α

α

(
sin2 t2

t2
+

cos2 t2

t2
+

2 sin t2 cos t2

t2

)
dt.

Clearly,

(5.21)

∫ 2α

α

(
sin2 t2

t2
+

cos2 t2

t2

)
dt =

∫ 2α

α

1

t2
dt =

1

2α
.

Furthermore,

(5.22)

∫ 2α

α

2 sin t2 cos t2

t2
dt =

∫ 2α

α

sin(2t2)

t2
dt =

√
2

∫ 2
√
2α

√
2α

sinx2

x2
dx

=
√
2

[
− 1

2t3
cos t2

]2√2α

√
2α

− 3
√
2

2

∫ 2
√
2α

√
2α

cos t2

t4
dt = O(α−3).

By (5.20)–(5.22), we obtain (1.15). �

6. Proof of Theorem 1.5

Let 0 < α 	 1 in this section. For 0 < s < 1, let

(6.1) Dα(s) :=
2

α2

1

1− s2

∫ α

αs

sinx2 dx.

Then by Taylor expansion, as α → 0,

Dα(s) =
2

α2

1

1− s2

∫ α

αs

(
x2 − 1

6
(1 + o(1))x6

)
dx(6.2)

=
2(1− s3)

3(1− s2)
α− 1

21
(1 + o(1))

1− s7

1− s2
α5.

By (2.7), (6.2), Taylor expansion and direct calculation, we have

√
λ =

∫ 1

0

1√
1− s2

1√
1 +Dα(s)

ds(6.3)

=

∫ 1

0

1√
1− s2

{
1− 1

2
Dα(s) +

3

8
(1 + o(1))Dα(s)

2

}
ds

=
π

2
− 1

3
α

∫ 1

0

1− s3

(1− s2)3/2
ds+

1

6
α2

∫ 1

0

(1− s3)2

(1− s2)5/2
ds+ o(α2).

By this, we directly obtain Theorem 1.5. �
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