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COINCIDENCE DEGREE METHODS
IN ALMOST PERIODIC DIFFERENTIAL EQUATIONS

LiaNGPING QI — RONG YUAN

ABSTRACT. We consider the existence of almost periodic solutions to dif-
ferential equations by using coincidence degree theory. A new equivalent
spectral condition for the compactness of integral operators on almost pe-
riodic function spaces is established. It is shown that semigroup conditions
are crucial in applications.

1. Introduction

The theory of almost periodic functions was mainly created by the Danish
mathematician H. Bohr in 1920s. Almost periodic functions are intended to
be a generalization of periodic functions in some sense. It is well known that
almost periodic theory is interesting and at the same time difficult. In celestial
mechanics, almost periodic solutions and stable solutions are intimately related.
In the same way, stable electronic circuits exhibit almost periodic behavior. The
methods to study the existence of almost periodic solutions can be found, e.g.
in [13], [16], [27], [35]-[37].

The coincidence degree theory was established by Mawhin [25]. This theory,
based on the Leray—Schauder degree theory, has a successful application in the
study of the existence of periodic solutions and some boundary value problems
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of differential equations =’ = (x,t), which is written in an abstract operator
form as

Lx =Nz,

where L is a Fredholm linear operator of index zero. In the Continuation The-
orem (Theorem 2.13), there is a condition: N is L-compact, which is closely
related to the compactness of the integral operator in the applications to differ-
ential equations. The L-compactness is usually shown by using the Arzela—Ascoli
theorem. The underlying reason is the compactness of the space on which the
functions are defined.

A natural generalization of the study of periodic solutions could be applica-
tion of the degree theory in almost periodic world. Once this is achieved, a new
method will be available for almost periodic differential equations. However, this
problem is very difficult. The underlying reason for this is the non-compactness
of the space on which the functions are defined. There are no general theorems
of analysis which yield uniform convergence on R.

As it is commented in [5], the compactness is very difficult to exhibit, because
the analog of the Arzela—Ascoli theorem for almost periodic functions, the so-
called Lusternik theorem (Theorem 2.3), contains a condition of equi-almost
periodicity that is practically unverifiable. In [28] the author provides several
good examples to which the degree theory is not applicable. There exist both
first and second order differential equations for which the associated operators
on almost periodic function spaces have no fixed points but they map the closed
unit ball into its interior ([28, Theorems 2.1 and 3.2]). It is also mentioned in [29]
that it seems that the standard techniques (variational methods, continuation
and degree theory, upper and lower solutions) are not applicable and that new
phenomena appear. So, it is of significant interest to work out this problem and
show these new phenomena. Indeed, we find that coincidence degree theory is
applicable to complex almost periodic differential equations.

To our knowledge, there are a few papers that investigate the existence of
almost periodic solutions by using the coincidence degree methods, see e.g. [2],
[19]-[24], [32]-[34]. However, there exists a gap in these papers. The authors in
these papers assume that the Arzela—Ascoli theorem and the module containment
could imply L-compactness, which means that the uniform convergence on any
compact subsets of R could imply uniform convergence on R, but this is not the
case as pointed out by Zhou and Shao [38].

In the present paper, we continue to investigate such problems. We find that
the mentioned above gap appears because the compactness of integral operators
is not discussed in these papers. So, it is of great interest to study the com-
pactness of integral operators and find almost periodic solutions to differential
equations by involving coincidence degree theory.
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We solve the problem of applying coincidence degree theory to almost peri-
odic differential equations by answering four basic questions, that is, given an
almost periodic function space, when an integral operator maps the space to
itself, when an integral operator is compact on the space, when a nonlinear op-
erator maps the space to itself, and what class of differential equations admits
a priori estimate structure.

Our main theorems are formulated as follows. Notations and terminologies
will be explained later.

THEOREM 1.1. Let H = {A\;}32, C R be a set of different numbers such
that 0 ¢ H, the closure of H, and APy (R, C) be the space of almost periodic
functions f with Ay C H. Then the integral operator

- 7y / o) ds - / (s }

is compact if and only if H has no limit point.
THEOREM 1.2. Consider complex differential equations of the form

(1.2) 2=z +Y(z,t) + p(t).
Let the following conditions hold:

(A1) a €C, a#0.

(A2) ¢¥(z,t): CxR — C is almost periodic in t uniformly for compact subsets

of C. Ay C [0,00) has no limit point.

(A3) ¢ € AP(R,C) and A, C [0,00) has no limit point.

Let H = {\;}72, C (0,00) be the semigroup generated by (Ay UA,) \ {0}, and

0 > 0 be a number such that A\, > 6 for each k € Z. Assume further that there
exists R > 0 with 1(z,t) being analytic in z for |z| < R and

1B

_ gla
swp__[(z 0] + llol < 25 R

|z|]<R,teR _ + =

|

where > 0 is an absolute constant given by Theorem 2.7. Then equation (1.2)
has at least one solution in AP} (R,C), where Hy = H U{0}.

Theorem 1.1 remains true for integral operators on both the space AP (R, C)
of almost periodic functions with absolutely convergent Fourier series and the
space B2(R,C) of almost periodic functions in the sense of Besicovitch, but
with different proofs (Theorems 3.7 and 3.9). The semigroup condition for H
in Theorem 1.2 is crucial for both the compactness of an integral operator and
the definition of a nonlinear operator. Compared with fixed point methods for
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almost periodic differential equations of [6], [8], [12], [14], the applicability of
coincidence degree theory depends much upon the obtention of a priori bound
for the solutions to the equations. If Rea = 0, equation (1.2) does not possess
an exponential dichotomy and the non-resonance condition in [6], [8], [12], [14]
may fail, so those fixed point methods will not work. Moreover, in view of
Lemma 2.9 ([28, Proposition 3.4]) the constant « in equation (1.2) may not be
easily replaced by the almost periodic function «(t). This reveals somewhat the
difficulties that one may find when working on the existence theorems for almost
periodic solutions.

We organize this paper as follows. Section 2 introduces some basic notations,
terminologies and known results. In Section 3 we prove Theorem 1.1. In Section 4
we study semigroups and the composition of almost periodic functions to define
nonlinear operators. In Section 5 we construct suitable real function spaces for
applying coincidence degree theory to complex equations. In Section 6 we prove
Theorem 1.2.

2. Preliminaries

In this section, we recall some basic knowledge that will be used in this paper.
For more details, see e.g. [3], [9], [13], [15], [18].

DEFINITION 2.1 ([18, p.1]). A continuous function f: R — C is called almost
periodic (in the sense of Bohr) if for each € > 0, the e-translation set (or e-almost
periodic set) of f,

T(f,e):={reR:|f(t+71)— f(t)] <eforallt € R}

is relatively dense, that is, there is a number [ = I(¢) > 0 such that [a,a + ] N
T(f,e) # () for every a € R. In this case, [ is called the inclusion length for
T(f,e). Members of T(f,e) are called e-translation numbers (e-almost periods)

of f.

Denote by AP(R,C) the Banach space [13, p.5] of complex almost peri-
odic functions with uniform convergence norm ||f|| = sup|f(t)|. For every
teR

f € AP(R,C), the mean value

exists uniformly with respect to s € R. Denote by Ay = {A;} the set of all real
numbers such that

a(f,\) ;= lim —/ f(t)e ™ dt 0.
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Then Ay is countable, which is called the spectrum of f. If ap = a(f, A\x), we
associate the Fourier series

(2.1) Ft) ~ Y age™ .
k

The elements a; € C are called the Fourier coefficients and the numbers A; the
Fourier exponents of f.

THEOREM 2.2 (Approximation theorem [18, p.17]). For every f€ AP(R,C)
and every € > 0 there is a trigonometric polynomial

NE
Po(t) =) bree™ ', bro €C, Ac € Ay,
k=1

such that ||P. — f|| < e.

The module of f, denoted by mod(f), is defined to be the additive group

mOd(f) = {ka)\k t A\, € Af, my €L, n € ZJF}.
k=1

An additive semigroup [17, p.24] G C R is a set of real numbers such that
a+b € G for all a,b € G. The semi-module of f, denoted by smod(f), is defined
to be the additive semigroup

smod(f) := {ka)\k s Ak € Ay, my, €N, ka #0,n € Z+},

k=1 k=1
such that its members do not necessarily have an inverse.

The next property gives a condition for the compactness of a set in AP(R, C).

THEOREM 2.3 (Lusternik [13, p.21], [18, p.7]). A set E C AP(R,C) is

compact if and only if the following conditions are satisfied:

(a) For every fized ty € R the set E(ty) = {f(to) € C: f € E} is compact.

(b) The set E is equicontinuous, that is, for every e > 0 there is § = §(¢) >0
such that | f(t") — f(t")| < & whenever [t' —t"| < § for all f € E.

(¢) The set E is equi-almost periodic, that is, for every e > 0 the set

T(E,e)= () T(f.e)

fEE

18 relatively dense.

REMARK 2.4. A family § of almost periodic functions is a uniformly almost
periodic family (u.a.p. family [13, p. 17]) if it is uniformly bounded, and if given

e > 0, then T(F,e) = () T(f,¢) is relatively dense and includes an interval
feT
about 0. It is easy to check that the family § is equicontinuous if and only if

T(F,¢) includes an interval about 0 for each € > 0. Consequently, § is a u.a.p.
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family if and only if § C AP(R, C) is relatively compact. This remark will also
be referenced when considering issues related to relative compactness.

The following property of u.a.p. families is useful for determining the com-
pactness of integral operators.

THEOREM 2.5 ([12], [13, p.70]). Let § be a family of almost periodic func-
tions, whose exponents all lie in a given countable set H with no limit point. If
there is K so that |f(t) — f(s)|] < K|t — s| for allt,s € R and f € §, and if
there is M such that ||f|| < M for all f € §, then § is a u.a.p. family. Con-
versely, if § is the family of all almost periodic functions such that ||f|| < M
and | f(t)— f(s)| < K|t—s| with Ay C H, then § is u.a.p. only if H has no limit
point.

We are interested in the case when the primitive fot f(s)ds of an almost
periodic f is also almost periodic. There indeed exist almost periodic functions
whose primitives are unbounded on R.

LEMMA 2.6 ([28]). Assume that G C R is a group which is not cyclic, then
there ezists f € AP(R,C) with mod(f) C G such that its primitives F satisfy

F(t) = o0 as |t| = oo.

The following theorem gives a simple condition under which the integral
operator Z defined by (1.1) is linear and bounded on an almost periodic function
space.

THEOREM 2.7 ([13, p.74]). Suppose that f € AP(R,C), f(t) ~ > are*t,
k

where |\g| > § > 0. Then fot f(s)ds is in AP(R,C) and if g is the integral of f
with a(g,0) = 0, then ||g|| < B||f|l/9, where 8 > 0 is an absolute constant which
depends only on 4.

To define a nonlinear operator on an almost periodic function space, we need
the following semi-module containment theorem.

THEOREM 2.8 ([8]). Suppose that f(z,t) is almost periodic in t uniformly for
z € C, |z| < r, and analytic in z for |z| < r. Then, for every ¢ € AP(R,C) with
A, C smod(f) and |l¢|| < 7, one has f(o(-), ) € AP(R,C) and Ayi,(.y,.y C
smod(f).

The difficulties in establishing the existence theorems for almost periodic
solutions can be seen from the following result, which shows the problem in
a wider perspective.
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LEMMA 2.9 ([28]). Assume that G C R is a group which is not cyclic, then
there exist a,b € AP(R,C) with [mod(a) U mod(b)] C G such that for the linear
equation

' = a(t)z + b(t)

all the solutions are bounded but none of them is almost periodic.

Real almost periodic functions can be defined in the same way and have the
same properties as the complex ones. We introduce another two types of almost
periodic functions. They have the same Fourier series theory as Bohr almost
periodic functions.

Let AP;(R,C) ¢ AP(R,C) be the Banach space [9, p.31] of Bohr almost
periodic functions with absolutely convergent Fourier series

AP, (R,C) := {f(t) => ape™":R—C:ar€C, Ay €Rand Y |ax| < oo}
k k

equipped with the norm
£l = lax|-
k

The space AP;(R,C) is a Banach algebra with the operation of multiplication
being the usual point-wise multiplication.
Denote by TP(R,C) the set of all trigonometric polynomials,

(22) TP(R.C)= {P(t) S e R Ciap € C, A €R
k=1

for k = 1,...,nandn€Z+}.
A metric on TP(R,C) is given by
Aai(P,Q)= ), la(PA)~a(@QN),
AeApUAg

where P,@Q € TP(R,C). The completion of the space (T'P(R,C),d;) is exactly
the space AP;(R,C) with the metric induced by | - ||1 [9, p- 18]. Let

1 /T
M= {f € LE (R,C) : limsup — |f(t)2dt < oo}
T—o0 2T -T

be a linear space with the semi-norm

(2.3) 1f 1l

1 (T 1/2
lim sup — t th] .
sy o [ 1760)
If K ={f € M:|fllm = 0}, then the quotient space M/K =: M3(R,C),
called a Marcinkiewicz function space, is complete with respect to norm (2.3)
(see [9, p.45]).
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DEFINITION 2.10 ([9, p.46]). The space B%(R,C) of almost periodic func-
tions in the sense of Besicovitch is the closure of the linear manifold TP(R, C)+ K
in the space (M2(R,C), | - ||m), where TP(R, C) stands for the set of trigono-
metric polynomials given by (2.2).

Two functions from the same equivalence class of B?(R,C) may differ at
a set of points even of infinite measure [3, p. 74]. Among various almost periodic
function spaces, e.g. AP;(R,C), AP(R,C), B%(R,C), etc., B?(R, C) is the largest
for which the Parseval equality holds [10], i.e.

(2.4) M7} = laxl?,
k

where f takes the form of (2.1). Moreover, there holds the following important

result.
THEOREM 2.11 (Riesz—Fisher—Besicovitch [3, p. 110]). To any series Y are !
7

for which Y |ag|* converges, there corresponds a function from B*(R,C) having
i
this series as its Fourier series.

Following Vo—Khac (see [4]), given f € B?(R,C), denote by Vf the limit (if
it exists) in B2(R,C) of the quotients (f(- +7)— f(-))/r when r — 0,7 # 0.
In this case, the simple relation a(V f,\) = iXa(f, A) holds for all A € R.

The following result which is closely related to the compactness of integral
operators on AP (R, C) and B?(R,C) is a special case of [11, Proposition 7.4].

LEMMA 2.12. A set E C IP(C), p € [1,00), is relatively compact if and only
if E is bounded and equi-convergent, i.e. for each € > 0 there is an N(g) € Z4
such that

Z |xg|P <e  forallx = (21,29,...) € E.
k=N(e)+1

At last, we would like to recall the basics of coincidence degree theory. Let Y
and Z be real Banach spaces, £: dom £LCY — Z be a linear operator and N': Y —
Z be a continuous operator. L is called a Fredholm operator of index zero if
dimker £ = codimran £ < oo and ran L is closed in Z. In this case, there exist
continuous projectors P: Y — Y and Q: Z — Z such that ranP = ker £ and
ran £ = ker @ = ran (idz — Q). The operator L|qom crkerp: (idy — P)dom £ —
ran £ is invertible. Denote by Kp the inverse of L]gom £nkerp- If € is an open
bounded subset of Y, then A is called £-compact on Q if QN(Q) is bounded
and Kp(idz — Q)N: Q — Y is compact. Denote by J an isomorphism from
ran Q to ker L.

THEOREM 2.13 (Continuation Theorem [15, p.40]). Suppose that Q@ C Y is
an open bounded set, L is a Fredholm operator of index zero and N is L-compact
on Q. Let the following conditions hold:
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(C1) Ly # pNy for each y € 90 Ndom L and p € (0,1).
(C2) ONy # 0 for each y € 02 Nker L.
(C3) The Brouwer degree deg(J QN ,Q Nker L,0) # 0.

Then the equation Ly = Ny has at least one solution in QN dom L.

3. Compactness of integral operators

3.1. Integral operators on Bohr almost periodic function spaces.
Coincidence degree theory obtains its success in studying alternative problems,
which can be written as operator equations

Lr =Nz

with an appropriate priori estimate structure (see [15] for details). For first-order
ordinary differential equations of the form

x' = ¢(’Iat)’

with 1 being a continuous function, £ is the usual differential operator = — z’,
and [Cp is nothing but an integral operator. In many cases, the nonlinear op-
erator N: z(-) + 9(z(-), -) is not compact (Example 4.8) and Q is finite-
dimensional. So, it is natural to study Kp to obtain the £-compactness of N.

Generally speaking, an integral operator is not compact on AP(R,C). How-
ever, this may happen on a subspace of AP(R, C). We first study conditions for
an integral operator to be well defined on a subspace of AP(R, C).

Fix an infinitely countable set of different numbers H = {\;}72; C R. A fre-
quently used complete subspace of AP(R,C) is the following:

(3.1) APy (R,C) == {f € AP(R,C): Aj C H}.

The example in the proof of Lemma 2.6 requires the denseness of the group
G in R. We provide here a different one with less restrictions.

LEMMA 3.1. If 0 € H, the closure of H, then there erists f € APg(R,C)
such that its primitive

/0 (s)ds ¢ AP(R,C).

PRrROOF. If 0 is an isolated point of H, it is obvious that f(t) = 1 € APy (R, C)
but fo s)ds=t¢ AP(R,C).

If 0 is a limit point of H, there is a sequence of different numbers {1, }300:1 in
H\ {0} which converges to 0. Let {ax}72, be an absolutely convergent sequence

in C\ {0}, i.e. Z lax| < oo. For ay thereis pj, in {1;}32, such that a1 /pj, | > 1,
for ay there is ,uJ2 # pij, in {p;}32, such that [az/pj,| > 1, ... In this way, we
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obtain a subsequence {1, }32, of {4;}52, such that |ax/p;, | > 1 for all k € Z.
It is obvious that the function

o0
ft) = are!, teR,
k=1

is in APy (R,C).
Denote by F(t) = fg f(s) ds a primitive of f and suppose that F' € AP(R,C).
Since a(f, A) = iXa(F, \) for all A € R, it follows that

oo

F(t) ~ a(F,0) + Z Ak gt
=1 Ly

Therefore, the Fourier coefficients of F' are not square summable since |ag /1, | > 1
for all k € Z, which contradicts the Parseval equality (2.4). O

From Theorem 2.7 and Lemma 3.1 it follows that the integral operator Z
defined by (1.1) maps the space APy (R, C) to APy (R,C) if and only if 0 ¢ H.
In that case, 7 is linear and bounded.

LEMMA 3.2. Suppose that {u}72, C R is a set of different numbers, then
the following statements hold for the set of infinitely many pure oscillations E =
{eirt}> | C AP(R,C):

(a) There ezists no Cauchy sequence in the set E.

(b) The set E is equicontinuous if and only if the sequence {ur}pe, is

bounded.

(c) The set E is equi-almost periodic only if the sequence {ux}3>, has no

limit point.

PROOF. (a) A direct calculation shows that
sup |eiujt _ eiukt| = sup Hei(ﬂj_ﬂk)t _ 1] . eiﬂkt’ -9
teR teR

for j # k. Consequently, the set E contains no Cauchy sequence.

(b) Sufficiency. Let the sequence {yu}52, be bounded by a constant M > 0.
Choose € > 0 so small that there is a unique € (0,7) satisfying |e?? — 1| = ¢,
and 6 > 0 so small that M¢ < 6. It follows that

‘ei,uks _ ei,u.kt| — |[eip.k(s—t) _ 1] . eipkt| < |61M5 _ 1| <e
for all s,t € R, |s —t| < d, and k € Z,. Hence the set E is equicontinuous.
Necessity. Let the set E be equicontinuous. Without loss of generality we

may assume the contrary that limy_,. i = co. Given a sufficiently small con-
stant g > 0, there is dy, 0 < dg < , such that

(3.2) let — 1] >2—¢
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whenever [t —| < d. It is obvious that the continuous function g(t) = 7/t maps
(0,9) onto (m/d, 0), where 0 < § < d§y. So, for each m € Z, m > n/§ + 1, there
exists t € (0,0) such that m < 7/t < m + 1. Furthermore, for each sufficiently
large k € Z, there exists a unique my € Z, such that
7r
5
Let tx € (0,9) be such that

+1<mp < pp <mg+ 1.

s
mk§?<mk—|—l.
k

Then |uxty — 7| < tx < and |+t — 1| > 2 — &g by (3.2). Consequently, for
each 0 > 0 and sufficiently large k € Z. there exists tx € (0,4) such that

\ei"’“(tﬂ’f) — ei“’“t| >2—¢p

for all ¢ € R. This contradicts the equicontinuity of the set F.

(¢) Let the set E be equi-almost periodic. Without loss of generality we
may assume the contrary that the sequence {ux}3, is bounded. By (b) the set
E is equicontinuous. Hence for every € > 0 the set T'(E,¢) is relatively dense
and includes an interval about 0. Therefore, the set E is relatively compact by
Remark 2.4. This contradicts (a). O

Now we are in the position to prove Theorem 1.1.

PrROOF OF THEOREM 1.1. Sufficiency. Let § > 0 be a number such that
[Ag] > d forall k € Z,, E C APy(R,C) be a set bounded by a constant M > 0.
From Theorem 2.7 it follows that the set Z(E) is bounded by SM/6. By the
property of integrals one gets

Z(F)(t) — T(F)(5)] = \ / f(r)dr - / Cfr)dr| < Mt — 5|

for all t,s € R and f € E. Since a(f,\) = ida(F,\) for all A € R, it follows
that Azsy = Ay C H for all f € E. Thus Z(F) is u.a.p. by Theorem 2.5 and
relatively compact by Remark 2.4.

Necessity. Let the set H have a limit point p and {u4}72; be a sequence of
different numbers in H which converges to p. Then the set {iuy - €+1}2° | is
bounded and its image Z({ipuy - #1152 ) = {e™!}2° | is not relatively compact
by Lemma 3.2 (a). Hence Z is not compact on APy (R, C). O

REMARK 3.3. The following are another three different proofs for the neces-
sity of Theorem 1.1. Let p be a limit point of H and {ux}32, be a sequence of
different numbers in H, := (u—¢, n+¢) N H converging to p, where 0 < & < |u].

(a) Since Z(eM) = e /i), 1/i) is an eigenvalue of Z for each A € H.. Thus
the spectrum o(Z) of Z contains {1/iu;}7° ; and has 1/ip as a limit point. Since
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the spectrum of a compact operator can have at most 0 as its limit point [30,
p.108], Z is not compact on APy (R, C).

(b) If AP} (R,C) = {f € AP(R,C) : f’ exists and is almost periodic and
Ay C H.}, then f = I(f’) for all f € AP} (R,C). Furthermore, a theo-
rem of Bochner asserts that APp, (R,C) = APy (R,C) and there is a constant
C(e) > 0 such that || f'|]| < C(e)|If]| for all f € APy_(R,C) [13, p.67]. Therefore,
the inverse image Z~!(B;) of the unit ball By in the infinite dimensional space
APp_(R,C) is a set bounded by C(g). The non-compactness of By (by Riesz’s
theorem) shows that Z is not compact on APy (R, C).

(c) Notice that the set {iuy - €#'}7°, is bounded and its image Z({ipuy -
etmrtyee ) = {eirt}e | is not equi-almost periodic by Lemma 3.2 (c). So T is
not compact on APy (R, C).

COROLLARY 3.4. Let N': APy (R,C) — APy (R,C) be a nonlinear, contin-
uous and bounded operator with H having no limit point. Then the integral
operator Iy defined by

STy A R

is compact on APy (R,C).

One may ask whether Corollary 3.4 is true for those nonlinear operators N’
defined by basic elementary functions, such as f(t) + a(t)[f(2)]2 +b(t) f(t) +c(t)
and f(t) — e/® et al. Thus we need to consider the definition of a nonlinear
operator on APy (R, C). We are especially interested in the case when APy (R, C)
is a Banach algebra. The closedness of the space APy (R, C) with respect to the
operation of (pointwise) multiplication will be discussed in Section 4.

3.2. Integral operators on the spaces of almost periodic functions
with absolutely convergent Fourier series. Theorem 1.1 remains true for
integral operators on both the space AP;(R,C) and the space B2(R,C). The
proofs are based on the natural isometric isomorphisms from the almost periodic
function spaces to the Banach spaces [P(C) of complex sequences. So, it is of
interest to provide detailed proofs.

Let H = {\;}72; C R be a set of different numbers and

APLH(R,(C) = {f € APl(R,C) IAf C H}

Each f € AP, g(R,C) can be written as

(3.4) F) = ape™,
k=1
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where all terms with exponents A\, € H are written out for convenience such
that ap may vanish for some k € Z, . Define an operator

St APLH<R,C)—>Z1((C), f»—>(a1,a2,...),

where [*(C) is the Banach space of complex sequences equipped with the norm

o0
(a1, as,..)|n = Z lax| < co.
k=1

The following result is obvious by definition.

LEMMA 3.5. The operator Sy: APy g (R,C) — [*(C) is an isometric isomor-
phism.

The following result is obvious by the completeness of (I*(C),|| - ||;) and
Lemma 3.5.

LEMMA 3.6. (AP1 g(R,C),| - |l1) is a Banach space.

One can also obtain the completeness of (AP g(R,C),| - |l1) by showing
that it is a closed subspace of (AP;(R,C),| - ||1). By Lemma 3.5, a set E C
APy g (R,C) is relatively compact if and only if its image S1(E) C I(C) is
relatively compact. It follows from Lemma 2.12 that E is relatively compact if
and only if F is bounded and the set of Fourier series of functions from FE is
equi-convergent.

As shown in Lemma 3.1, it is necessary to have 0 ¢ H, the closure of H,
for an integral operator mapping AP g (R,C) to APy g(R,C). In this case, let
d > 0 be the number satisfying |\x| > 0 for all k € Z;. Given f € AP, (R, C)
by (3.4), a primitive of f is given by

(3.5) F(t) = /Otf(s) ds — zm{ /Ot f(s)ds} = ’2 Z% gidnt

with norm

— | ar| _ [If]h
3.6 Fl|; = < e
(36) 17 = 3|5 < 55

It is obvious that F' € AP (R, C) and the following integral operator:
Ill AP1 H(R (C) — AP1 H(R, (C),

§ akelkkt — E 1kkt7
Mk

is well defined, linear and bounded by (3.6).

(3.7)

THEOREM 3.7. Suppose that 0 ¢ H, then the integral operator I, defined by
(3.7) is compact on APy (R, C) if and only if H has no limit point.
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Proor. Sufficiency. Let H have no limit point, § > 0 be a number satisfying
|[A| > 6 for all k € Z,, and E C APy g(R,C) be an arbitrary set bounded by
a constant M > 0. Given f € E, by (3.4), Z;(f) takes the form of (3.5) and
IZi(H)llr < M/§ by (3.6). Hence both Z;(F) and S1(Z1(E)) are bounded by
Lemma 3.5.

Since H has no (finite) limit point if and only if klin;o |[Ak| = oo, for each

€ > 0 there exists N > 0 such that |A\;| > M/e for every k > N. Therefore,

L = ai| <

lc:zN:Jrl }Z‘/\k‘ S M k:zjv:+1| =
which implies that the set S;(Z1(F)) is equi-convergent. So S1(Z;(E)) is rela-
tively compact by Lemma 2.12 and Z; (F) is relatively compact by Lemma 3.5.

Necessity. Assume the contrary that H has a limit point p. Given &’ > 0,
g’ < 1/|u|, there is a strictly increasing sequence {k,,}>°_, C Z, such that
|1/Ak,, — 1/p| < € for every m € Z,. Let f,(t) = e mt it follows that
Il fmlls = 1 and Zy (fn)(t) = eMemt /i)y, . The j-th component of Sy(Zy(fm)) is

0 if j # km,
S1(Z P =
Z)\k(m)
Since k,, > N whenever m is sufficiently large, it follows that
> 1 1
> ST ()]s = > —€ >0,
e [k, | |l
J=N+1

which implies that the sequence {S1(Z1(fm))}55_; is not equi-convergent. There-
fore, {S1(Z1(fm))}55_; is not relatively compact by Lemma 2.12. Hence the set
{Z1 (fm) }So_; is not relatively compact by Lemma 3.5. O

REMARK 3.8. One can also prove the necessity of Theorem 3.7 by an eigen-
value argument as in Remark 3.3 (i). Since ||f|| < || f||1 for each f € AP,(R,C) C
AP(R,C), a set which is bounded/compact in (AP;(R,C), || - ||1) must be boun-
ded/compact in (AP(R,C),|| - ||). However, a set E C AP;(R,C) which is
bounded in (AP(R,C), ||-||) needs not to be bounded in (AP; (R, C),||-||1)- So an
operator with domain APy (R, C) which is compact on (AP g(R,C),| - ||1) may
not be compact on (APg(R,C),|| - ||). Theorem 3.7 is not a direct consequence
of Theorem 1.1.

3.3. Integral operators on Besicovitch spaces. There are two different
directions to generalize almost periodic functions. One is further structural gen-
eralizations of pure periodicity, by V.V. Stepanov, N. Wiener, H. Weyl, etc. One
is to consider the class of limit functions of trigonometric polynomials in a more
general sense than uniform convergence by A.S. Besicovitch [3, p. 67].
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The Fourier series of Besicovitch almost periodic functions is just the series
> age*t for which Y |ax|? < oo (see [7]). Due to the similarity of the space
k k

B?(R,C) to AP (R, C), we will state conclusions for B?(R,C) without proof.
Let H = {A\:}2,; C R be a set of different numbers, and define

B%(R,C) = {f € B*(R,C) : A; C H}.
For each f € B%(R,C) given by
f(t) ~ Zakei)\kt7
k=1
define an operator
SQZ B%(R,C)‘)F(C), f*—) (al,ag,...),

where [2(C) is the Banach space of complex sequences equipped with the norm

(a1, az, .. )l =

From the Parseval equality (2.4) and the Riesz—Fisher—Besicovitch Theorem,
Theorem 2.11, it follows that Sy: B%(R,C) — [? is an isometric isomorphism.
Therefore, B% (R, C) is a Banach space and Lemma 2.12 can be used to determine
compact sets in B% (R, C).

If 0 ¢ H, the closure of H, an inverse operator to

V: B%(R,C)NdomV — B%(R,C), f=Vf

is given by

T,: B4 (R,C) — B%(R,C),

oo oo a
) k.
E a,ke’L)\kt E )\ eZAkt.
1
k=1 k=1 "k

The proof of the following theorem is similar to that of Theorem 3.7.

(3.8)

THEOREM 3.9. Suppose that 0 ¢ H, then the operator I, defined by (3.8) is
compact on B%(R,C) if and only if H has no limit point.

Since a primitive of a function from M may fail to be in M, we present a new
generalization of differential and integral operators to the space B%(R,C). It
will be seen that they coincide with V and Z» on B%(R,C) (Lemma 3.10).

For the set H let § > 0 be a number satisfying |A\;| > 0 for all k € Z,.
Recall that || - || s is a norm on AP(R,C) [13, p. 36], it follows that the integral
operator Z defined by (1.1) is bounded with respect to the norm || - || o, and the
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operator norm of Z satisfies ||Z|| < 1/4. Since APy (R,C) N K = {0}, extend Z
to the linear manifold APy (R,C) + K by

Tk APH(R,(C) + K — APH(R,(C) + K,
f+K—ZI(f)+ K.
It is easy to see that Zx is a linear and bounded operator on (APy(R,C) +
K,|| - |lm). By the denseness of APy(R,C) + K in B%(R,C), there exists
a unique continuous extension Zp: B%(R,C) — B%(R,C) of Zx such that
IBlary®0)+x = Ik and [|Zp] = [|Zk |-

LEMMA 3.10. There holds Ip = Iy on B%(R,C), by which the operator
Ip: B%(R,C) — ranZp is invertible.

PROOF. Since a(f,\) = iXa(Z(f),A) for all f € APy (R,C) and X\ € R, one
has a(f, \) = iAa(Zx (f), ) for all f € APy (R,C) + K and A € R. Tt is easy to
check that the functionals {a(-,)): B%(R,C) — C}cr are linear and uniformly
bounded by 1. From the denseness of APy (R,C) + K in B%(R,C) it follows
that a(f,\) =i a(Zp(f), ) for all f € B%(R,C) and X € R. Consequently,

Ip=1s: Zakei)‘kt — Z _aTk ekt
k=1 =1 "k
on B%(R,C). O
Denote by Dp: ranZp — B% (R, C) the inverse to Zg: B%(R,C) — ranZg.

Define function spaces

Ve ={f:R—{c}:ceC},

Vik =Ve+ K,

APL(R,C) = {f € APy (R,C) : there exists f' € APy (R,C)}.

It follows that B} (R,C) = B%(R,C) & Vi, where Hy = H U {0}. Define
operators

DOAP}I(RaC)@VC %APHU(RNC), f+c'_>fla
D= DO'AP}I(R,C): API%I(Ra (C) - APHO(Rv (C)a f = f/a
Dox: [AP5(R,C) + K] ® Vx — APy, (R,C) + K,

f+c+ K — f+K,
Dk = Do.xlapy w4 APy (R,C) + K — APy, (R,C) + K,
f+K w— f'+K,
Do p: ranZp & Vg — By (R, C), f+¢— Dgf.

It is easy to prove the following result.
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LEMMA 3.11. The following statements are true.

(a) D: APL(R,C) — APy (R,C) is the inverse to T: APy (R,C) — ranZ.

(b) Dk : APY(R,C)+K — APy (R,C)+K is the inverse to Ly : APy (R, C)
+K —ranZg.

(¢) Pk =Dplary®c)rk = DPBlranzy -

(d) ker Dy 5 = Vi, ranDy 5 = ranDp = B%(R,C).

(e) Do,p: ranZp & Vi — By, (R,C) is a Fredholm operator of index 0.

4. Semigroups and nonlinear operators

From now on we will only consider Bohr almost periodic function. Additive
semigroups turns out to be the most suitable algebraic object for H when con-
sidering the compactness of integral operators on APy (R, C) and the closedness
of APy (R, C) with respect to the operation of multiplication simultaneously.

LEMMA 4.1. The space APy (R,C) is a Banach subalgebra of AP(R,C) if
and only if H is a semigroup.

PRrOOF. Sufficiency. Let H be a semigroup, and f,g € APy (R,C) be such
that

o0 oo
FO) ~ D are™ g(t) ~ > bre,
k=1 k=1

Theorem 2.2 implies that there exist two sequences of trigonometric polynomials
{pn}52, and {g,}52 such that

N,
- . 1
pn(t) :Zan,kel)\ktv ||p7l - f” < E7
k=1

N,
~ . 1
Qn(t) = § bn,kel)\ktv ”(Jn - g” < E
k=1

Consequently, A, 4, C H by the definition of a semigroup, and
lim ”ann - ng = 0.
n— oo

Since a(pngn,\) = 0 for all A ¢ H, it follows that a(fg,A) = 0 for all A & H.
Therefore, Ay, C H and fg € APy (R,C).
On the other hand, it is easy to check that || fg|| < || f]|-]|g]|- The completeness
of APy (R, C) implies that APy (R, C) is a Banach subalgebra of AP(R,C).
Necessity. Let APy (R, C) be a Banach subalgebra of AP(R,C). Since e,
et ettt ¢ AP (R, C) for any A\, € H, it follows that X\ + p € H. Thus H
is a semigroup. O

From Lemma 4.1 we can show that there exists a large number of nonlinear,
continuous and bounded operators on APy (R, C) defined by power series.



202 L. Qr — R. Yuan

(o]
LEMMA 4.2. Suppose that H is a semigroup and h(z) = >, Crz™ is a com-

n=1

plex power series such that Z |Cp|r™ < oo for somer > 0. Then Z en () f)]

in APy (R, C) for every f cmd every sequence {c, ()}, in APH(R (C) satisfying
I/l <7 and ||cn|| < |Chrl, where n € Z,..

PROOF. Since

Do ea®FOF <D leal®)] - 1F )" < D [Culr™ < oo,

the function > ¢, (¢)[f(t)]™ is well defined and uniformly convergent on R. By
n=1

Lemma 4.1 one has > ¢, (¢)[f(¢)]" € APy (R,C) for all m € Z,. It follows that
n=1
> en()[f ()] € APu (R, C). O

n=1
Next we use three properties of additive semigroups to illustrate the condi-
tions imposed on the set H for the space APy (R, C).

LEMMA 4.3. An additive subgroup (G,+) < (R,+) is isomorphic to (Z,+)

if and only if v := inf |z| > 0. In that case, v is a generator of G.
z€G/{0}

PROOF. Necessity. Let (G,+) be isomorphic to (Z,+). Since Z = (1), the

cyclic group generated by 1, there is e € G, e # 0, such that G = (e). Thus
vy= inf |z|=le]>0.

z€G/{0}

Sufficiency. Let v = zeic?/f{o} |z| > 0. If |z| # 7 for every x € G, there would
be a strictly decreasing sequence {z,}52; C G N (0,00) which converges to 7.
Hence there exists N > 0 such that 0 < |z, — x| < 7y for all m,n > N. This
contradicts the definition of 7 since G is a group. Therefore, v € G and (y) C G.

If there exists y € G\ (7), there is a unique n € Z such that ny < y < (n+1)~.
However, the inequality

0 <min{y —nvy,(n+ 1)y —y} <

o2

contradicts the definition of 7. So G = (v). O

ExXAMPLE 4.4. Put
AP; 5(R,C) :={f € AP(R,C) : mod(f) C G, |\| > 6 for all A € A},

where G is an additive subgroup of R, and § > 0 is a constant. By Theorem 1.1
the integral operator Z defined by (1.1) is compact on APg s(R,C) if and only
if G has no limit point. This leads G to be the cyclic group (v) by Lemma 4.3.
Therefore, 7 is compact on APg 5(R,C) if and only if AP s5(R,C) is a class of
27 /y-periodic functions. In this case, APg s(R,C) can be viewed as a family
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of functions defined on the compact interval [0, 27 /7] and the classical Arzela—
Ascoli theorem is applicable.

The following lemma shows the existence of a semigroup with no limit point.

LEMMA 4.5. Let B C [0,00) be a set, then B has no limit point if and only if
the semigroup generated by B, which is denoted by smod(B), has no limit point.

PROOF. Let smod(B) have no limit point. It is obvious that B has no limit
point since B C smod(B).

To prove the necessity, we use a simple fact that a set S C R has no limit
point if and only if for every L > 0 the interval [—L, L] contains only finitely
many numbers in S. Now suppose that B has no limit point. For every L > 0
the set [—L, L] N B = [0, L] N B consists of only finitely many numbers, say

0,L]NB={f1 <...<Bm,}

If 1 > 0, from the definition of a semigroup it follows that

mr, mr, mry,
[—L, L] Nsmod(B) = {anﬁk :ng €N, anﬁk <L, an #+ O}.
k=1 k k=1

=1

Notice that the number of vectors (nq,..., Ny, ) € N™ satisfying the inequali-

mr mi,
B - an < anﬁk <L
k=1 k=1
is finite. Therefore, [—L, L] N smod(B) contains only finitely many numbers. If
B1 = 0, it follows that

ties

[-L, L] Nsmod(B) = {anﬁk :np €N, anﬁk <L, k= 2,...,mL}.

k=2 k=2
So, [-L, L]Nsmod(B) contains only finite numbers, which implies that the semi-
group smod(B) has no limit point. O

The following lemma is somewhat an inverse to Lemma 4.5 in the sense that
a semigroup with particular properties must lie entirely on half of the real line.

LEMMA 4.6. A nonzero additive semigroup G C R which has no limit point
is not a cyclic group if and only if X- >0 for all \,u € G.

PRrOOF. The sufficiency is obvious since a nonzero cyclic group contains
numbers of both signs. For the necessity, assume the contrary that there exist
A, 1 € G satisfying A < 0 < p. Since G has no limit point and A < 0 < p, there
exist two numbers Ay and A_ such that

Ay =min{r € G:z >0} >0, A =max{z € G:2 <0} <0.
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Then every z € G, x > 0, is an integral multiple of A_. Otherwise, there exists
x € G, x>0, and a unique n € N such that

—nA_ <z < —(n+1)A_.

It follows that A_ < x + (n + 1)A_ < 0, which contradicts the definition of A\_.
Similarly one can show that every x € G, = < 0, is an integral multiple of A\,.
Consequently, Ay +A_ = 0 and G is the cyclic group generated by A, which is
absurd. (]

REMARK 4.7. [8] shows that for an additive semigroup G C R if uelg |z > 0,

then all members of G are of the same sign. [12] proves a similar result to
Lemma 4.6 but does not state it clearly. For the convenience of the readers, we
provide a full statement and detailed proof.

Now it is clear about the conditions on the set H for the space APy (R,C).
Theorem 1.1 shows when the integral operator Z is compact on APy (R, C).
Theorem 2.8 and Lemma 4.1 give a condition under which APy (R, C) is closed
with respect to the operations of composition and multiplication. This makes it
possible to define nonlinear and continuous operators on APy (R, C). Lemma 4.3
shows that it is not appropriate to make the set H an additive group with no
limit point. Lemma 4.5 guarantees the existence of a nonzero semigroup with
no limit point. Lemma 4.6 claims that a nonzero additive semigroup with no
limit point must lie entirely on one half of the real line, either [0, 00) or (—o0, 0],
if it is not a cyclic group. Therefore, a suitable set H for the space APy (R,C)
turns out to be a nonzero additive semigroup such that H has no limit point,
and either H C [0,00) or H C (—00,0].

It is easy to give an example of noncompact and nonlinear operators on the
space APy (R,C).

EXAMPLE 4.8. Let H = {A\;}32, C (0,00) be an additive semigroup with
no limit point and APy (R,C) be the almost periodic function space defined
by (3.1). The nonlinear operator

N: APy (R,C) — APy(R,C), fw~ f?,

is not compact. To prove this, note that the set {ei’\kt}gil is bounded and its im-

age N ({e+t}22 ) = {e*!}2 | has no Cauchy subsequences by Lemma 3.2 (a).

5. Real function spaces

Coincidence degree theory works on real Banach spaces. However, the spec-
trum of a nonconstant real almost periodic function can never be contained in a
half-line. In general, it is impossible for an integral operator Zxs defined by (3.3)
to be compact on a real almost periodic function space. Thus in view of the
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spectral conditions, the present coincidence degree theory seems to be only ap-
plicable to complex almost periodic differential equations except for the linear
case. In this section, we develop appropriate settings to make use of coincidence
degree theory on a complex almost periodic function space.

Let H = {A\¢}2, C (0,00) be an additive semigroup with no limit point
and APy (R,C) be the almost periodic function space defined by (3.1). Put
—H = {=X\}72, and define the following almost periodic function spaces

APy(R,R) = {f € AP(R,R): A; C HU (—H)},
Z = {(f,g) S APH(R,R) X APH(R,R) : Af+'ig C H}

Define
1Dz = I +igll
for every (f,g9) € Zg. Then || - ||z, is a norm on Zp.
LEMMA 5.1. The space (Zg, || - ||z,) is isometrically isomorphic to

PROOF. Define a linear map
T: APH(R, (C) — ZH,

h+h h—h
hH(Reh,Imh):(;r, - )

It is obvious that 7 is injective, we next show that 7 is surjective. Since the
components of every (f,g) € APy (R,R) x APy (R,R) have Fourier series of the
form

(5.1)

1 ) )
5 Z ake’LAkt “F@e_?)\kt),
V=
5 Z bkel)\kt + bkef’b)\kt)’
it follows that
1 — T\ —i
f&) +ig(t 5 Z ay + ibg)e 7/)\kt + (ar + ibk)e—z/\kt]_

If (f,9) € Zu, Ajtig C H implies that @y, +iby = 0 and ay, = iby, for all k € Z .
If h = f +ig, it follows that
h+h
f="2" =Reh,
h— E
2 .
g 21 o
So T is surjective. At last, one has ||(f,9)||z, = ||f +igl| = ||k by definition.

Hence 7 is an isometry. O
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The following simple equivalence relation is useful and can be proved easily
by Lemma 5.1.

LEMMA 5.2. An operator A: Zy — Zy is compact if and only if its conjugate
T YAT: APy (R,C) — APy (R,C) is compact.

We also need almost periodic functions with 0 as an exponent. Let Hy =
H U {0} and define the following spaces:

Ve ={f: R~ {c} : c€C},
W ={f:R— {c}:ceR},
APy, (R,R) ={f € AP(R,R): Ay C HyU(—H)},
Zm, ={(f,9) € APp,(R,R) x APp,(R,R) : Ay1ig C Ho}.
It is easy to see that
APy, (R,C) = APy(R,C) @ Vg,
APy, (R,R) = APy (R, R) @ Vg,
Zuy = Zu @ Vg,
where V]R2 = Vi X Vk. Define

1> Dz, = I + 9]

for every (f,g) € Zu,. Then || - ||z,, is a norm on Zp,.

LEMMA 5.3. The space (Zuy, || - || 2y, ) is isometrically isomorphic to

In this case, the components of each (f,g) € Zy, have Fourier series of the
form

1 . :
f(t) ~ ag + 5 Z(akez)\kt +@€_1>\kt),
k=1

I, —
g(t) ~ b() + 5 Z(bkel)\kt + bkefl)\kt)v
k=1

where ag, bg € R and ay = ib, € C for every k € Z. An isometric isomorphism
from APp,(R,C) to Zpy, is given by
762 APHO(R, (C) — ZH07
h+h h—h
h h,Imh) = | —— .
= (enmn) = (132, 20)

(5.2)

LEMMA 5.4. An operator A: Zy, — Zp, is compact if and only if its conju-
gate Ty ' ATo: APy, (R,C) — APg,(R,C) is compact.
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Define an integral operator on Zy by

Izi ZH — ZH,

o0 = ([ sas—mf [ sash [aoras—m{ [oas}).

It is easy to check that T—1Z;T: APy (R,C) — APy (R, C) is the integral oper-
ator Z defined by (1.1). The following criterion is useful for determining the L£-
compactness of an operator N on Zpy, and is a direct consequence of Lemma, 5.2
and Theorem 1.1.

LEMMA 5.5. Let N': Zy, — Zg, be a continuous and bounded operator, then
the composite operator Ly o (idZH0 — M) o N: Zy, — Zy is compact, where
idz,, and M are the identity operator on Zy, and the mean value operator,
respectively.

One can check by Theorem 2.8, Lemmas 4.1 and 4.2 to see that Lemma 5.5
holds for those nonlinear operators N defined by basic elementary functions,
such as f(t) = a(t)[f(1)])? +b(t) f(t) + c(t) and f(t) s /D,

6. Applications

In this section, we apply coincidence degree theory to show the existence
of almost periodic solutions to differential equations with an appropriate priori
estimate structure.

6.1. Complex differential equations with analyticity in a bounded
domain. Consider equation (1.2) with assumptions (A1)-(A3). Notice that
(1.2) does not possess an exponential dichotomy if Rea = 0, in which case the
non-resonance condition for those fixed point methods in [6], [8], [12], [14] fails.
Moreover, (1.3) indeed can be satisfied in a number of situations.

Let H = {\;}32; C (0,00) be the semigroup generated by (Ay UA,) \ {0}.
Then H has no limit point by Lemma 4.5, and Hy = H U {0} is the semigroup
generated by Ay U A, U{0}. Let 6 > 0 be a number such that A\ > § for all
k € Zy. Denote by V¢, Vg, APg(R,C), APy (R,R), APy, (R,C), APy, (R,R),
Zy and Zp, the function spaces as in Section 5. Define the space AP (R, C) as
in Subsection 3.3 and let

APy, (R,C) = APL(R,C) & V¢,
Zy ={(f,9) € Zg : there exists (f',g') € Zy},
Zh, =Zp®Vg.
Let Z be the integral operators defined by (1.1). Define the following two oper-

ators

(6.1) L: AP (R,C) = APy, (R,C), f—f,
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(6.2) N: APy, (R,C) — APy, (R,C), z(t) — az(t) + ¥ (z(t),t) + ©(t),
and two projectors
P=0Q: APy, (R,C) — APy, (R,C), f—=m{f}.

Put D = L|sp} r,c): AP (R,C) = APy, (R,C). Let T and Ty be the isometric
isomorphisms given by (5.1) and (5.2), respectively.

LEMMA 6.1. The following statements are true for the above operators.
(a) Z: APy (R,C) — ranZ is the inverse to D: AP4(R,C) — APy (R,C).
(b) TZT': Zy — ran TZT ' is the inverse to TDT ': Z} — Zg.

(c) ker L = Vg, ran L =ranD = APy (R, C).

(d) ker ToLT ;' = V2, ran ToLT gt = ran TDT ' = Zy.

(e) ToLT " : Z ® Vg — Zng, is a Fredholm operator of index 0.

PROOF. It is easy to check that DoZ =idap,r,c) and ZoD =idap1 (g c)-
So (a) holds. (b) follows from (a) and Lemma 5.1. (c) is true by the fact that
f'=0if and only if f is a constant and (a). (d) follows from (c) and Lemma 5.3.
Therefore, (e) holds by (d). O

Let an isomorphism J: ran @ — ker £ be given by J = idy,. We are in the
position proving Theorem 1.2.

PrROOF OF THEOREM 1.2. Note that the following three equations
Y =az+ () +ot),  Lz=Nz  ToLTy(Tez) = ToNT (To2),

are equivalent on QN AP} (R,C), where Q = {f € APy, (R,C) : || f|| < R} and
the operators £, A" and T are defined by (6.1), (6.2) and (5.2), respectively. We
will show that the pair (ToLT ", ToNTy ') satisfies all the conditions (C1)—(C3)
of the Continuation Theorem 2.13 on the open bounded set 7y(f2) in Zp,. For
convenience we denote
1B
ol "8
K=149_°2
1-5a
]

1. By (1.3), let € be a number satisfying

0<€<R—K[ sup [0z 0]+ el |

|z|<R,teR

and define a function on C x R by

- P(z,t) Kllo(z ) + el < R—e,
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It is easy to see that zZ: C x R — C is continuous and

10l s = sup |ih(z,t)] <

2€C, teR

R—¢

— e,

P(z,t) =¢(z,t), z€C, |z] <R teR.
Consider the auxiliary equation
(6.3) 2 =az+(zt) +ot), teR.
Suppose that
(6.4) () = plaz(t) + B0, 8) + 9], tER,
for some almost periodic z and p € (0,1). Therefore,

M{2"} = pM{az +(2(-), -) +¢} =0,
and

(6.5) ey = [ZHYCC) ) | 191+ el

|

By integrating (6.4) one gets
I(2') = 2 = M{z} = pZ(az +P(2(-), -) + ),
Iz = M{z} < [ Z(az +9(z(-), - ) + o),
and

(6.6) Izl = 199z} < S flaz + P(z(+), ) + ¢l

g
-9

B ~
< 5 llal- 2+ 1o G, Nl + llel]
by Theorem 2.7. From (6.5), and (6.6) it follows that

(1= Z1al) et < (5 +5) - i+ oy,

2]l < K(|] + [l¢l) <R —e

If there exist z € 02 Ndom £ and p € (0,1) such that £z = puN 'z, then z is also
a solution to (6.3). From the priori estimate above it follows that [|z]| < R — ¢,
which is a contradiction since z € 9Q and ||z|]] = R. So Lz # uNz for each
z € 00 NdomL and p € (0,1). It is easy to show that 7o(€2) is the open ball in
Zp, centered at 0 with radius R and T(092) = 079(£2). Hence condition (C1)
of Theorem 2.13 is true for the pair (ToLT o', ToNT ") on To(Q).

2. Tt is easy to see that 9Q Nker £L = {w € C: |w| = R} and

To(0 Nker £) = [0To(Q)] Nker ToLT 5+ = {(z,y) € R? : |z +iy| = R}.
For any zo € 9Q Nker L, from the definition of N" and Q it follows that
(NVz0)(t) = azo + ¥ (20, 1) + ¢(1),
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and
ONzp = M{N 2z} = azo + M{ (20, - ) + ¢}
y (1.3), if QNzg = 0, then

2ol = R> K[ sup (= b)) + |so|}

|z|<R,teR
1
|zO|<[ sup |¢<z,t>|+||so||],
o [ |21<R, ter

which yield the contradiction

(5= )|z 1ot + el <o

|| |z| <R, teR

since K - |a| > 1. Therefore, ONz # 0 on 92 Nker £ and
(ToQT 3 NToNT, ) (w,y) # 0

on [0T6(Q)] Nker ToLT 5 *. Thus condition (C2) of Theorem 2.13 is true for the
pair (ToLT, ", ToNT 1) on To(€).
3. It is easy to check that QNker £ = {w € C: |w| < R} and

To(QNker £) = To(Q) Nker ToLT o = {(x,y) € R? : |z +iy| < R}.
From the definition of J, Q@ and N it follows that
TNz =MNz} = az + DM{P(z, -) + ¢}
for all z € QNker £, and for all (x,y) € To(Q Nker L)

Re JON (z + iy)
Im JON (x +iy) |

We use the homotopy invariance property to calculate the Brouwer degree
deg(ToTONT ', To(Q2 Nker £),0).
Define a function on 7o(2 Nker £) x [0,1] by

Re[a(x + iy) + p{u(x + iy, ) + <PH> .

ToJQNT (2, y) = (

(@,y, 1) = Fu(z,y) = (Im [a(z + iy) + pI{(x + iy, - ) + ¢}

Suppose that F),(z,y) = 0 for some (z,y) € 0To(2Nker £) and p € [0,1]. If put
z =z + 1y, it follows that |z| = R and az + p9{(z, - ) + ¢} = 0.
With a similar proof to that for QA2 # 0 on 9Q Nker £, one can obtain the
same contradiction:
lal - R < |DHY(z,) + ol < sup  [9(z,0)] + llgl|-

|z|<R,teR

Consequently, the function F),(z,y) is a homotopy from Fy(x,y) to Fi(x,y) on
To(2Nker £).
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From the homotopy invariance property and the definition of degree for non-
degenerate linear maps [11] it follows that

deg(ToJ ONT ', To(Q Nker £), 0)
= deg(F1, To(2 Nker £),0) = deg(Fo, To(2 Nker L£),0)

—I

=sgn det Rea ma =sgnla?=1#0.
Ima Rea

Thus condition (C3) of Theorem 2.13 is true for the pair (ToLT ", ToNT ")

on 79(Q). Therefore, the complex uniformly quasi-bounded differential equation

(1.2) has at least one solution in @ N AP} (R, C) by Theorem 2.13. O

2. Real linear differential equations with delays. In this subsection,
we consider a class of real differential equations of the form

(6.7) () =Y aga(t+ 1) + (),
j=1

where aj,7; € R for j =1,...,m and ¢ € AP(R,R), A, has no limit point.

The linear differential equation (6.7) is simpler than the complex one (1.2).
Since a linear map always preserves the spectrum of an almost periodic function,
there is no request for H to be a semigroup.

Let H = {\;}32, == Ay, N(0,00), § > 0 be a number satisfying Ay, > 0 for all
k € Z4, and Hy = HU{0}. Denote by Vg, APy (R,R), APy, (R,R) the function
spaces as before. Define spaces

APEL(R,R) = {f € APy (R,R) : there exists f' € APy (R,R)},
AP (R,R) = AP (R,R) @ Vk.

THEOREM 6.2. Let the following conditions hold:
(A4) ¢ € AP(R,R) and A, has no limit point.
(A5) H = { A}, = Ay, N (0,00), Hy = HU{0}, and 6 > 0 satisfies A\, > 0
forallk € Z4.
(A6) 04],73 eR forj=1,.
(AT) Z a; #0 and Z |on| < 5/ﬁ, where B > 0 is an absolute constant given

by Theorem 2. 7
Then there exists a unique solution ¢ € APy (R,R) to (6.7) with Ag = A,.

ProOF. Existence. The proof of the existence of a solution to (6.7) is similar
to that of Theorem 1.2. For the reader’s convenience, we provide a detailed one
which may help in the understanding of the role of each assumption. Since
APy (R,R) is a closed subspace of

APyu-m(R.C) = {f € AP(R,C) : A; C HU (~H)},
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from assumptions (A4) and (A5) and Theorem 1.1 for integral operators on the
space APgy—m)(R,C) it follows that the following integral operator on a real
almost periodic function space:

Ir: APH(R, R) — APH(R,R),

s [ soas—md [ soas

is compact. Define the following two operators:
L: APj,(R,R) — APy, (R,R), fef
N': APg,(R,R) — APg,(R,R),  x(t) = > ajz(t+15) +¢(t),
j=1
and two projectors

P =Q: APy, (R,R) — APy, (R,R),  f— M{f}.

Put Dr = L|apy rr): APy (R,R) = APy, (R,R). It is easy to check that the
following statements hold for the operators defined above:
(i) Zr: APy (R,R)—ranZp is the inverse to Dr: APL(R,R)— APy (R, R).

(ii) ker £ = Vg, ran L = ran Dy = APy (R, R).

(iii) £: APL(R,R) & Vg — APy, (R,R) is a Fredholm operator of index 0.

Let an isomorphism J: ran @ — ker £ be given by J = idy;,. Since equation
(6.7) is equivalent to Lz = Nz, we will show that the pair (£,N) satisfies
all the conditions (C1)—(C3) of Theorem 2.13 on an open bounded subset of
APy, (R,R).

1. Suppose that Lz = pNz for some z € AP} (R,R) and p € (0,1). Then

(6:5) 20 = 1| Y el )+ o10)]
i=1
for all ¢t € R, which implies

M’} = u[iajm{x« 1)+ M) | = u[(fjaj)im{x} +me)] =

j=1 j=1

and

i=1

(6.9) M{z} = —im{gp}/z a;.



COINCIDENCE DEGREE METHODS 213

By integrating (6.8) one gets

Tn(s') = - (o} = T 3 s [a- + 1) - e + - M) )

m

= N[Z%IR(x(' +7;) = M{x}) + Ir(p - m{w})]
and

lz =9 {a}| <D layl - | Zr(e( + ) — M{a}) || + [ Zr(e — M{e}) ||

where (6.9) and Theorem 2.7 are used to obtain the above inequalities. Conse-
quently,

(g -y |aj> e — M} < llp — M}

m

Joll = (e} < e = ol < llo ~ el / (5 = D fel ).

and by (6.9),

6100 el < le-miehl /(5 - i'“ﬂ") + et /

Choose R > Ry and let 2 = Br(0) be the open ball centered at 0 with radius R
in APy, (R,R). Then Lz # puNz for each z € 90 Ndom L and p € (0,1) by the
above priori estimate. Hence condition (C1) of Theorem 2.13 is true for the pair
(L,N) on Q.

2. Tt is easy to see that 9Q Nker £L = {R,—R}. For any zy € 02 Nker L,
from the definition of AV and Q it follows that

m

= Ro.

@
j=1

(Nao)(£) = (iaj)xo—i—(p(t), teR,
ONzy = (iaj)xo + M{e}.

If ONzg = 0, then

m

wo] = R = \fm{w}/ o
j=1

)
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which contradicts (6.10). Therefore, ONz # 0 on I Nker £ and condition (C2)
of Theorem 2.13 is true for the pair (£, N') on Q.

3. Tt is easy to check that Q Nker £ = (—R, R). The definitions of 7, Q and
N imply

m

JONz = M{Nz} = (Zaj)x +M{p}

j=1
for all z € QNker £. A direct calculation shows that

JONz=M{p} £ R-Y a; #0
j=1
on 9N Nker L. From the definition of degree for non-degenerate linear maps [11]
it follows that

m

deg(JON,QNker £,0) = sgn(Zaj) =+1#£0.
j=1
Thus condition (C3) of Theorem 2.13 is true for the pair (£,N) on Q. Con-
sequently, equation (6.7) has at least one solution in QN AP} (R,R) by Theo-
rem 2.13.
Uniqueness. Suppose that ¢ € API%[0 (R,R) is a solution to equation (6.7),
and

o(t) ~ po+ Y _(pre™ + Pre ") € APy, (R, R),
k=1

$(t) ~ do + > _(dpe™ + Pre M) € APY (R, R).
k=1
It follows that
¢(t) ~ Y (iArdre™ " — idpgre™ M),

k=1

(b(t + Tj) ~ ¢O + Z(d)keikk@eikkt +@€_i)\ij€_iAkt)

k=1
for 5 =1,...,m. Since
a(¢',0) =) aja(d(r; + ), N) +alp,\)
j=1

for all A € R, there holds

¢k = <pk:/<'t)\k — Zaw”"“”)
j=1

for each k € Z. So the solution ¢ to (6.7) is uniquely determined. O
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