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ALTERNATING HEEGAARD DIAGRAMS

AND WILLIAMS SOLENOID ATTRACTORS

IN 3-MANIFOLDS

Chao Wang — Yimu Zhang

Abstract. We find all Heegaard diagrams with the property “alternating”

or “weakly alternating” on a genus two orientable closed surface. Using

these diagrams we give infinitely many genus two 3-manifolds, each ad-
mits an automorphism whose non-wandering set consists of two Williams

solenoids, one attractor and one repeller. These manifolds contain half

of Prism manifolds, Poincaré’s homology 3-sphere and many other Seifert
manifolds, all integer Dehn surgeries on the figure eight knot, also many

connected sums. The result shows that many kinds of 3-manifolds admit

a kind of “translation” with certain stability.

1. Introduction

In [7], Smale introduced the solenoid attractor into dynamics as an example

of indecomposable hyperbolic non-wandering set. It has a nice geometric model,

namely the nested intersections of solid tori. Suppose f is a fibre preserving

embedding from a disk fibre bundle N over S1 into itself, contracting the fibres
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and inducing an expansion on S1, then
∞⋂
i=1

f i(N) is a so-called Smale solenoid.

To generalize this kind of construction, in [9], Williams introduced solenoid at-

tractors derived from expansions on 1-dimensional branched manifolds. It also

has a geometric model, as the nested intersections of handlebodies.

For a 3-manifold M , many of these attractors can be realized by the geo-

metric models with suitable automorphisms f ∈ Diff(M). But in most cases the

realization will not be global. Global means that the non-wandering set Ω(f) is

the union of solenoid attractors and repellers. Here a repeller of f is an attractor

of f−1. By standard arguments in dynamics, one can show that if Ω(f) consists

of solenoid attractors and repellers, then there must be exactly one attractor and

one repeller, and f is like a “translation” on M .

Motivated by the study in Morse theory and Smale’s work in dynamics, the

following question was suggested in [3] by Jiang, Ni and Wang who studied this

global realization question for Smale solenoids.

Question. When does a 3-manifold admit an automorphism whose non-

wandering set consists of solenoid attractors and repellers?

In [3], they showed that for a closed orientable 3-manifold M , there is a dif-

feomorphism f : M → M with the non-wandering set Ω(f) a union of finitely

many Smale solenoids IF and ONLY IF M is a Lens space L(p, q) with p 6= 0,

namely M has Heegaard genus one and is not S1×S2. They also showed that the

diffeomorphism f constructed in the IF part is Ω-stable, but is not structurally

stable.

In the opinion of [3], a manifold M admitting a dynamics f such that Ω(f)

consists of one hyperbolic attractor and one hyperbolic repeller presents a sym-

metry of the manifold with certain stability. The simplest example is the sphere,

which admits a dynamics f such that Ω(f) consists of exactly two hyperbolic

fixed points, a sink and a source. Lens spaces give us more such examples when

we consider more complicated attractors. It is believed by Jiang, Ni and Wang

that many more 3-manifolds admit such symmetries if we replace the Smale

solenoids by the Williams solenoids. As a special case, Wang asked whether the

Poincaré’s homology 3-sphere admits such a symmetry. What about hyperbolic

3-manifolds?

Similar with the discussion in [3], in [5], Ma and Yu showed that for a closed

orientable 3-manifold M , if there is f ∈ Diff(M) such that Ω(f) consists of

Williams solenoids, whose defining handlebodies have genus g ≤ 2, then the

Heegaard genus g(M) ≤ 2. On the other hand, to construct such M and f , they

introduced the alternating Heegaard splitting which is a genus two splitting

and admits a so-called alternating Heegaard diagram (see Definition 2.5). They

showed that if M admits an alternating Heegaard splitting, then there is f such
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that Ω(f) consists of two Williams solenoids, whose defining handlebodies have

genus two. As an interesting example, they showed that the truncated-cube space

(see [4]), whose fundamental group is the extended triangle group of order 48,

admits an alternating Heegaard splitting.

The motivation of this paper is to find further such examples. As special

cases, we will show that the Poincaré’s homology 3-sphere and many hyper-

bolic 3-manifolds admit such “symmetries with certain stability”. Hence we give

a partial answer to the questions asked by Wang.

Concretely, let S2(a, b, c) denote the Seifert fibred spaces with base S2 and

three singular fibres having invariants a, b, c. For example, S2(−1/2, 1/4, 1/3) is

the truncated-cube space. Let P (m,n) denote the manifolds S2(−1/2, 1/2,m/n),

which are the so-called Prism manifolds, the simplest 3-manifolds other than Lens

spaces.

Theorem 1.1. Every 3-manifold M in the following classes admits an alter-

nating Heegaard splitting:

• P (m,n), 0 < m < n, (m,n) = 1.

• S2(−1/2, 1/4,m/n), 0 < m < n/2, (m,n) = 1.

• L(n,m) #S1 × S2, L(n,m) #RP 3, 0 ≤ m < n, (m,n) = 1.

Also there are infinitely many hyperbolic 3-manifolds admitting such splittings.

For these 3-manifolds there exists f ∈ Diff(M) such that Ω(f) consists of two

Williams solenoids.

In fact, we can find all alternating Heegaard diagrams on a genus two ori-

entable surface. They can be determined by integral vectors (n, k1, k2, k3), which

satisfy n > 0 and the greatest common divisor (n, k1 + k2 + 2k3) = 1. The 3-

manifolds in Theorem 1.1 come from special diagrams.

On the other hand, having an alternating Heegaard splitting is a strong re-

striction to genus two 3-manifolds. As it is pointed out in [5], if M admits

an alternating Heegaard splitting, then H1(M,Z2) 6= 0. Hence we cannot ap-

ply the result in [5] to the Poincaré’s homology 3-sphere. After a modification,

we generalize the alternating Heegaard splitting to the weakly alternating Hee-

gaard splitting (see Definition 5.1), which also guarantees the existence of the

required f .

Theorem 1.2. If a closed orientable 3-manifold M admits a weakly alter-

nating Heegaard splitting, then there is a diffeomorphism f ∈ Diff(M) such that

Ω(f) consists of two Williams solenoids.

We can also find all so-called weakly alternating Heegaard diagrams and for

a part of them we can identify the corresponding 3-manifolds. Notice that the

Poincaré’s homology 3-sphere has the form S2(−1/2, 1/3, 1/5). For all l ∈ Z, let

S3
l/1(41) denote the l/1-surgery on the figure eight knot.
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Theorem 1.3. Every 3-manifold M in the following classes admits a weakly

alternating Heegaard splitting:

• S3
l/1(41).

• S2(−1/2, 1/l,m/n), 0 < m < n, (m,n) = 1.

• S2(1/l, 1/r, 1/n), n > 0.

• L(n,m) #L(l, 1), 0 ≤ m < n, (m,n) = 1.

For these 3-manifolds there exists f ∈ Diff(M) such that Ω(f) consists of two

Williams solenoids.

Here l and r can be any integer. In the second and third classes if l or r is 0,

then we will get connected sums rather than Seifert fibred spaces. Notice that

in each class there are infinitely many 3-manifolds with H1(M,Z2) = 0.

By the same argument as in [3], one can show that all f we constructed

are Ω-stable, but not structurally stable. Theorems 1.1 and 1.3 convince us

that there are many more 3-manifolds admitting such “symmetries with certain

stability”. Surely all (weakly) alternating Heegaard diagrams can give us many

kinds of manifolds in the Thurston’s picture of 3-manifolds. But at present we

can only recognize a part of them.

In Section 2, we give some basic definitions, including the handcuffs solenoid,

alternating Heegaard diagram and alternating Heegaard splitting. Then we give

a brief introduction to the construction of the required f ∈ Diff(M), appearing

in [3] and [5]. Then we divide the proof of Theorem 1.1 into two steps: In

Section 3, we will find all alternating Heegaard diagrams. In Section 4, we

identify for special alternating Heegaard diagrams what 3-manifolds they give,

hence give a proof of Theorem 1.1.

The discussion of weakly alternating Heegaard splitting (diagram) will be

parallel to the alternating case. In Section 5, we introduce weakly alternating

Heegaard splitting (diagram) and give a proof of Theorem 1.2. Then we will find

all weakly alternating Heegaard diagrams. In Section 6, we identify for special

weakly alternating Heegaard diagrams what 3-manifolds they give, hence give

a proof of Theorem 1.3. At the end of the paper we give some further remarks.

2. Basic definitions and constructions

2.1. Handcuffs solenoid and alternating Heegaard diagram. All Wil-

liams solenoids we consider will have the following geometric model. For general

definition and more details one can see [9].

Let N be a genus two handlebody with the Cr (r ≥ 1) “disk fibre bundle”

structure, fibred over the branched Cr manifold K, as in Figure 1. Let p denote

the projection map N → K. We always suppose there is a Riemannian metric

on N .
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Figure 1. Disk bundle and handcuffs.

Suppose f : N → N is a fibre preserving Cr map such that f : N 7→ f(N)

is a diffeomorphism, and the induced map g : K → K is an immersion. We also

require:

Contracting condition on fibres: for each fibre D, f(D) lies in the interior of

a fibre and lim
i→∞

Diameter(f i(D)) = 0.

Expanding condition on K: g is an expansion and Ω(g) = K. Moreover, each

point of K has a neighbourhood whose image under g is an arc.

Here “the immersion g is an expansion” means that there is a Riemannian

metric ‖ · ‖ on the tangent bundle T (K) and constants C > 0, λ > 1, such that

‖(Dg)n(v)‖ ≥ Cλn‖v‖, for all n ∈ Z+, v ∈ T (K).

Remark 2.1. The expanding condition can be required for self immersions

of general branched manifolds. In our case K is like handcuffs. Any open set

of K will be mapped onto K by gn for large n. Then g is an expansion implies

Ω(g) = K.

Figure 2 is an example of such f and the corresponding immersion g.

Figure 2. Embedding and expansion.

Definition 2.2. We call Λf =
∞⋂
i=1

f i(N) a handcuffs solenoid with a defining

neighbourhood N and a “shift map” f |Λf
.

Remark 2.3. Let Σ be the inverse limit of the sequence K ← K ← · · ·
which is induced by the expansion g. For each point a = (a0, a1, . . .) ∈ Σ,

define h(a) = (g(a0), a0, a1, . . .). Then h : Σ → Σ is a homeomorphism. By the
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definition given by Williams, Σ is called a solenoid with a shift map h. The

dynamics (Λf , f |Λf
) and (Σ, h) are conjugate, by the homeomorphism

P : Λf → Σ, x 7→ (p(x), p(f−1(x)), p(f−2(x)), . . .), for all x ∈ Λf .

Definition 2.4. A diagram D on an orientable closed surface S is a finite

collection of simple closed curves intersecting transversely in S.

Two diagrams D1 and D2 on S are isotopic if there is an isotopy of S that

carries D1 to D2. Isotopic diagrams will be thought as the same one.

Two diagrams D1 and D2 on S are homeomorphic, denoted by D1 ' D2, if

there is a homeomorphism h : S → S such that h(D1) = D2.

For any closed orientable 3-manifold M , there is an orientable closed sub-

surface S splitting M into two handlebodies N1 and N2. In this paper, we only

consider the splitting with S having genus two. Hence for each Ni we can find

disjoint simple closed curves αi, βi, γi in S such that they all bound disks in Ni,

γi is a separating curve, αi and βi are non-separating and lie on different sides

of γi. Then {α1, β1, γ1} together with {α2, β2, γ2} form a diagram on S.

Definition 2.5. We call the diagram {α1, β1, γ1}∪{α2, β2, γ2} an alternating

Heegaard diagram if each curve of {αi, βi, γi} intersect {αj , βj , γj} in the cyclic

order

αj , γj , βj , γj , αj , γj , βj , γj , . . . , i 6= j.

We call a Heegaard splitting alternating if it admits an alternating Heegaard

diagram.

As an example, Figure 3 shows an alternating Heegaard diagram. By the

discussions in Sections 3 and 4, we will see that this diagram gives us the Prism

manifold P (1, 2).

1

1

2

2

2

1

Figure 3. Alternating Heegaard diagram.

Remark 2.6. (a) In the classical definition of Heegaard diagram, γi may be

omitted.
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(b) The above definition of alternating Heegaard splitting coincides with the

definition of “alternating Heegaard splitting of type I” in [5].

(c) If we just require {α1, β1, γ1} to be disjoint simple closed curves in S such

that they intersect {α2, β2, γ2} as in Definition 2.5, then one can show that γ1

must be separating, α1 and β1 are non-separating and lie on different sides of γ1.

2.2. Construction of the diffeomorphism f . Suppose M = N1 ∪S N2

is a genus two alternating Heegaard splitting, with an alternating Heegaard

diagram {α1, β1, γ1} ∪ {α2, β2, γ2}. Then we can construct f ∈ Diff(M) as

followings. For more details one can see [3] and [5].

Firstly we give Ni, a “disk fibre bundle” structure, fibred over the branched

manifold K, such that αi, βi, γi are all boundaries of fibres. Let pi be the corre-

sponding projection map. We choose a spine Ki in Ni as in Figure 4 (a), then

pi|Ki
: Ki → K is an immersion as in Figure 4 (b).

Figure 4. Spine in Ni.

Then we choose three points xα, xβ , xγ separately in α1 ∩ α2, β1 ∩ β2, γ1 ∩ γ2,

and add three half twist bands between “edges” of Ki and αj , βj , γj , i 6= j. The

“core” of each band should contain a chosen point and lie in a fibre. The half

twists from different sides should have the same “direction”. Figure 5 (a) shows

the three bands in N2 and Figure 5 (b) shows that two bands from different sides

intersect at a chosen point.

Figure 5. Adding bands on spines.

We can get two new branched manifolds, and one of them is as in Figure 6 (a).

Then we push them into Ni to get K ′i as in Figure 6 (b). We can require that
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pi|K′
i
: K ′i → K is also an immersion. Denote the regular neighbourhoods of Ki

and K ′i by N(Ki) and N(K ′i), which are all contained in Ni and have induced

“disk fibre bundle” structure. We construct the required f ∈ Diff(M) in three

steps.

Figure 6. New branched manifold in handlebody.

Step 1. There is f1 ∈ Diff(M) which is isotopic to the identity, fixing N(K ′1)

and on N2 it satisfies the contracting condition on fibres, mapping N2 to N(K2),

see Figure 7.

Figure 7. Contraction on fibres.

Step 2. Via suitable isotopy, we can move K2 and its neighbourhood N(K2)

along the bands in N2, see Figure 8 (b). Since α2, β2, γ2 bound disjoint disks

in N2, we can then move K ′1 and its neighbourhood N(K ′1) along those disks,

see Figure 8 (c). And we can further move them to the position as in Figure

8 (d).

Then since α1, β1, γ1 bound disjoint disks in N1, we can move K2 and N(K2)

further along these disks to K ′2 and N(K ′2), see Figure 8 (e). And finally we can

move K ′1 and N(K ′1) to K1 and N(K1), see Figure 8 (f). Combining these moves

we get f2 ∈ Diff(M), which is isotopic to the identity.

f2 |N(K′
1) : N(K ′1)→ N(K1) and f2 |N(K2) : N(K2)→ N(K ′2) can be chosen

to be fibre preserving. If we let g1 and g2 denote their induced maps on K, then

f2 can be further chosen such that g−1
1 and g2 satisfy the expanding condition

on K.

Step 3. There is f3 ∈ Diff(M) which is isotopic to the identity, fixing N(K ′2)

and on N1 its inverse f−1
3 satisfies the contracting condition on fibres, mapping

N1 to N(K1). On N(K1) the map f3 is as in Figure 9.
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Figure 8. Isotopy of K1 and K2.

Figure 9. Expansion on fibres.

Let f = f3 ◦ f2 ◦ f1 ∈ Diff(M), by the construction, f is isotopic to the

identity. It is easy to see Ω(f) =
∞⋂
i=1

f i(N2) ∪
∞⋂
i=1

f−i(N1) is a union of two

Williams solenoids. And clearly the Williams solenoids derived from alternating

Heegaard splittings (defined as in Definition 2.5) are all handcuffs solenoids.

3. Alternating Heegaard diagram

Suppose {α1, β1, γ1} ∪ {α2, β2, γ2} is an alternating Heegaard diagram on

a splitting surface S. We can assume the curves {α2, β2, γ2} are in the standard

position like in Figure 3. We color the curves {α1, β1, γ1} separately by red,

green and black. Then the red (green) curve is non-separating, the black curve

is separating.

...

...

...

...

Figure 10. Two 3-punctured spheres.
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Cutting S along {α2, β2, γ2}, we get two 3-punctured spheres Sl and Sr. Since

{α1, β1, γ1} intersect {α2, β2, γ2} in the cyclic order α2, γ2, β2, γ2, . . ., the colored

curves must be cut into arcs lying in Sl and Sr. Moreover, it can be “straight-

ened” as in Figure 10. Clearly colored arcs in Sl and Sr have the same number.

Since {α2, β2, γ2} intersect {α1, β1, γ1} in the cyclic order α1, γ1, β1, γ1, . . ., this

number can be divided by 8.

The original diagram can be obtained from Figure 10 by pasting the cuts.

There is a quite natural way to paste the cuts as in Figure 11 which contains 4n

(n > 0) (non-colored) parallel simple closed curves. Hence the original diagram

can be thought of as obtained from Figure 11 by some “twist” operations.

..
.

..
.

2

22

Figure 11. Trivial diagram.

Definition 3.1. Let D be a diagram on an oriented closed surface S, c be

a simple closed curve in S which intersects D transversely. Then we have a local

picture as in Figure 12 (a). The twist operation Tc on D is as in Figure 12 (b).

It is invertible.

A

B

A
'

B
'

A

B

A
'

B
'

...

...

...

Figure 12. Local model and twist operation.

If we look from positive side of S, Tc is a right-hand shift along c, and T −1
c

is a left-hand shift along c.

Remark 3.2. Tc is an operation on diagrams. Do not confuse it with the

Dehn twist tc, which is an automorphism of S and normally can be defined as

in Figure 13. Out of the annulus neighbourhood of c, tc is the identity. On

the annulus tc is like a left hand 2π-twist. Its inverse t−1
c is like a right hand

2π-twist.



Alternating Heegaard Diagrams and Williams Solenoid Attractors 779

Figure 13. Dehn twist.

Definition 3.3. Define D(4n; 0, 0, 0) to be the diagram as in Figure 11 which

consists of 4n parallel curves and {α2, β2, γ2}. Pushing each curve of {α2, β2, γ2}
sightly to either side we get their parallel curves {c1, c2, c3}. Then Tci are mutu-

ally commutative. Define D(4n;m1,m2,m3) to be T m1
c1 T

m2
c2 T

m3
c3 (D(4n; 0, 0, 0)),

here mi are all integers.

From the above discussion we have:

Lemma 3.4. Any alternating Heegaard diagram has the form

D(4n;m1,m2,m3).

Lemma 3.5. For D(4n;m1,m2,m3), we have following homeomorphisms:

(a) D(4n;m1,m2,m3) ' D(4n;m′1,m
′
2,m

′
3), mi ≡ m′i (mod 4n).

(b) D(4n;m1,m2,m3) ' D(4n;m2,m1,m3).

(c) D(4n;m1,m2,m3) ' D(4n;−m1,−m2,−m3).

Proof. We can put arcs in Sl and Sr in a symmetric way as in Figure 10,

then paste the cuts “symmetrically” to obtain the diagrams. These homeomor-

phisms can be obtained by Dehn twist (half twist), π-rotation and reflection as

in Figure 14.

Figure 14. Symmetries of diagrams.

We also have the following lemma which can be easily proved.

Lemma 3.6. The Dehn twist (half twist), π-rotation and reflection as in Figu-

re 14 map an alternating Heegaard diagram to an alternating Heegaard diagram.

Theorem 3.7. The diagram D(4n;m1,m2,m3) is an alternating Heegaard

diagram if and only if (m1,m2,m3) = η + 4(k1, k2, k3), here η is one of the

following integral vectors ±(1,−3, 1), ±(1,−5, 2), ki are all integers and satisfy

(n, k1 + k2 + 2k3) = 1.
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Proof. The Only If Part. Suppose D(4n;m1,m2,m3) is alternating. Cut

S along {α2, β2, γ2} as before, then we get Sl and Sr. We first look at Sl.

Figure 15. Uncolored and colored left surfaces.

By Definition 2.5, it is easy to see that one of l1 and l2 must be black.

By Lemmas 3.5 and 3.6, we can assume l1 is black, otherwise we consider the

reflection image of this diagram. Then we can further assume l2 is red, otherwise

we recolor the curves α1 and β1. Hence by Definition 2.5, Sl should be as in

Figure 15 (b).

Figure 16. Two possible right surfaces.

The situation of Sr should be similar. If we cut Sl and Sr further along

all black arcs, then only the piece containing the saddle can contain two arcs

with the same color red or green. Other pieces are all rectangles containing only

one arc. Hence for Sr the piece containing the saddle must contain two green

arcs, otherwise β1 will be parallel to γ1. Then by Definition 2.5, we have two

possibilities of Sr as in Figure 16.

Case 1. Sr is as in Figure 16 (a).

We fix a base position η = (1,−3, 1). This means that if before cutting

along {α2, β2, γ2} the diagram is D(4n; 1,−3, 1), then colors of the arcs will be

coincident at the cuts. D(4n;m1,m2,m3) can be obtained from D(4n; 1,−3, 1)

by twist operations, hence clearly (m1,m2,m3) = η + 4(k1, k2, k3).

In S, colored curves intersect γ2 at 8n points, 2n red points, 2n green points

and 4n black points, along γ2 in the cyclic order red, black, green, black, . . .

Looking at γ2 from left to right, give the red (green) points which belong to the

saddle piece a symbol 0 (0′) and other red (green) points symbols 1, . . . , n − 1
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(1′, . . . , n − 1′) clockwise, then the picture will be as in Figure 17 (a), k3 ≡ k3

(modn), 0 ≤ k3 < n.

Figure 17. Equivalence relation on points in γ2.

We define an equivalence relation on the black (red, green) points in γ2,

which is generated by the following two relations:

R̃l: two black (red, green) points are equivalent if arcs in Sl containing them

have a common boundary in α2.

R̃r: two black (red, green) points are equivalent if arcs in Sr containing them

have a common boundary in β2.

There are four open sectors with red (green) boundaries as in Figure 17 (b).

Here ki ≡ ki (modn), 0 < k2 ≤ n, 0 ≤ k1, k3 < n, the red (green) lines pass

through the midpoints of the red (green) points and their neighbour black points.

It can be checked that reflections on γ2 which interchange two red (green) non-

adjacent sectors give us R̃l (R̃r) on the black (red, green) points in those sectors.

Figure 18. Reflections and quotient space.

Then the equivalence relation induces an equivalence relation on black (red,

green) points in RP 1. Here RP 1 is obtained by identifying antipodal points
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of γ2. This induced equivalence relation is generated by two reflections Rl and

Rr with reflection lines Ll and Lr as in Figure 18 (a).

By the connectedness of the black (red, green) curve, all black (red, green)

points in γ2 are equivalent. Hence the dihedral group generated by Rl and Rr
acts transitively on the black (red, green) points in RP 1. In Figure 18 (a), let

θ denote the angle between Ll and Lr, then θ ≡ ±(k1 + k2 + 2k3)π/n (modπ).

Notice that Ll and Lr only pass through red or green points.

Claim 3.8. The group generated by Rl and Rr acts transitively on black (both

red and green) points in RP 1 if and only if (n, k1 + k2 + 2k3) = 1.

Proof of Claim. Let (n, k1 +k2 + 2k3) = d, then modulo the group action

we get a corner with boundaries containing red or green points and having angle

dπ/n. Hence the group acts transitively on black (both red and green) points if

and only if d = 1, see Figure 18 (c). �

Hence we finish the discussion of Case 1.

Case 2. Sr is as in Figure 16 (b).

We fix a base position η = (1,−5, 2) similar to Case 1. Then as above we

have (m1,m2,m3) = η + 4(k1, k2, k3). The following discussion is exactly the

same as in Case 1, except that instead of Figures 17 (b) and 18 (a) we will get

Figures 17 (c) and 18 (b), and we have (n, k1 + k2 + 2k3) = 1.

The If Part. Suppose (m1,m2,m3) = η+4(k1, k2, k3), η is one of ±(1,−3, 1),

±(1,−5, 2) and (n, k1 +k2 + 2k3) = 1. By Lemmas 3.5 and 3.6, we can assume η

is (1,−3, 1) or (1,−5, 2). Cut D(4n;m1,m2,m3) along {α2, β2, γ2}, then we get

Sl and Sr.

Clearly we can color the arcs in Sl as in Figure 15 (b). Then we can color

Sr as in Figure 16 (a) or Figure 16 (b) according to whether η is (1,−3, 1) or

(1,−5, 2). Then the colors of those arcs will coincide at points in {α2, β2, γ2}.
Hence we can have equivalence relations on black (red, green) points in γ2 and

black (red, green) points in RP 1 as in the proof of The Only If Part.

Since (n, k1 + k2 + 2k3) = 1, by Claim, all black (red, green) points in RP 1

are equivalent. Hence there are at most two equivalence classes of black (red,

green) points in γ2, and in S we have at most two black (red, green) curves.

Figure 19. Red and green surfaces.
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Notice that there is a pair of red (green) antipodal points in γ2 lying in the

saddle piece of Sl (Sr). Hence the union of pieces containing the red (green) arcs

is a connected subsurface in S, with Euler characteristic −1. Hence there are

two possible cases as in Figure 19.

Since there are at most two black curves, we meet the case Figure 19 (a), and

there is only one black curve which is separating. Then the red (green) curve is

non-separating because the two sides of it can be connected by a parallel curve

of the black curve. Hence there are only one red curve and one green curve, both

non-separating. �

4. Manifolds with alternating Heegaard splittings

Definition 4.1. Let η1 = (1,−3, 1), η2 = (1,−5, 2). Let Mi(n; k1, k2, k3) be

the 3-manifold which has an alternating Heegaard diagram D(4n;m1,m2,m3)

with (m1,m2,m3) = ηi+4(k1, k2, k3), i = 1, 2. Here n > 0, (n, k1+k2+2k3) = 1.

Lemma 4.2. If a 3-manifold M admits an alternating Heegaard splitting,

then M must be homeomorphic to some Mi(n; k1, k2, k3) with the inequalities

0 < k2 ≤ n, 0 ≤ k3 < n and n ≤ k1 + k2 + 2k3 < 2n.

Proof. If two Heegaard diagrams are homeomorphic, then they give the

homeomorphic 3-manifolds. Then, by Theorem 3.7 and Lemma 3.5, we get the

results. �

In what follows we identify some of M1(n; k1, k2, k3) and M2(n; k1, k2, k3)

as in Lemma 4.2 to our familiar 3-manifolds. Notice that every alternating

Heeagaard diagram admits an involution τ which preserves the black (red, green)

curve, as in Figure 20.

Figure 20. Involution and branched cover.

Proposition 4.3. M1(n; k1, k2, k3) (M2(n; k1, k2, k3)) as in Lemma 4.2 is

a 2-fold branched cover of S3. The branched set is a three bridge link. It consists

of a blue two bridge link and a yellow trivial circle as in Figure 21 (a) (21 (b)).

The front (back) blue arcs lying in the surface of the n × n square pillow have

slope −m/n(m/n), m = k1 + k2 + 2k3 − n. In the front square, walking from

the point B to the left we get the arc Ls. Walking along the oriented circle c

from Ls by 2k3 we get the arc Lt. Hence the position of the yellow circle can be

determined. As an example, Figure 21 (c) shows the corresponding branched set

of M1(5; 2, 3, 1).
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Figure 21. Three bridge links.

Proof. Let M1(n; k1, k2, k3) = N1 ∪S N2 as before. On N2 the branched

cover is given by the involution τ as in Figure 20. It induces a branched cover

of the black (red, green) curve. On γ2 it is a π-rotation and on α2 and β2 it is

a reflection. These reflections are essentially Rl and Rr defined on RP 1 in the

proof of Theorem 3.7, see Figure 18. Since the reflection lines Ll and Lr only

pass red or green points, we know that on the black curve τ is a π-rotation and

on the red (green) curve τ is a reflection.

Cut N2 open along disks bounded by α2 and β2. Modulo the involution, we

get a cylinder as in Figure 22 (a). Then modulo reflections on the left and right

disks we get N2/τ , an n × n square pillow as in Figure 22 (b). With suitable

twists, we can require that the front arcs have slope −m/n and the back arcs

have slope m/n. And the position of the yellow arc is as in Figure 21 (a).

Figure 22. Cylinder and square pillow.

Let N1 be as in Figure 23 (a). We can extend τ to a π-rotation (reflection)

on the disk bounded in N1 by the black (red, green) curve. Hence we can further

extend τ to the whole N1 and get the N1/τ as in Figure 23 (b).

Clearly, M1(n; k1, k2, k3)/τ = N1/τ
⋃
S/τ

N2/τ is S3 with branched set a three

bridge link that consists of a blue link and a yellow circle. We can push the blue

arcs in N1/τ across the disks to the red and green arcs, then the yellow arc is
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just a trivial arc in N1/τ . For M2(n; k1, k2, k3) the discussion is similar, and we

finish the proof. �

Figure 23. Involution on N1.

Proposition 4.4. Let M1(n; k1, k2, k3) (M2(n; k1, k2, k3)) be as in Lem-

ma 4.2 and m = k1 + k2 + 2k3 − n. We have the following homeomorphisms:

(a) M1(n; k1, k2, 0) ' L(n,m) #S1 × S2, 0 ≤ m < n.

(b) M2(n; k1, k2, 0) ' L(n,m) #L(2, 1), 0 ≤ m < n.

(c) M1(n; 0, n−m,m) ' P (m,n), 0 < m < n.

(d) M2(n;m− 1, n− 2m+ 1,m) ' S2(−1/2, 1/4,m/n), 0 < m < n/2.

Proof. The proof depends on Proposition 4.3 and the fact that the 2-fold

branched cover of a Montesinos link is a Seifert fibred space. Moreover, an

(m,n)-rational tangle corresponds to a singular fibre with invariant m/n. This

can be found, for example, in Chapters 11 and 12 of [2].

In what follows we identify the 2-fold branched covers of the corresponding

links of M1 and M2 in the proposition. Considering Figure 21, since the yellow

arc in N1/τ is a trivial arc, we can push it into S/τ disjoint from the blue arcs.

Then we further push it into the square pillow. Hence it is contained in a smaller

box, as in Figure 24 (a).

Figure 24. Two boxes.

After a π-rotation about the circle c we change the outside and inside of the

square pillow, and we redraw it as in Figure 24 (b). Now the left box contains the

yellow circle and two blue arcs, and the right box is exactly an (m,n)-rational

tangle.
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When k3 = 0, the picture is as in Figure 25. The three bridge link can be

written as a connected sum of a two bridge link and a 2-component trivial link

(or a Hopf link). The connected sum of links corresponds to the connected sum

of their 2-fold branched covers. The 2-fold branched cover of a 2-component

trivial link (or a Hopf link) is S1 × S2 (or RP 3). The 2-fold branched cover of

the blue two bridge link in Figure 25 (a) is L(n,m). Hence we get the first two

homeomorphisms.

Figure 25. Connected sums.

To show the last two homeomorphisms, we redraw the corresponding links

in Figure 26. Figures 26 (a)(c) give us the pictures when we push the yellow arc

in N1/τ into S/τ . Figures 26 (b)(d) show us how the links will be look like after

we perform the procedure as in Figure 24.

Figure 26. Montesinos links.
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These two links are all Montesinos links with three rational tangles. For Figu-

re 26 (b), the three rational tangles have parameters (−1, 2), (1, 2) and (m,n).

For Figure 26 (d), the three rational tangles have parameters (−1, 2), (1, 4) and

(m,n). Hence 2-fold branched covers of these two links are all Seifert fibred

spaces, and the invariants are exactly as in the proposition. �

Proposition 4.5. M2(n; 0, n − 3, 2) (n ≥ 5) has a 2-fold cover which is

homeomorphic to some Dehn surgery on the hyperbolic link 62
3. M2(n; 0, n−3, 2)

are all hyperbolic 3-manifolds, except for finitely many n.

Figure 27. The quotient M2(n; 0, n− 3, 2)/τ .

Proof. The manifold M2(n; 0, n− 3, 2) (n ≥ 5) is the 2-fold branched cover

of the link as in Figure 27 (a). As in the proof of Proposition 4.4, this link is

isotopic to the link in Figure 27 (b), here the n-box denotes two parallel vertical

singular arcs with n half twists as in Figure 27 (c).

If we replace the n-box by a box containing two parallel horizontal singular

arcs, then the picture will be as in Figure 28 (a), which is a Hopf link. The new

box can be thought of as a regular neighbourhood of a regular arc. We can move

this picture to the position as in Figure 28 (b).

Figure 28. Surgery on M2(n; 0, n− 3, 2)/τ .

Clearly the 2-fold branched covers of the new box and the original n-box are

solid tori. Since the 2-fold branched cover of the Hopf link is RP 3, we know that

M2(n; 0, n − 3, 2) is some Dehn surgery on a knot in RP 3. When we consider

a further 2-fold cover, the knot becomes the link 62
3 in S3.
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This can be easily seen from another way to get the 4-fold branched cover

as follows. Figure 29 (a) is the 2-fold branched cover of Figure 28 (b). Fig-

ure 29 (b) is isotopic to Figure 29 (a). Figure 29 (c) is the 2-fold branched cover

of Figure 29 (b).

Figure 29. Branched covers and the link 623.

The link 62
3 is hyperbolic. One can show that its quotient knot in RP 3 is also

hyperbolic. Then by Thurston’s Hyperbolic Dehn Surgery Theorem, all surgeries

are hyperbolic 3-manifolds, except for finitely many cases (see [8]). �

Remark 4.6. Since the orbifold M2(n; 0, n − 3, 2)/τ has 1-dimensional sin-

gular set, one can also use the Orbifold Theorem to get the results (see [1]).

5. Weakly alternating Heegaard diagram

Suppose M = N1 ∪S N2 is a genus two Heegaard splitting. The disjoint

simple closed curves αi, βi, γi in S bound disks in Ni. γi is a separating curve,

αi and βi are non-separating and lie on different sides of γi.

Definition 5.1. We call the diagram {α1, β1, γ1} ∪ {α2, β2, γ2} a weakly

alternating Heegaard diagram if γi intersects {αj , βj , γj} in the cyclic order

αj , γj , βj , γj , αj , γj , βj , γj , . . . , i 6= j.

We call a Heegaard splitting weakly alternating if it admits a weakly alternating

Heegaard diagram.

Remark 5.2. Suppose {α1, β1, γ1} ∪ {α2, β2, γ2} is weakly alternating and

{α1, β1, γ1} does not intersect {α2, β2, γ2} minimally, then there is a bi-gon in

some αi ∪ βj (i 6= j). We can move αi or βj to get a new weakly alternating

Heegaard diagram with fewer intersections, and not to affect the corresponding 3-

manifold. Hence further we only consider weakly alternating Heegaard diagrams

with minimal intersections.

Clearly an alternating Heegaard diagram is weakly alternating. Figure 30

shows a weakly alternating Heegaard diagram which is not alternating. In Sec-

tion 6, we will see that this diagram gives us the Poincaré’s homology 3-sphere
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21

1

2

1

2

Figure 30. Weakly alternating Heegaard diagram.

S(−1/2, 1/3, 1/5), which does not admit any alternating Heegaard splitting.

Now we give a proof of Theorem 1.2.

Proof of Theorem 1.2. Similar to the construction part in Section 2, now

we choose only one point xγ in γ1 ∩ γ2 and add only one band in Ni connecting

Ki and γj , i 6= j. Then we can similarly get K ′i, N(Ki), N(K ′i) and f1, f2, f3.

Notice that still we can choose f2 such that the induced maps g−1
1 and g2

satisfy the expanding condition on K, because in Figure 4 one can see that the

loops have been drawn longer and after the isotopy the middle arc will also be

longer. Actually we can make a small modification on K ′i as in Figure 31, and

correspondingly modify f2 by further isotopy. Then the expansion on K will be

more clear.

Figure 31. Expansion of the spine.

Following the construction Steps 1–3 in Section 2, we can get the required f .�

Remark 5.3. By the proof, it is clear that the Williams solenoids derived

from weakly alternating Heegaard splittings are all handcuffs solenoids.

Suppose D(4n;m1,m2,m3) = {α1, β1, γ1} ∪ {α2, β2, γ2} is an alternating

Heegaard diagram. Let ci (1 ≤ i ≤ 5) be simple closed curves in S as in Figure 32.

And let tci (1 ≤ i ≤ 5) denote the Dehn twist along ci as in Remark 3.2.

Definition 5.4. Let l and r be two integers. Define D(4n;m1[l],m2[r],m3)

to be the diagram tlc4t
r
c5({α1, β1, γ1}) ∪ {α2, β2, γ2}. If l or r is 0, the diagram

will also be denoted by D(4n;m1,m2[r],m3) or D(4n;m1[l],m2,m3). Clearly
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Figure 32. Simple closed curves in S.

D(4n;m1[0],m2[0],m3) is the same as D(4n;m1,m2,m3), the alternating Hee-

gaard diagram itself.

Lemma 5.5. If D(4n;m1,m2,m3) is alternating, then D(4n;m′1,m
′
2,m

′
3),

D(4n;m2,m1,m3), D(4n;−m1,−m2,−m3) and D(4n;−m1,m2,m1 + m3) are

alternating, here m′i ≡ mi (mod 4n). Moreover, we have following homeomor-

phisms:

(a) D(4n;m1[l],m2[r],m3) ' D(4n;m1[l],m2[r],m′3), m3 ≡ m′3 (mod 4n).

(b) D(4n;m1[l],m2[0],m3) ' D(4n;m1[l],m′2[0],m3), m2 ≡ m′2(mod 4n).

(c) D(4n;m1[l],m2[r],m3) ' D(4n;m2[r],m1[l],m3).

(d) D(4n;m1[l],m2[r],m3) ' D(4n;−m1[−l],−m2[−r],−m3).

If further 0 < m1 < 4n, we have the following homeomorphism:

(e) D(4n;m1[l],m2[r],m3) ' D(4n;−m1[l + 2],m2[r],m1 +m3).

Proof. By Theorem 3.7, one can check directly that the four diagrams

are all alternating Heegaard diagrams. The first four homeomorphisms can be

proved similarly to the proof of Lemma 3.5. For the last homeomorphism we

only need to prove the following:

D(4n;m1[−2],m2,m3) ' D(4n;−m1,m2,m1 +m3).

This can be shown as in Figure 33. Here we only give the left part of the surface.

The notation x (or y) means that there are x (or y) parallel arcs and here x = m1.

Figure 33. Dehn twist and isotopy.

Figure 33 (a) shows the left part of the diagram D(4n;m1,m2,m3). Applying the

Dehn twist t−2
c4 on it, we get Figure 33 (b), the left part of D(4n;m1[−2],m2,m3).
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This is isotopic to D(4n;−m1,m2,m1+m3), via two isotopies as in Figures 33 (c)

and (d). �

Lemma 5.6. The Dehn twist (half twist), π-rotation and reflection, as in

Figure 14, map a weakly alternating Heegaard diagram to a weakly alternating

Heegaard diagram.

Theorem 5.7. A diagram is a weakly alternating Heegaard diagram if and

only if it has the form tm4
c1 t

m5
c2 (D(4n;m1[l],m2[r],m3)), n > 0, mi (1 ≤ i ≤ 5),

l, r are all integers and satisfy (m2
1 − 1)l = (m2

2 − 1)r = 0.

Proof. The Only If Part. Suppose {α1, β1, γ1}∪{α2, β2, γ2} is a weakly al-

ternating Heegaard diagram on a splitting surface S. We can assume {α2, β2, γ2}
to be standard as before and the curves {α1, β1, γ1} to have colors red, green

and black.

Cutting S along {α2, β2, γ2}, we get Sl and Sr. Since γ1 intersects {α2, β2, γ2}
in the cyclic order α2, γ2, β2, γ2, . . ., the black curve must be cut into arcs lying

in Sl and Sr as in Figure 34.

Figure 34. Black curves in Sl and Sr.

Since γ2 intersects {α1, β1, γ1} in the cyclic order α1, γ1, β1, γ1, . . ., the num-

ber of intersection points with color red (green) must be even. Cutting Sl and Sr
along the black arcs, since intersections of {α1, β1, γ1} and {α2, β2, γ2} are mini-

mal (see Remark 5.2), each rectangle piece can contain only one red (green) arc.

Figure 35. Three possibilities of colored arcs in Sl.

If the number of colored arcs in the saddle piece is not 2, then modulo the

Dehn twist along α2 (β2) the pasting way at α2 (β2) is unique. Moreover, in

any case all arcs in the saddle piece will have the same color. We recolor the
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red (green) curves if it is needed, then Sl should be as in Figure 35. Here the

notation x means there are x parallel arcs. The situation of Sr will be similar.

The original diagram can be obtained from Sl and Sr by pasting the cuts.

Hence t−rc5 t
−l
c4 t
−m5
c2 t−m4

c1 ({α1, β1, γ1}) ∪ {α2, β2, γ2} will become an alternating

Heegaard diagram D(4n;m1,m2,m3), if we choose suitable m4,m5, l and r.

When the number of colored arcs in the saddle piece of Sl or Sr is not 2, l

or r is not 0 and correspondingly m1 or m2 must be ±1. Since tm4
c1 t

m5
c2 preserves

the curves {α2, β2, γ2}, we know that {α1, β1, γ1} ∪ {α2, β2, γ2} has the form as

in the theorem.

The If Part. By the definition of D(4n;m1[l],m2[r],m3), D(4n;m1[0], m2[0],

m3) is always an alternating Heegaard diagram.

Let it be {α1, β1, γ1} ∪ {α2, β2, γ2}. If m1 or m2 is ±1, then we can apply

the Dehn twist tlc4 or trc5 on {α1, β1, γ1} to get weakly alternating Heegraard

diagrams. Hence, by Lemma 5.6, the diagrams given in the theorem are all

weakly alternating Heegaard diagrams. �

6. Manifolds with weakly alternating Heegaard splittings

Definition 6.1. Define Mi(n; k1[l], k2[r], k3) to be the 3-manifold which has

a Heegaard diagramD(4n;m1[l],m2[r],m3) with (m1,m2,m3)=ηi+4(k1, k2, k3),

i = 1, 2. Here ηi is as in Definition 4.1. n > 0, ki, l and r are integers and

(n, k1 + k2 + 2k3) = 1.

Lemma 6.2. If a 3-manifold M admits a weakly alternating Heegaard splitting

but does not admit an alternating Heegraard splitting, then M must be homeo-

morphic to one of the following:

(a) M1(n; 0[l], k2, k3), here 0 ≤ k3 < n, n ≤ k2 + 2k3 < 2n.

(b) M1(n; 0[l], 1[r], k3), here 0 ≤ k3 < n.

Proof. By Theorem 5.7 and modulo the Dehn twist tm4
c1 t

m5
c2 , we only need

to consider three classes of diagrams: D(4n;±1[l],m2,m3), D(4n;m1,±1[r],m3)

and D(4n;±1[l],±1[r],m3).

Firstly we consider the first two classes. By Lemma 5.5, the 3-manifold which

can be given by diagrams in these two classes can also be given by a diagram like

D(4n; 1[l],m2,m3). Then there are two subclasses: D(4n; 1[l],−3 + 4k2, 1 + 4k3)

and D(4n; 1[l],−5 + 4k2, 2 + 4k3). But, by Lemma 5.5, we have

D(4n; 1[l],−3 + 4k2, 1 + 4k3) 'D(4n;−1[l + 2],−3 + 4k2, 2 + 4k3)

'D(4n; 1[−l − 2],−5 + 4(2− k2), 2 + 4(−1−k3)).

Hence we only need to consider the diagrams D(4n; 1[l],−3 + 4k2, 1 + 4k3) with

(n, k2 + 2k3) = 1, which give us M1(n; 0[l], k2, k3). By Lemma 5.5 again, we can

require 0 ≤ k3 < n and n ≤ k2 + 2k3 < 2n.
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Similarly for the third class we only need to consider D(4n; 1[l], 1[r], 1 + 4k3)

with (n, 1 + 2k3) = 1. These diagrams give us the manifolds M1(n; 0[l], 1[r], k3),

and we can require 0 ≤ k3 < n. �

Proposition 6.3. M1(n; 0[l], k2, k3) (M1(n; 0[l], 1[r], k3)) as in Lemma 6.2

is a 2-fold branched cover of S3. The branched set is a three bridge link as in

Figure 36 (a) (36 (b)).

Figure 36. Branched set.

The front (back) blue arcs lying in the surface of the n × n square pillow have

slope −m/n (m/n), m is k2 + 2k3 − n in Figure 36 (a) and is 1 + 2k3 − n in

Figure 36 (b). Walking from the point B to the right we get the arc Lt. Walking

against the oriented circle c from Lt by 2k3 we get the arc Ls. Hence the position

of the yellow arc can be determined. The k-box denotes two parallel arcs with k

half twists. Over-crossings are from the lower left to the upper right if k > 0,

and the upper left to the lower right if k < 0.

Proof. We only prove the case of M1(n; 0[l], k2, k3). For M1(n; 0[l], 1[r], k3)

the proof will be similar.

Firstly consider the 2-fold branched cover from M1(n; 0[0], k2, k3) to S3. Fi-

gure 37 shows us the position of the Dehn twist curve c4 in N2 and its image

c4/τ in N2/τ . Here τ is an involution.

Figure 37. Position of c4/τ .

Figure 37 (a) gives the left part of N2 and Figure 37 (b) gives its quotient.

This quotient can also be given by modulo the reflection along the line Ll in

Figure 37 (c). One can compare Figure 37 (c) to Figure 22 (a).
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By the proof of Proposition 4.3, the quotient M1(n; 0[0], k2, k3)/τ has the

branched set as in Figure 38 (a).

Figure 38. Push c4/τ into the square pillow.

Notice that a Dehn twist along c4 in S will induce a half twist around c4/τ

in S/τ . Hence for M1(n; 0[l], k2, k3)/τ , when we paste N1/τ to N2/τ , the glu-

ing map will be different from the case of M1(n; 0[0], k2, k3)/τ by l half twists

around c4/τ .

We can require these l half twists happen in a small neighbourhood of c4/τ ,

and push c4/τ and its neighbourhood into the square pillow as in Figure 38 (b).

Then we will get the picture as in Figure 36 (a). �

Proposition 6.4. We have the following homeomorphisms:

(a) M1(n; 0[l], n+m, 0) ' L(n,m) #L(l, 1), 0 ≤ m < n.

(b) M1(n; 0[l], n−m,m) ' S2(−1/2, 1/(l + 2),m/n), 0 < m < n.

(c) M1(n; 0[l], 1[r], 0) ' S2(1/l, 1/s, 1/n), n > 0.

Proof. This proof is similar to the proof of Proposition 4.4 and the same

argument as in Figure 24 will be used. For M1(n; 0[l], n+m, 0) the branched set

is isotopic to the link as in Figure 39 (a). It is clear that the link is a connected

sum. The 2-fold branched cover of this link is a connected sum of two Lens

spaces.

Figure 39. Connected sum of two bridge links.
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For M1(n; 0[l], n−m,m) the branched set is isotopic to the link as in Figu-

re 40 (a). Pushing the yellow arc into the square pillow, we will get Figure 40 (b).

Figure 40. Montesinos link or connected sum.

When l 6= −2, it is a Montesinos link with three rational tangles having pa-

rameters (1, l+2), (−1, 2) and (m,n). When l = −2, this link is a connected sum

of a two bridge link and a Hopf link. The corresponding 3-manifold is a Seifert

fibred space or a connected sum. The manifold can be presented uniformly as

S2(−1/2, 1/(l + 2),m/n).

For M1(n; 0[l], 1[r], 0) the branched set is isotopic to the link as in Figu-

re 41 (a). When we take a half twist at the right-hand side of the square pillow,

we will get Figure 41 (b), and this is isotopic to Figure 41 (c).

Figure 41. Pretzel link or connected sum.

Clearly when l 6= 0 and r 6= 0, it is a Montesinos link with three rational

tangles having parameters (1, l), (1, r) and (1, n). This is also a Pretzel link.

When l = 0 or r = 0, it is a connected sum. The corresponding 3-manifold

can be a Seifert fibred space, a connected sum of Lens spaces or a connected

sum of a Lens space and S1 × S2. The manifold can be presented uniformly as

S2(1/l, 1/r, 1/n). �

Proposition 6.5. M2(5; 0[l], 4, 1) ' S3
l−2/1(41) ('M1(5; 0[−l − 2], 3, 3)).
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Proof. By the proofs of Propositions 4.3 and 6.3, it is not hard to see that

the corresponding link of M2(n; 0[l], k2, k3) is as in Figure 42 (a). Hence the

corresponding link of M2(5; 0[l], 4, 1) is as in Figure 42 (b), and it is isotopic to

the link as in Figure 42 (c).

Figure 42. The quotient M2(5; 0[l], 4, 1)/τ .

On the boundary of the l-box we draw a green arc connecting two singular

points and winding around the box l/2 rounds. It can be obtained from the

trivial case by l half twists, see Figure 43 (a) for the case l = 5. Clearly the

2-fold branched cover of the box is a solid torus, and the 2-fold branched cover

of this green arc is a green circle, which bounds a disk in the solid torus.

Figure 43. Surgery on M2(5; 0[l], 4, 1)/τ .

If we replace the l-box by a box containing two parallel horizontal singular

arcs, then the singular set will be as in Figure 43 (b), which is a trivial knot. The

new box can be thought as a regular neighbourhood of a regular arc, and the

green arc winds around the regular arc l/2 rounds. We can move this picture to

the position as in Figure 43 (c).

Then it is easy to see its 2-fold branched cover is S3 and the 2-fold branched

cover of the regular arc is a figure eight knot, as in Figure 44 (a).

Now the green circle winds around the regular circle l− 2 rounds. Removing

the regular neighbourhood of the figure eight knot, since the circle which bounds

a Seifert surface in the complement is parallel to the knot as in Figure 44 (b),

we know that M2(5; 0[l], 4, 1) is the l − 2 surgery on the figure eight knot. �
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Figure 44. The figure eight knot.

Remark 6.6. (a) The figure eight knot has exactly 10 exceptional slops,

namely∞ and −4 ≤ p/1 ≤ 4. Other S3
p/1(41) are all hyperbolic. The exceptional

cases are listed below (see [8]).

• S3
∞(41) ' S3.

• S3
0/1(41) is the T 2-bundle over S1 with monodromy

(
1 1
1 2

)
. It admits the

Sol geometry.

• S3
±1/1(41) ' S2(−1/2, 1/3, 1/7).

• S3
±2/1(41) ' S2(−1/2, 1/4, 1/5).

• S3
±3/1(41) ' S2(−2/3, 1/3, 1/4).

• S3
±4/1(41) is a union of the trefoil knot complement and the twisted

I-bundle over the Klein bottle. It contains an incompressible torus.

(b) One can also show that M2(n; 0[1], n − 3, 2) ' S3
n−2/1(41) (n ≥ 5) by

a similar way. Compare it to Proposition 4.5.

Remark 6.7. (a) S1 × S2 #S1 × S2 is a genus two 3-manifold which has

no weakly alternating Heegaard splitting. Otherwise π1
∼= Z ∗ Z/H with H

nontrivial. But Z∗Z/H � Z∗Z because Z∗Z is Hopfian. Actually one can show

that S1×S2 #S1×S2 does not admit any automorphism f with Ω(f) consisting

of Williams solenoids, whose defining neighbourhoods have genus g ≤ 2. This is

similar to the fact that S1 × S2 does not admit any automorphism f with Ω(f)

consisting of Smale solenoids.

(b) By Section 2.2 and Theorem 1.2, we see that globally there can be

many non-homeomorphic Williams solenoids (handcuffs solenoids) in a given

3-manifold, as the non-wandering sets of non-conjugate automorphisms. The

following question is natural, it has been studied in [6] in the case of Smale

solenoids.

Question. Given a 3-manifold M , what kind of Williams solenoids (with

defining neighbourhoods having genus g ≤ 2) can be globally realized as attrac-

tors in M? How many of them?

(c) We have shown that half of Prism manifolds admit automorphisms f with

Ω(f) consisting of two Williams solenoids. Hence it is natural to ask what about
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the other half, namely P (m,n) with 0 < n < m? In the case of S3
l/1(41) one can

ask what about other surgeries? Generally we can ask the following question.

Question. Does a 3-manifold in the following classes (all having Heegaard

genus two) admit an automorphism whose non-wandering set consists of Williams

solenoids (with defining neighbourhood having genus g ≤ 2)

• Seifert fibred spaces S2(a, b, c),

• surgeries on two bridge knots?

(d) The manifolds as in Lemmas 4.2 and 6.2 may give homeomorphic ones.

But on the other hand, they can give many kinds of 3-manifolds. We wonder

how to classify them and get more familiar genus two 3-manifolds admitting

dynamics f such that Ω(f) consists of solenoid attractors and repellers.
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