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MOTION PLANNING ALGORITHMS

FOR CONFIGURATION SPACES

IN THE HIGHER DIMENSIONAL CASE

Ayşe Borat

Abstract. The aim of this paper is to give an explicit motion planning
algorithm for configuration spaces in the higher dimensional case.

1. Introduction

The topological approach to the motion planning problem was introduced

by Farber in [2] and [3]. A motion planning problem is a rule assigning a con-

tinuous path to given two configurations – initial point and desired final point

of a robot. Farber introduced the notion of topological complexity which mea-

sures the discontinuity of any motion planner in a configuration space. In [6],

Rudyak introduced higher topological complexity, the concept fully developed

in [1]. Higher topological complexity is related to motion planning problem

which assigns a continuous path (with n-legs) to given n configurations. More

precisely, it can be understood as a motion planning algorithm when a robot

travels from the initial point A1 to A2, then from A2 to A3, and this keeps going

until it reaches at the desired final point An.

This paper is based on the work of Mas–Ku and Torres–Giese who gave

an explicit motion planning algorithm for configuration spaces F (R2, k) and

F (Rn, k), in [5]. In the last section, we will consider the higher dimensional case
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in the sense of Rudyak in [6], and give an explicit motion planning algorithm for

this case.

2. Preliminaries

In this section, we will re-phrase the definitions and propositions for F (Rn, k)

which are given in [5].

A vector A = (a1, . . . , al) (where ai is a positive integer for i = 1, . . . , l)

which satisfies
∑
ai = k is called a partition of k. Here, the number |A| = l is

called the number of levels of A.

Recall the reverse lexicographic order on Rn: (b1, . . . , bn) ≤ (c1, . . . , cn) if

there is an index k ∈ {1, . . . , n} such that bi = ci for k < i ≤ n and bk < ck.

As stated in [5], if x = (x1, . . . , xk) ∈ F (R2, k), then there is a unique

permutation σ ∈ Σk such that xσ(1) < . . . < xσ(k). Such a permutation is

denoted by σx. A similar argument can be stated for F (Rn, k), namely, if x =

(x1, . . . , xk) ∈ F (Rn, k), then there is a unique permutation σ ∈ Σk such that

xσ(1) < . . . < xσ(k).

Let πn : Rn → R, given by πn(x1, . . . , xn) = xn, be the projection to the

n-th factor. For the configuration x = (x1, . . . , xk) ∈ F (Rn, k) which is reverse

lexicographically ordered, we can find positive integers a1, . . . , al as follows:

πn(x1) = . . . = πn(xa1) < πn(xa1+1),

πn(xa1+1) = . . . = πn(xa1+a2) < πn(xa1+a2+1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

πn(xa1+...+al−2+1) = . . . = πn(xa1+...+al−1
) < πn(xa1+...+al−1+1),

πn(xa1+...+al−1+1) = . . . = πn(xa1+...+al) = πn(xk).

Since a1 + . . .+ al = k, (a1, . . . , al) is a partition of k. This partition is denoted

by Ax. If A is obtained from the configuration x as in the above paragraph, then

x is called an A-configuration.

Let x = (x1, . . . , xk) ∈ F (Rn, k) be an A-configuration. Then x has |A|
levels. Moreover, xi and xj are said to have the same level if πn(xi) = πn(xj).

Given a partition A of k and a permutation σ ∈ Σk, let

FA,σ = {x = (x1, . . . , xk) ∈ F (Rn, k) : σx = σ and x is an A-configuration}.

Define

FA =
⋃
σ∈Σk

FA,σ.

In fact, FA denotes the set consisting of configurations x which produce A.

Moreover, notice that F (Rn, k) =
⋃
A

FA.
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3. m-dimensional motion planners on F (Rn, k)

Definition 3.1 ([6, 3.1. Definition]). Let Jm (m ∈ N) be the wedge sum

of m closed intervals [0, 1]i for i = 1, . . . ,m, where the zeros 0i are identified.

Let X be a path-connected space and XJm denote the set of paths with m-legs.

Then there is a fibration em : XJm → Xm given by em(f) = (f(11), . . . , f(1m)).

The higher topological complexity TCm(X) is defined to be the Schwarz genus

of em.

For i ∈ {m,m+ 1, . . . ,mk}, let us define

Fi =
⋃

|A1|+...+|Am|=i

FA1
× . . .× FAm

.

Notice that Fi’s are disjoint and they cover F ((R)n, k)m. The ideas in Lemmas 13

and 14 in [5] tells that:

(1) Fi’s are ENR (Euclidean Neighbourhood Retract).

(2) The expression for Fi (as a union) in te formula in display above, is in

fact a topological disjoint union, so that a function defined on Fi which

is continuous on each of the products FA1×. . .×FAm must be necessarily

be continuous on the whole of Fi.

Higher dimensional analog of motion planner can be defined as follows:

Definition 3.2. Let X be a path-connected space and let em : XJm → Xm

be the fibration as in 3.1. A motion planner in X is given by finitely many subsets

U1, . . . , Un ⊂ Xm and by continuous maps si : Ui → XJm where i = 1, . . . , n such

that the following is satisfied:

(a) Sets Ui are disjoint and they cover Xm.

(b) em ◦ si = idUi
for any i = 1, . . . , n.

(c) Each Ui is an ENR.

We will call such motion planners a m-dimensional motion planner, in order to

indicate that it is related to the m-dimensional topological complexity.

A construction of motion planners. Let us denote the coordinates of Rn

by y1, . . . , yn to avoid any confusion. Let π1 : Rn → R be the projection to the

first factor. Let p : (Rn)mk → R be given by (x1, . . . , xmk) 7→ max
1≤j≤mk

{π1(xj)},

where xi ∈ Rn for i = 1, . . . ,mk. The map p̄ is continuous [5, Lemma 16].

Take x = (x1, . . . , xm) ∈ FA1,1 × . . . × FAm,1 ⊂ Fq ⊂ F (Rn, k)m, where q =

|A1|+ . . .+ |Am|. Notice that each xi ∈ F (Rn, k) can be written as (xi1, . . . , x
i
k),

where xij = (xij1, . . . , x
i
jn) and xijs ∈ R for s = 1, . . . , n.
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Define p : F (Rn, k)m → R by

(x1, . . . , xm) = ((x1
1, . . . , x

1
k), . . . , (xm1 , . . . , x

m
k ))

7→ max
1≤j1,...,jm≤k

{π1(x1
j1), . . . , π1(xmjm)}.

Since the map p is the restriction of the map p̄ to F (Rn, k)m, p is continuous.

Ai-configuration xi ∈ FAi,1 is mapped to a configuration by means of straight

lines to the line Lxi which is parallel to the yn-axis and which intersects the y1-

axis at the point (p(x1, . . . , xm) + i, 0, . . . , 0). The set of these lines (paths)

determines a path Qxi in F (Rn, k).

Take a fixed configuration x0 ∈ FA0,1 for a vector of positive integers A0

which lies on the yn-axis. Let α(x0, xi) be the path from Qx0 to Qxi that

connects by means of straight lines. The path from x0 to xi is given by

Qx0 · α(x0, xi) ·Q−1
xi .

Since the path Qx0 is constant, it is the path α(x0, xi) ·Q−1
xi : [0, 1]i → F (Rn, k),

where [0, 1]i is a notation to emphasize that it is the interval [0, 1] corresponding

to xi. Here, we have m different paths. Let us consider the wedge sum of the

images of these paths, namely, Im(α(x0, x1) ·Q−1
x1 ) ∨ . . . ∨ Im(α(x0, xm) ·Q−1

xm),

where (α(x0, xi) · Q−1
xi )(0i) are identified for i = 1, 2, . . . ,m and 0i is the zero

of the interval [0, 1]i. In fact, Im(α(x0, x1) ·Q−1
x1 ) ∨ . . . ∨ Im(α(x0, xm) ·Q−1

xm) is

a path with m-legs in F (Rn, k)m. Let us denote the corresponding path (with

m-legs) by βx0,...,xm : Jm → F (Rn, k). Then, for a fixed A0-configuration x0, the

motion planner sA1,...,Am
is determined by the formula

(x1, . . . , xm) 7→ βx0,...,xm .

In the above calculation, we considered the case FA1,1 × . . . × FAm,1. Without

loss of generality, it can be extended to the case FA1,σ1
× . . .× FAm,σm

.

Theorem 3.3. The collection of pairs (Fq, sq) (where sq is given by means

of motion planners on each FA1,σ1× . . .×FAm,σm ⊂ Fq for q = |A1|+ . . .+ |Am|)
formsm-dimensional motion planning algorithm form ≤ q ≤ mk. Consequently,
TCm(F (Rn, k)) ≤ m(k − 1) + 1.

In view of Theorem 1.3 in [4], the m-dimensional motion planner described

in Theorem 3.3 is optimal when n is odd, while the motion planner is within

1 unit from being optimal when n is even.
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Ayşe Borat
Bursa Technical University

Faculty of Natural Sciences

Architecture and Engineering
Department of Mathematics

Bursa, TURKEY

E-mail address: ayse.borat@btu.edu.tr

TMNA : Volume 47 – 2016 – No 2


