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MULTIPLICITY OF SOLUTIONS
OF SOME QUASILINEAR EQUATIONS IN RY
WITH VARIABLE EXPONENTS AND CONCAVE-CONVEX
NONLINEARITIES

CLAUDIANOR O. ALVES — JoSE L. P. BARREIRO — JOSE V.A. GONCALVES

ABSTRACT. We prove multiplicity of solutions for a class of quasilinear
problems in R¥ involving variable exponents and nonlinearities of concave-
convex type. The main tools used are variational methods, more precisely,
Ekeland’s variational principle and Nehari manifolds.

1. Introduction

In this paper, we consider the existence and multiplicity of solutions for the
following class of quasilinear problems involving variable exponents:

—Apyu A+ [uP@ 20 = Ag(k ) [u] 1) 720 + f (k™ ) |u|" )2y
(Pak) in RV,
u € WhpE) (RN,

where A and k are positive parameters with k € N, the operator Ap,)yu =
div(|Vu[P®®)=2Vuy), named the p(z)-Laplacian, is a natural extension of the p-
Laplace operator with p being a positive constant.
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We assume that p, q,7: RY — R are positive Lipschitz continuous functions,
ZN -periodic, that is,

(p1) plx+z) =px), qla+z)=gq(x) and r(x+z)=r(x),

for x € RN, z € ZV, verifying

(p2) 1<q-<q(x)<gqr <p- <pla) <pi <r- <r<Lp,
almost everywhere in RY | where p, = esssup p(x), p_ = essinf p(z) and
xRN RN

ey JNp@)/(N —p(x)) if p(x) <N,
) pie) = +00 if p(x) > N.

Hereafter, the notation u < v means that inf (v(z) — u(z)) > 0.
z€R
Furthermore, we assume the condition

H 4+ (r+ —q4) (r— —p+)
(H) :
p—  (ry—p-) (r-—q-)
Here, we would like to point out that this condition is equivalent to 0 < g < p
for the case where the exponent is constant. This technical condition will be
needed, especially in the proof of Lemma 3.7.
Regarding the functions f and g, we assume the following conditions:

(g1) 9: RY — R is a nonnegative measurable function with g € L®®)(RN)
where ©(z) = r(z)/(r(z) — q(x)),
(f1) f: RN — R is a positive continuous function such that

lim f(z) = foo
|z|—o00
and 0 < foo < f(x) for all z € RV,
(f2) there exist £ points ay,...,a, in ZY with a; = 0, such that

1= f(a;) = r%%xf(x), for 1 <i< /.

Problems with variable exponents appear in various applications. The reader
is referred to Ruzicka [39] and Kristdly, Radulescu and Varga [30] for several
questions in mathematical physics where such class of problems appears. In
recent years, these problems have attracted an increasing attention. We would
like to mention [3], [5]-[7], [14], [18], [23], [34], [35], [36], [38], as well as the
survey papers [8], [16], [41] for the advances and references in this field.
Problem (P} ;) has been considered in the literature for the case where the
exponents are constants, see, for example, Adachi and Tanaka [1], Autuori and
Pucci [9], Cao and Noussair [12], Cao and Zhou [13], Hirano [24], Hirano and
Shioji [25], Hsu, Lin and Hu [26], Hu and Tang [27], Jeanjean [28], Lin [31],
Pucci and Radulescu [37], Tarantello [42], Wu [45], [46] and their references.
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In [12], Cao and Noussair have studied the existence and multiplicity of
positive and nodal solutions for the following problem:

—~Au+u = fex)lul"2u in RV,

(F1) u e HY2(RN),

where ¢ is a positive real parameter, r € (2,2*) and f verifies conditions (f;)—
(f2). By using variational methods, the authors showed the existence of at least
¢ positive solutions and ¢ nodal solutions if € is small enough. Later on, Wu
in [45] considered the perturbed problem

—Au+u = f(ez)|ul""?u + Ag(ex)|u|9™?u in RV,

(P2) ue HY2(RN),

where A is a positive parameter and g € (0,1). In [45], the author showed the
existence of at least ¢ positive solutions for (P2) when € and A are small enough.

In [26], Hsu, Lin and Hu have considered the following class of quasilinear
problems:

—Apu+ [ulP72u = f(ez)|u/""2u+ Ag(ex) in RV,

(Fs) u e WhP(RN),

with N > 3 and 2 < p < N. In that paper, the authors have proved the same
type of results found in [12] and [45].

In [37], Pucci and Radulescu studied the existence and multiplicity of solution
for the following class of quasilinear problems:

—div(|Vu[P=2Vu) + uP~! = At — h(z)u""!  in RV,
uw>0 in RY,
where A is a positive parameter, 2 < p < ¢ < min{r,p*} and h(x) > 0 satisfies

h(x)9 =D dy < +oc.
RN

Motivated by the above paper, Autuori and Pucci in [9] also considered the
existence of multiple solution for more general quasilinear problems like

—div(A(x, Vu)) + a(z)|ulP~?u = Mo(z)|u|??u — h(z)|u|""?u in RY,
and they improved the results obtained in [37]. In [38], Pucci and Zhang consid-
ered a class of quasilinear variable exponent of the type
—div(A(z, Vu)) + a(z)|ulP® 20 = Xw(z)|[u| "~ 2u — h(z)u|" @24 in RY,
improving some results found in [9] and [37].

Motivated by results proved in [12], [26] and [45], by a similar approach we
intend to prove the existence of multiple solutions for problem (P} ). However,
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once we are working with variable exponents, some estimates that hold for the
constant case are not immediate for the variable case, and so, a careful analy-
sis is necessary. More precisely, when the exponents are constant each term in
the nonlinearity is homogeneous, what allows to get some estimates involving
the energy functional, however if the exponents are not constant we loose this
property. This difficulty is overcome by using Lemmas 3.8 and 3.9. We added
further explanations immediately before the statement of each of these lemmas.
Finally, we also would like to point out that our main result complements the
study made in [38], because in that paper the first result establishes the existence
of only two solutions for A large, while the second result shows a multiplicity re-
sult assuming some conditions which imply that the energy functional associated
with the problem is even. Here, we have showed that the multiplicity of solution
is affected by the number of maximum points of function f, and in our approach
there is no symmetry condition on the energy functional.
Our main result is the following.

THEOREM 1.1. Assume that (p1)—(p2), (1), (f1)—(f2) and (H) are satisfied.
Then, there are positive numbers k. and A, = A(ky), such that problem (P 1)
admits at least £ + 1 solutions for 0 < A < A, and k > k..

Notation. The following notations will be used:
e (' and ¢; denote generic positive constants, which may vary from line to
line.
e We denote by [u the integral fRN u dx, for any measurable function wu.
e Bp(z) denotes the open ball in RY with center at z and radius R.

2. Preliminaries on Lebesgue and Sobolev spaces
with variable exponents in R

In this section, we recall definitions and some results involving the spaces
LM@)(RN) and WHHE)/(RN). We refer to [15], [20], [19], [29] for the fundamental
properties of these spaces.

Hereafter, let us denote by L (RY) the set

L (RN :{ € L®(RN) : essinf >1},
FTRY) =qu (R™) : essinf u >

and we will assume that h € L5° (RN). The variable exponent Lebesgue space
LM@)(RN) is defined by

Lh($)(RN) = {u: RY — R is measurable : /|u(x)|h($) < +oo},

h(z)
<1},

and its usual norm is

|| p(e) = inf {t >0: /

u(z)
t
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On the space LM®)(RN), we consider the modular function p: L"®)(RN) — R
given by

plw) = [ Ju()"®.
In what follows, let us denote by h_ and hy the following real numbers:

h_ =essinf h(x) and hy = esssup h(z).
zERN rE€RN

PROPOSITION 2.1. Let u € L"®)(RN) and {u, }nen C€ L@ (RN). Then:
(a) If u # 0, then ||ul|p) = a if and only if p(u/a) = 1.

(b) lullh@) <1 (=1; > 1) if and only if p(u) < 1(= 1;> 1).

(o) If [ullne) > 1 then [[ully ) < p(w) < ullyf,)-

(@) 1 lallagey < 1 then Jlullss,) < pw) < lulll,.

(e) EIEOO ltn ||h(z) = 0 if and only if nhHH;O plu,) = 0.

)

(f nginoo |tn||n(z)y = 400 if and only if nlgr;o plun) = +o0.

As usual, we denote by h'(x) = h(z)/(h(z) — 1) the conjugate exponent
function of h(x), and define
Nh(z)
h*(z) = { N —h(z)
+o0 if h(xz) > N.

if h(z) < N,

We have the following Holder inequality for Lebesgue spaces with variable
exponents.

PROPOSITION 2.2 (Hélder-type inequality). Let u € LM®)(RN) and v €
LY @(RN). Then, uwv € LY(RN) and

1 1
[ @yt < (h_ + h’) leallagay 1ol -

LEMMA 2.3. Let h,b € LY (RY) with h(z) < b(z) almost everywhere in RY
and u € LY@ (RN). Then, |u|"®) ¢ LY@)/M@)(RN),
(2 h h_
1™y /) < maX{HUHb&)’ HUHb(m)}’
and further
x h h_
el () /@) < llullly + 1l

The next three results are important tools to study the properties of some
energy functionals, and their proofs can be found in [5].

PROPOSITION 2.4 (Brezis-Lieb’s lemma, first version). Let
{n,} ¢ LPM®(@®RN R™)  with m € N

verifying:
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(a) nu(z) — n(x), almost everywhere in RY;

(b) sup [nalpre @y gm)y < 00.
neN

Then, n € LM®) (RN R™) and
J P = ) = ) =, ),
PROPOSITION 2.5 (Brezis—Lieb’s lemma, second version). Let
{m} ¢ MO RN, R™)
verifying:
(a) nn(z) — n(x), almost everywhere in RY;
(b) sup [Malpr@) @y gm) < 00.
neN
Then 1, — 1 in LM®) (RN R™).
The next proposition is a Brezis—Lieb type result.

PROPOSITION 2.6 (Brezis-Lieb’s lemma, third version). Let
{n} € LMOI(RY, R™)
such that:
(a) nn(z) — n(x), almost everywhere in RY;
(b) sup [Mnlpre @y gm) < 00
neN

Then
T)— T)— T)— B (x
(2.1) /||nn\h<> 20—l — P2 — ) — " @2 @ = 0, 1).

The variable exponent Sobolev space W1 #) (RN) is defined by
WHAE(RN) = {u € WEHRY) 1 u e LM®(RY) and [Vu| € LM (RN)}.
The corresponding norm for this space is
[ullwrne @yy = [lulla@) + [ Vulla@).-

The spaces LM®)(RN) and W (@) (RN) are separable and reflexive Banach
spaces when h_ > 1.
On the space W= (RY), we consider the modular function

pr: W@ ®RN) S R
given by

pi(w) = [ (9u@)" + u(w) "),
If, we define

h(x) h(z)
(2.2) |u||:inf{t>0:/(vu| + [l )<1},

th(z)
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then || - [ly1.ne) vy and || - || are equivalent norms on WhHrM@E)(RN),

PROPOSITION 2.7. Let u € WH@/(RN) and {u,} ¢ WHPE(RN). Then,
the conclusion of Proposition 2.1 takes place for || - | and p;.

The next result is a Sobolev’s embedding theorem for variable exponent,
whose proof can be found in [15] and [20].

THEOREM 2.8 (Sobolev’s embedding theorem). Let h: RY — R be Lipschitz
continuous with 1 < h_ < hy < N. Consider s € LT (RY) satisfying h(z) <
s(x) < h*(x) almost everywhere in RN. Then there is a continuous embedding

Wl,h(z) (RN) SN LS(:E) (RN)

3. Technical lemmas
For convenience, throughout the paper we shall denote
gr(z) =g(k™'z) and fi(z) = f(k~'z) forall z € RV,
Associated with problem (P} j), we have the energy functional
Iy WHPE(RN) 5 R
defined by

= [ L (vur@ 1@y oy [ 9@ a@ [ Fe@) )
Tl = [ 2 (VuP) @) = x [ 2 jggo) [ Ty,

p(x

A direct computation gives Jy , € C*(W1P@)(RN) R) with
I3 (w)v = / (V[P @ =2Vu Vo 4 |uP@~2yp)

—)\/gk(x)|u|q(‘”)*2uv—/fk(x)|u|r(””)*2uv,

for each u,v € WHP()(RY). Therefore, the critical points of J i are precisely
the (weak) solutions of (P x).

Since Jy ; is not bounded from below on W1?®)(RN), we will work on the
Nehari manifold M j associated with Jy j, given by

Mok = {u € WHPERN)\ {0}: J} . (uw)u = 0}.
In what follows, we denote by ¢y ; the real number ¢y , = ei/{l/[f I k(). Using
u Ak

well-known arguments, it is easy to prove that cy j is the mountain pass level
of J)\7k.
For f =1 and A = 0, we consider the problem

—Apyu+ [ufP@ 2y = [u"@® =2y in RV,

(Poc) 1 N
u € WHPE) (RN,
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Associated with problem (P,), we have the energy functional
Joo: WHPE(RN) 5 R

given by
1 1

w) = WlP@ 4@y — [ @
To) = [ (9P 4 up @) = [ s pu®),

the mountain pass level co, = ian Joo(u), and the Nehari manifold
uce Moo

Moo = {u € WHPE(RN)\ {0} : J. (u)u = 0}.

For f = foo and A = 0, we fix the problem
(Pr.) —Apyut a7 = foolu[ 20, in RV,
- u € WHPEN(RN),

and as above, we denote by J¢_,cy_ and My the energy functional, the moun-
tain pass level, and Nehari manifold associated with (Py_), respectively.
Hereafter, let us fix K > 1 such that

(3.1) 0|2y < K|v|| for any v € WP (RN

which exists by Theorem 2.8.
The next lemma is a technical result, which will be used in Section 5.

LEMMA 3.1 (Local property). For each k € N, there are positive constants
A = MN(k), B and o independent of k, such that Jyy(u) > 8 > 0 for all
A€ (0, %) with |jul| = 0.

Proor. Combining the definition of Jy ; with Hélder’s inequality, Sobolev’s
embedding theorem and Proposition 2.3, we derive

1
cmwz—/wwwﬂww
b+

>\ 1 r(x
72q7_||gk||@(;c)Kq+ maXﬂlUll"?llUllq*}*/T_IU\ ).

If |lu|| < 1, by Proposition 2.7 and Theorem 2.8,

1 A K™+
Iap(u) = —[JulP* = 2—lgkllo @) K [|ul|?~ —
P+ q— T

K2

Since p; < r_, by fixing ¢ small enough such that
1 K™+

1
S S — 70-14,

P+ T 2py

we obtain

1 A
J)\JC u) >——oPt —2— Jk @qu+0q’7
(u) o q_H lo@)
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for |Ju|| = 0. Now, fix \* = A*(k) > 0 satisfying
(3.2) Mlgrllew@) <

Then, if 0 < A < \*,

q- P+—q-
— 0 .
8py K0+

1 A\* 1
Tan(u) > ot —2—||grlle@) K" 0’ > —oPt =5 >0
2p, g oI ipy
on 0B, (0), proving the result. 0O

The next result concerns the behavior of Jy , on M x.

LEMMA 3.2. The energy functional Jy i is coercive and bounded from below

on My .

PROOF. For u € M, j, we have J} ; (u)u = 0. Therefore,

[ @@ = [ (9up® +jup@) - x [ g@)fup),

loading to

1 A 1
Twt) = = [ (9up@ + jup@) = 2 [ @l = = [ il
P+ q- T

1 1 1 1
= (5o =) [ 0vur ) =a (2= 1) oo,

If ju|| > 1, Propositions 2.3 and 2.7 together with Holder’s inequality and The-
orem 2.8 give

1 1 1 1 +
INOE ( - ) - — ( - )Mq 9w ol
b+ T q r

1 1 _ 1 1 +
=t { (o = Yt =2 (= 2 ) K okl |-

Since ¢4 < p—, the last inequality implies that Jy j is coercive and bounded from
below on M . O

From now on, let Ey x(v) = J} 4 (v)v for any v € W1P(®)(RY). Employing
the functional E) i, we split M ; into three parts:

M, ={v € My« B} 1 (v)v > 0},
M3 ={v e Muy : B} p(v)v =0},
My ={v € My B} (v)v < 0}
In the next lemma, we prove that the critical points of .Jy j restricted to M

which do not belong M%k are in fact critical points of Jy j on W1PE)/(RN).

LEMMA 3.3. Ifug € My is a critical point of Jy i restricted to My and
ug & M(/)\yk, then ug is a critical point of Jy .
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Proor. By Lagrange’s multiplier theorem, there is 7 € R such that
Tk (o) = TES y(uo)  in (WP (RV))*,

and so, 0 = J3  (uo)uo = TE  (uo)uo.
If ug & MS ;,, we must have EY ; (uo)ug # 0. Hence, 7= 0 and J} ;(uo) = 0
in (WP (RN))* showing the lemma. O

LEMMA 3.4. Under assumptions (p2), (1) and (fa), we have that M3 ;, =0
forallk e N and 0 < A < Ay = A1(k), where

—q _ _ (p+—9-)/(r——p+)
(3.3) A K~ (r p+>Kp q*)K‘”} _

 2l|gkllo@) \r+ — q- T4 — Pt

PROOF. Arguing by contradiction, if the lemma does not hold, we have
MS ;. # 0 for some Ao € (0,A;) and k € N. Thereby, for u € M3,

0= B}, ,(u)u
= [ @) 7aP) + @) = %0 [ @ @al® — [ @) fll
<pe [(Vl + 1) g [ a@lul® — - [ feafur®
—No(r— = ) [ @[l = 1 1) [(TuP ).

By Propositions 2.7 and 2.3, Holder’s inequality and Sobolev’s embedding theo-

rem,

. T_ —q_
(3.4) min{llul~, [lul?*} < 20 (m) g llog K% max{[lul -, u#}.
Similarly,

0= E'Aoyk(u)u
> p- [Vl @) < dage [ g @ul® — v [ fula)lu®
= (p- — ) / (V@ + uP@) — () — g4) / fi(@)ulr@ .

Hence,

b-—4q 3 T T T
(3.5) ( - *)mm{unp,||up+}sz<+max{||u ).
T+ — 4+

If ||u|| > 1, it follows from (3.4) that

r_ —q-

(3.6) Jull < [mo() l9x o Ko

r— — P+

} 1/(p-—q+)
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On the other hand, by (3.5),
_ 1/(rq—p-)
(37) ull > | (=2 )| .
T+ — 4+
Combining (3.6) and (3.7), we derive that
—a+ _ _ (p——q+)/(ry—p-)
e

Ao >
2l gk llo)

T+ —g- T+ — P+
Since
0<(M>K—r+<1 and D9 o P
T+ — P+ '-—P+ T+ —DP-
we deduce

- (p+—g-)/(r——p+)
M > K+ (r—m){(p—%)Ku} " +’
2llgkllo@) \r+ —a- T+ — Dy

which is a contradiction.
Now, if |Ju|| < 1, we get from (3.4),

r_—q_ 1/(p+—q-)
(3.9) ull < [%() ||gk||@<z>f<q+} |
r_—py
But, by (3.5),
_ 1/(r——py)
(3.10) E [(”“)K} |
T+ — 4+

Combining (3.9) and (3.10),
- (p+—q-)/(r——p+)
K9+ o L ‘
(3.11) Ao > (7“ p+) [(P %)K-H]
2|lgkllo@) \r+ — q- Ty —py

so a new contradiction, finishing the proof. O

By Lemma 3.4, for 0 < A < Ay, we can write My , = ./\/lj;k U M;’k. There-
fore, hereafter we will consider the following numbers:

ayk = inf Jyx(u), ajkz inf  Jyx(u) and o), = inf J)x(u).
uEMy ’ uEM;k ’ uEM;k

The next five lemmas establish important properties about the sets Mir &
and M ,.

LEMMA 3.5. Assume (p2), (g1), (f1) and (H). If0 < X < A4, then Jy k(u) <0
for allu € ./\/lj;k. Consequently, ay i < aj\:k < 0.

PROOF. Let u € M} ;. Then, by the definition of E} ; (u)u,

0< Bypwu < (- = o\ [ar@lul® = (- = 1) [(TuP® 4 [ul®)
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from where it follows

312 [a@ld > (2 [(vape) s )

r_ —q-

By the definition of J) x(u),
1 A 1
Tywlu) < - / (VP @ 4 Jup@)y — / gu(@)ulr@ — L / Fu(@) a7
q+ T+

pP—
= (1 — 1) /(|Vu|p(m) + |ufP@)) — )\<1 — 1) /gk(x)|u|q(z)
p— T+ g+ T+
By (3.12) and (H),
1 1 1
Dp(u) < |———— ( - ) (r )] |Vu|p(I) + |ulP®)
b- T+ a+ r—- —qg-

_ |:7‘+ —pP- . <T+ - Q—i-) <T' P+)] ‘vu|p(z) + ‘u|p )
-7y 447+ r q
_ (e —p-) [1_ 1 <7‘+—Q+) < —p+)]
T+ p— 4+ \T+—
~/(|Vu|”(””) + |[uP@) < 0.

LEMMA 3.6. We have the following inequalities:
(a) /gk(x)|u|q®”) > 0 for each u € M;k;
(b) for each u € M}tk

1/(p-—q+)
llul| < [2<T_ q_> K%}
r_ — Dy

-max { (Mlgello) ¥+, (Algillo) /=~ };

EETTAPEE L _
(¢) [lull > R K for each u € My .
+ — 4+

PROOF. (a) An immediate consequence of (3.12).
(b) Similarly to the proof of Lemma 3.4,

. r_ —q—
minglal?~ o1} < 20( =2 Y gl K0 max{ . ).

If ||u]| < 1, the above inequality gives

r r_—q_ 11/(p+—q-)
Jull < [2A( =2 Yl K7
L r— =P+ ]
Now, if |lu]| > 1, we will get
r r_—q_ 11/(p——q+)
full < [2( =2 Yoo |
L \"-—DP+ ]

showing (b).
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(c) Let u € M3 - Similarly to the proof of Lemma 3.4,

P— —q+ : _ _
() ming||u|P=, [lu]P*} < K7 max{[Jul|", [Ju] " }.
T+ — 4+

It full < 1,

- B 11/(r——py)
(3.13) ull > (p—q*>K—r+
L\T+ — 4+ i

and for ||ul| > 1,

e 1 1/(r—p-)
(3.14) ul| > (M>K’“+ .
L\T"+ — d+ i

Thus, the last two inequalities imply that (c) holds. O

LEMMA 3.7. Assume that 0 < X\ < (q—/p+)A1 and (g1). Then there exists
a positive constant dy = di(p+,q+,7+, K, ||grllew)) such that Jyx(u) > 0 for
each uw € M ,.

Proor. Let u € M, ,. Then, using the definitions of Jy and M i, we

can write
1 1 1 1
I s (L /vUp<m)+up<z> _A(_>/g Y@
i) > (= 5 ) Uvar ) <32 - 1) [l
1 1 .
> (2= ) minglul-, JulP)
b+ T

1 1
-2 (2 - L) laullogo K7 max{ul, ).
If ||lu|| < 1, it follows that

1 1 1 1
Inp(u) > ( — > [Je||P+ — 2)\< - > gnllo () KT [|ul| -
b+ T q- -

1 1 _ 1 1
=l | (5 = 2 P+ =22 = o ) lonlow 7

Thereby, by Lemma 3.6 (c),

o q-/(r+—p-)
Tar(w) > [(M) Kw}
T+ — 4+

(p——q+)/(r+—p-)
{G-DG=)—]
b+ T T+ — 4+

1 1
- 2/\< - ) ||gk||@(:r)Kq+} =d;.
q T
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Similarly, if ||u| > 1,

. q+/(r+—p-)
Tr(u) > KMF)KH}

T+ — 4+

{(1 - 1) {(p _q+)K_T+](p—q+)/(r+—p)
by T T+ — 4+
1 1 q
=2M — — — |llgkllo@) K ¢ = di.
q- r—

From the above estimates, the lemma follows if 0 < A < (¢—/p+)A1. O

The lemma below is crucial in our arguments because it shows a condition

for the existence of exactly two nontrivial zeros for a special class of functions.
LEMMA 3.8. Let g;: [0,+00) — [0,+00), i € {1,2,3}, be increasing continu-
ous functions, with g;(0) = 0 verifying the following conditions:
(a) lim g5(t)/g1(t) = 0;
(b) hm g2(t) = +o0;
(c) hm ( 1(t) — gs(t))/g2(t) = 0;
(d) the functzon ¢ = g1 — g3 has only one mazximum point and ¢(t) — —o0
as t — +oo.

Suppose there exists t € (0, tmax) With ¢(tmax) =max ¢(t) such that (g1—gs)/ge is
increasing on (0,t). Then, there is A, > 0 such t?mt Y = g1 — Age2 — g3 has only

two nontrivial zeros for all 0 < XA < A,.

PrOOF. From (a), it is clear that ¢(t) > 0 for all ¢ > 0 sufficiently small.
Since (g1 — g3) /g2 is positive and increasing in the interval (0,%), for each 0 <
A < ¢(t) there is a unique ty € (0,%) such that X = (g1(tx) — g3(tx))/g2(tr).
Then, by hypothesis that (g; — g3)/gs is increasing on (0,1), we derive

Ag2(t) < g1(t) — g3(t) for all t € (t,1).
Now, fix \* > 0 such that
Aga(t) < g1(t) — gs(t) for allt € (tx,tmax) and A€ (0,\%).

Since ¢ is decreasing in the interval (¢pax, 00), go is increasing and go(t) — oo as
t — oo, there is a unique number t1 > tiyax such that Aga(t1) = ¢(t1). Therefore,
tx and t; are the unique nontrivial zeros of ¢ for A € (0, \*). O

With the help of Lemma 3.8, we get the following result, which is similar to
the constant case, see [10] and [17].

LEMMA 3.9. For each u € WHP@)(RN)\ {0}, we have the following:
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(a) if [ gr(2)|u|?® = 0, then there exists a unique positive number t~ =
t~(u) such that t~u € My, and Jy i (t"u) = sup Jy & (tu);
’ t>0

(b) if 0 < A< Ay and [ gi(x)|u|?® > 0, then there exist t* > 0 and unique
positive numbers t+ = tT(u) < t= = t(u) such that tTu € M;k,
tmue My, and

+.) — s - —
Inp(tTu) = Ogl?gft* Ik (tu), Inp(tu) = ts;ltp I (tu).

PRroor. By direct calculations, we see that

/ d 2 d2
B} p(tu)tu = t—(Jx x(tu)) + 7 —= (Jx x (tw)).
' dt dt
Thus, if t = ¢ is a critical point of Jy x(tu),

(3.15) B (fu)tu =1 Qd—Q(JA7k(tu))

dit? s

Using (3.15) and the same ideas of the proof of [17, Lemma 3.6], we get item (a).
To prove item (b), we will apply Lemma 3.8 with the functions

g1(t) = /tp(x)—1<|vu‘p(x) + [ulP®)),
galt) = / 191 g () [ 1),
ga(t) = / @1 f, ()l @,

The reader is invited to check that g1, g2 and g3 satisfy the conditions of Lem-
ma 3.8, and so, the function ¥(t) = g1(t) — Ag2(t) — g3(t) = J} ;.(fu)u has only
two nontrivial zeros, t+ < ¢t~. Let p(t) = Jy x(tu) on [0,00). Then, it is clear
that ¢(0) = 0 and ¢(t) is negative if ¢ > 0 is small, implying that ¢ has a local
minimum in ¢ = ¢*. Consequently,

B (T u)ttu > 0,

from where it follows that ttu € ./\/l;\*'k Since tT and ¢~ are the unique critical
points of ¢, we deduce that ¢ has a global maximum in ¢t = ¢t~ thus

B\ (ttu)ttu <0

and t~u € My ;. Using Lemmas 3.5 and 3.7, it follows that J »(t*u) < 0 and
Jak(t"u) > 0. Let ¢, > 0 be the unique zero of ¢ in (t*,¢7). Then it is clear
that

I (tTw) Ogl?gt* Ing(tu) and Iy k(67 w) Itg%f‘]*”“(t“)

LEMMA 3.10. Assume that g satisfies (g1) and let {un} be a (PS)q sequence
in WEP@) (RN for Jy . Then {u,} is bounded in W1PE@)(RN).
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PROOF. It is clear that

1 1 1
JA7k(un) — r—_Jﬁ\yk(un)un > < — ) / (|Vunp(z) + |unp(z)>

1 1
(=) [a@hn.
r_ o q_

Assume that [ju,|| > 1 for some n € N. Then, by Hélder’s inequality and
Sobolev’s embedding theorem, we derive the inequality

1 1 1 1
d+ 14 [Junl| > ( - >||Un||p‘ _)‘< - >||9k||@(w)Kq+||un”q+-
P+ T q r

Since 1 < g4 < p_, the last inequality yields {u,} is bounded in W) (RN).0

Now, combining standard arguments with the boundedness of {u,} and
Sobolev’s imbedding theorem (see [4]), we have the below result.

THEOREM 3.11. Assume that g satisfies (g1). If {un} is a sequence in
WLPE (RNY) such that u, — u in WHPE(RN) and Sy (un) = 0 asn — oo,
then for some subsequence, still denoted by {u,}, Vu,(z) = Vu(x) almost ev-
erywhere in RN and J3 ; (u) = 0.

The next theorem is a compactness result on Nehari manifolds. The case for
constant exponent is due to Alves [2].

THEOREM 3.12. Suppose that (p2) holds and let {u,} C My be a sequence
with Joo (tn) = Coo. Then:
(a) up — u in WHPE(RN) or
(b) there is {yn} C ZN with |y,| — +oo and w € WIP@(RN) such that
Wi (1) = Up (2 4 yp) — w in WHPE (RN and Joo(w) = Coo-

PROOF. Similarly to Corollary 3.10, there is u € WP (RN) and a sub-
sequence of {u,}, still denoted as {u,}, such that u, — u in WHPE(RN).
Applying Ekeland’s variational principle, we can assume that

(3.16) J!(up) — T Bl (un) = 0,(1),

where (7,,) C R and E(w) = J_(w)w, for any w € WP@)(RN),

Since {un} C My, (3.16) leads to 7, EL (un )un = 0,(1). Next, we will show
that there exists n > 0 such that
(3.17) |E. (up)u,| >n for all n € N.

Indeed, first we claim that there exists 79 > 0 satisfying ||u| > no for any
u € M. Suppose, by contradiction, that the claim is false. Then, there is
{vn} C M such that ||v,|| — 0 as n — oco. Since {v,} C Moo, we derive

J0velr® + @) = [ o).
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On the other hand, using the fact that ||v,| < 1 for n large enough, it follows
from Propositions 2.1 and 2.7,

[onllP* < Cmax{[lon [, [[on |} = Clloa]™,

leading to (1/C)Y("~=P+) < |jv,||, which is absurd. Therefore, by Proposi-
tion 2.7, there is ¢ > 0 such that pj(u) > ¢, u € My. By the definition of
Eoo(u),

E(un)un < py / (VP + fu[P@) — / ot 7

= (pr = 72) [ (VP [, )
= (p+ —7r=)p1(un) < (p+ —7-)s,
proving (3.17). Now, combining (3.16) and (3.17), we see that 7, — 0, and so,
Joo(tp) = coo and  J_(uy,) — 0.
Next, we will study the following possibilities: u # 0 or v = 0.

CASE 1. uw # 0. Similarly to Theorem 3.11, it follows that the below limits
are valid for some subsequence:

o u,(z) = u(r) and Vu,(z) — Vu(x) almost everywhere in RY,
. / |V (2) [P 2V, () Vo — / |Vu(z)|P®)~2Vu(z) Vo,

. /\un|p(m)_2unv—>/|u\p(”3)_2unv,
o /\un|r(“”)_2unv—>/\u|r(w)_2uv

for any v € WP (RN). Consequently, u is a critical point of J,,. By Fatou’s
lemma, it is easy to check that

Coo S Joo(tt) = Joo(u) — T%Jéo(u)u

=[G =) (o) ] (52 =
< hnrglor.}f{ (1) - T_>(Wn|p<m> n |un|p<z))+/<i _ T(lx)>unr<z)}

= hmlnf{ oo (Un) — —J (un)un} = Coo-

n—oo

Hence,

tim [V + ) = [ (907 4 ap),

n—oo

implying that u, — u in WHP@) (RN),
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CASE 2. u = 0. In this case, we claim that there are R, ¢ > 0 and {y,} C RV
satisfying

(3.18) limsup/ |un [P > €.
BR(yn)

n—oo

If the claim is false, we must have

limsup sup / |un |P®) = 0.
Br(y)

n—oo yeRN

Thus, by a Lions type result for variable exponent proved in [21, Lemma 3.1],
U, — 0 in L*@(RN), for any s € C(RY) with p < s < p*.
Recalling J._(uy)u, = 0,(1), the last limit yields

/ IV [P + Ju, [P®)) = 0, (1),

or, equivalently, u, — 0 in Wl’p(‘”)(RN), leading to coo = 0, which is absurd.
This way, (3.18) is true. By a routine argument, we can assume that y, € Z~
and |y,| — 00 as n — oco. Setting wy, () = un(z + ¥, ), and using the fact that
p and 7 are ZN-periodic, a change of variable gives

Joo(wn) = Jo(un) and ”J(;c(wn)” = ||J</>o(un)Ha

showing that {w,} is a sequence (PS)._ for Jo. If w € WHP@)(RN) denotes
the weak limit of {w,,}, from (3.18),

showing that w # 0.
Repeating the same argument of the first case for the sequence {w,}, we
deduce that w, — w in WHPE(RN), w € My, and Joo (w) = Coo- O

Our next result will be very useful in the study of the compactness of some
functionals.

LEMMA 3.13. Letu € W) (RYN) be a nontrivial critical point of Ik Then,
there exists a constant M = M (k) > 0, independent of A, such that

I (u) > _M()\p+/(p+*q—) + )\p—/(p—*q+))_

ProOOF. By hypothesis, J/’\Jc(u)u = 0. Arguing as in the proof of Lemma 3.7,
if ||u|| > 1, then

1 1 1 1
Ir(u) = < - ) [ulP~ = ( - >2A||gklle<x>Kq+llullq*~
P+ q r—
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Applying Young’s inequality with p; = p_ /¢4 and ps = p_/(p— — q+), we obtain

1 1 1 1
INOE ( - ) - — ( - ) Jul-
b+ T q—- -

1 1
- (= - )@@ lag K-
where s )
_ q+/(P——a+
Ci(e) = =9+ <c1+> _
[ Ep_
Choosing
) G
e=—— — —_— - —
q- - by T
we get
1 1 atyp—/(p-—ay)
Iap(u) > — R C1(e) 2| gkl KT )P-/1P= 79+
Analogously, if ||u|| < 1, we will get
11 a1 yp+ /(P4 —a-)
Ing(u) > — — C2(e)(2A||gk lo o) KT )P/ 0700
where i )
. q-/(p+—q-
Cole) = P8 (q> .
D+ Ep+

Therefore, Jy (u) > —M (AP+/(P+=0-) 4 \p-/(P-=0+)) with
M = <1 — 1> (2K @+ )P=/(P-=P+)

-max{Cy (&) gx |5 P, Ca(e) e B LPH Y. O

The next result is an important step to prove the existence of solutions,
because it establishes the behavior of the (PS) sequences of functional Jj .

LEMMA 3.14. Let {v,} be a (PS), sequence for the functional Jy j, with v, —
v in WHPE(RN). Then

(3.19) Iaie(Wn) = Jo(wn) = Ixk(v) = on(1),
(3.20) 174 1 (00) — T (wa) = Th (0} = on(1),
where w, = v, — .
PROOF. Similarly to Theorem 3.11, the below limits occur
Vun(z) = Vo(z) and wv,(z) = v(z) ae. in RY.
Then, by Proposition 2.4,
In k(o) = Jok(wn) + Ixk(v) + 0, (1),
showing (3.19). Equality (3.20) follows from Propositions 2.5 and 2.6. O
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The proof of the next result follows the same steps found in [31], and so, it
will be omitted.

LEMMA 3.15.
(a) There exists a (PS)a, , sequence in My for Jx i;
(b) there exists a (PS)a;k sequence in M;\rk for Jx k;

(c) there exists a (PS) sequence in My ;. for Jy .

5k
4. Existence of a ground state solution

The first lemma in this section establishes the interval where the functional
Ji k satisfies the Palais—Smale condition and its statement is the following.

LEMMA 4.1. Under assumptions (g1) and (f1), if 0 < A < Ay, then the
functional Jy , satisfies the (PS)q condition for

d<csp, — M()\p+/(p+*q—) + )\p—/(p—*q+)).

PrROOF. Let {v,} € WHPE(RN) be a (PS)y sequence for the functional
Jae with d < cp — M(AP+/(P+=0=) 4 \p=/(P-=2+)) By Lemma 3.10, {v,} is
a bounded sequence in WP (RN), and so, for some subsequence, still denoted
by {vn}, vp = v in WEPE(RN), for some v € WHPE(RN). Since J5 ,,(v) = 0
and Jy x(v) > 0, from (3.19)-(3.20), wy, = v, — v is a (PS)4« sequence for Jy x,
with d* =d — J)\,k(v) < cCf..-

CrAaiMm 4.2. There is R > 0 such that

limsup sup / Jw,, [P@) = 0.
Br(y)

n—oo yeRN

Assuming by a moment the claim, we have

/\wn|T(”) 0.

On the other hand, by (3.20), we know that Jj ; (w,) = 0,(1), then

/(|an|p(m) + |wn|p(r)) = 0, (1),
showing that w, — 0 in WHPE)/(RN),
PrROOF OF CLAIM 4.2. If the claim is not true, for each R > 0 given, we
find n > 0 and {y,} C Z" verifying
limsup/ Jw, [P@) > > 0.
BR(yn)

n— oo

Once w, — 0 in WP@) (RN) it follows that {y,} is an unbounded sequence.
Setting Wy, = wy (- + yn), we have that {w,} is also a (PS)4~ sequence for Jy 1,
and so, it must be bounded. Then, there are w € WP (RN) and a subsequence
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of {@, }, still denoted as {iw@, }, such that @, — w € WP (RN)\{0}. Moreover,
since Jj 1 (wn)¢(+ —yn) = on(1) for each ¢ € WrE) (RN it is possible to prove
that Va, (r) — Vw(x) almost everywhere in RY. Therefore,

/(\V{E\p(“”)_QVfﬁng—k |@|p(w)—2{5¢) — /foo|{5|r(ﬂv)—2&7¢)7

from where it follows that w is a weak solution of problem (Py_ ). Consequently,
after some routine calculations,

~ 1 o~ 1
cr, < Jy(w)— Z‘]}w (w)w < lim inf {J&k(wn) - T_Jé’k(wn)wn} —d*

n—00
which is a contradiction. Then, Claim 4.2 is true. O
The next theorem shows both the existence of a ground state and that it lies
in M;\r %
THEOREM 4.3. Assume that (g1) and (f1) hold. Then, there exists 0 < A <Aq,

such that for A € (0,A,) problem (P ) has at least one ground state solution
ug. Moreover, we have that ug € ./\/l;\rk and

an (o) = axy = O‘;\r,k > 7M(/\p+/(p+*q7) + )\pf/(pfftu)).

PrOOF. By Lemma 3.15 (a), there is a minimizing sequence {u,} C M
for Jy  such that Jy (un) = axr +0n(1) and J/’\Jc(un) = 0,(1). Since ¢y >0,
there is 0 < A, < A; such that

arg <0<ecyp, — M()\”/(p*_q*) + )\p*/(p*_‘“)) for any 0 < A < A,.

By Lemma 4.1, there is a subsequence of {u,}, still denoted as {u,}, and ug €
WLpE)(RY) such that u, — ug in WHP@) (RN), Thereby, uo is a solution
of (Pxx) and Jx x(uo) = axk. We assert that ug € M:{k. Otherwise, since
M3, =0 for 0 < X < A, we have ug € Mj ;. Hence

(4.1) / Agi ()] 7@ > 0.

Indeed, if 0 = [ Agg(2)|ug|?™), then

0= [ A @unl +00(1) = [ (F0nP ) +ual®) = [ i@ lunl )+ 0, (1)
Therefore,

axk +on(l) = Jxk(un)

1 gr(z Jr(z
— [ L (15, @ 4, @) A / e / w, [F@)
[ 5 (Tl ) <3 [ £ jun
1 p(z) p(x)y _ A r() r(a)
= ' (lvun| + |un| ) - k() [un| . Jr(@)|un]

q—
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leading to
L1y (2) (2)
g > | — — — | limsup [ (|Vup "™ + |u, [P*))
b+ T neN

which is absurd, because ay ; < 0, showing that (4.1) holds.

By Lemma 3.9 (b), there are numbers ¢+ < ¢~ = 1 such that ttug € M7,
t7ug € My and Iage(tTug) < Iy k(" ug) = Jak(uo) = axk, which is a contra-
diction. Thereby, ug € M}tk and

_M()\p+/(p+*q7) + )\pf/(pfftu)) < Jank(ug) = ang = aj\rk. O
5. Existence of ¢ solutions
In this section, we will show that (P, ) has at least ¢ nontrivial solutions
belonging to M} ;.

5.1. Estimates involving the minimax levels. The main goal of this
subsection is to prove some estimates involving the minimax levels ¢y x, co ks Coo

and cy__. First of all, we recall the inequalities
Iap(w) < Joxp(u) and  Jeo(u) < Jop(u) for all u € WHPE@(RY),
which imply ey, < o and coo < co k-

LEMMA 5.1. The minimaz levels co i, and cy satisfy the inequality co . <cys__ .
Hence, coo < cy._.

PROOF. In a manner analogous to Theorem 3.12, there is U € W1P(@)(RN)
verifying Jy_(U) = ¢y, and J}_(U) = 0. Similar to Lemma 3.9, there exists
t > 0 such that tU € My . Thus,

() (@)
cor < Joo(tU :/— vU[P@ 4 U@ —/—U’"(’”).
i € dooltl) = [ S (VUPD 4 ) - [ T
By (f1), foo < f(z) for all z € RY | and so, fo, < 1. Then,
Co,k<Jf<x(tU)Smfgijfoo(SU):me(U):wa~ (]
In what follows, let us fix pg, g > 0 satisfying:
e B, (a;)N B, (a;) =0fori#jandi,je{l,...,¢0},

¢

b 'Ul BPO (ai) C By, (0)7

1=

L
[ ] KPO/2 = .ngpo/Q(ai).

Furthermore, we define the function Qy: WHPE)(RY) — RN by

J G

/|u|p+ 7

Qr(u) =
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where y: RY — RY is given by
x
x(xz)=z if|jz|<rp and x(z)= roﬁ if |z| > 7.
x
The next two lemmas give important information on the function @) and
the level c.

LEMMA 5.2. There are 69 > 0 and k1 € N such that if u € Moy and
Jok(u) < oo + 00, then Qr(u) € K, /o for k> k.

PRrooF. If the lemma does not occur, there must be 6,, — 0, k, — +o0o and
Up € Mok, satistfying Jor, (un) < Coo +0pn and Qg, (un) & K, /2. Fixing s, > 0
such that s,u, € M, we have that

Coo < Joo(Sntin) < Jok, (Sntn) < max Jo.k, (tun) = Jo i, (un) < Coo + Op.

Hence, {spun} C Moo and Joo(Sptln) = Coo-
Applying Ekeland’s variational principle, we can assume without loss of gen-
erality that {s,u,} C My is a (PS)._ sequence for Jo, that is,

Joo(8ntn) = coo  and  J._(spuy) — 0.
From Theorem 3.12, we must consider the ensuing cases:
1. spuy — U # 0 in WHPE) (RN);

2. there exists {y,} C Z" with |y,| — +oo such that v, (z) = s,u(z + y,)
is convergent in W1HP(#)(RY) for some V € WHPE) (RN)\ {0}.

By a direct computation, we can suppose that s, — s¢ for some sy > 0.
Therefore, without loss of generality, we can assume that

up, > U or v,=u(-+y,) —V in Wl’p(””)(RN).

Case 1. By Lebesgue’s dominated convergence theorem

X (™) fun [P x(0)|U[P+
an (un) = / — / = 0,

/‘un|17+ /|U|P+

implying Qy,, (un) € K, /2 for n large, because 0 € K, /o. However, this a con-

tradiction, because we are supposing Qy,, (un) ¢ K, /2 for all n.

Case 2. Using again Ekeland’s variational principle, we can suppose that
Jo k,, (Un) = 0n(1). Hence, Jg ;. (un)p(- —yn) = 0n(1) for any ¢ € WhrE) (RN),
and so,

(5.1) o0,(1) = / (VR P72V, Vé + |0, [P 20,0)

- / k™Y@ + ) [onl @ 20,6,
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The last limit implies that, for some subsequence, Vv, (z) — VV (x) and v, (z) —
V(x) almost everywhere in RY.

Now, we will study two cases:

(i) |kn71yn| — +009,

(ii) kn tyn — vy, for some y € RV,

If (i) holds, we see that

JUwvre29vee v vpe-2ve) = [ ravre-2ve,

showing that V' is a nontrivial weak solution of problem (P;_ ). Now, combining
the condition f, < 1 with Fatou’s lemma, we get

1
cr. < I (V) =Jp (V) — [J}w(v)v

< lim inf {Joo(un) - 1Jc/>o(un)un} = Cxo)
T

n— oo

or equivalently, cs < ¢, contradicting Lemma 5.1.
Now, if k, 'y, — y for some y € RN, then V is a weak solution of the
following problem:
(Psey) —Ap@yu + [uPD 7 = f(y)|u|" e in RV,
T u € W) (RN,

Repeating the previous arguments, we deduce that

(5.2) Cfy) < Coos

where ¢, is the mountain pass level of the functional J,: WhrE)(RN) - R
given by

Jf(y)(u) — /ﬁﬂvurﬂ(z) 4 |u|P(w)) _ / f((xyiwr(m).

If f(y) < 1, a similar argument explored in the proof of Lemma 5.1 shows that
Cf(y) > Coo, contradicting the inequality (5.2). Thereby, f(y) =1 and y = a; for
some ¢ = 1,...¢. Hence,

/ N T I / @)V

— = Gq,
/|U7L|P+ /|V|p+

implying that Qg, (un) € K, /o for n large, which is a contradiction, since by

assumption Qg, (un) & K, /2- -
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LEMMA 5.3. Let 6 > 0 given in Lemma 5.2 and ks = max{ky,ko}. Then,
there is A* = A*(k) > 0 such that

Qk(u) € Kp0/27 fOT all (U,)\,k) € A)\,k‘ X [O7A*) X ([k37+oo) ON),
where Ay j, := {u € My Ini(u) < coo + 00/2}.
PRrROOF. Observe that

I (w) = Jop(u) — A/ g’“<(5”))u|q<w> for all u € WHPE(RY),
qlx

In what follows, let ¢, > 0 be such that ¢, u € Mg ;. Then,
(5.3) Jo i (tuu) = Iy g (tyu) + /\/ qu((;))(tu)q(z)|u|q(m)

< max J u) + q uld
>0 ’\’k(t ) )\/ q(m) (tu) ‘ | ’

CLAM 5.4. (a) Given A > 0, there is a constant R > 0 such that Ay C
Br(0), for all k > ki and X € [0, A], that is, Ax is a bounded set, where ki was
giwen in Lemma 5.2. Moreover, R is independent of k.

(b) Let u € Ay and t, > 0 be such that t,u € My . Then, given A > 0,
there are C > 0 and ko € N such that

0<t,<C, forall (u,\k)e Ay x[0,A] x ([ke,4+00) NN).

PROOF OF (a). Let u € M © My such that Ixnk(u) < coo + 00/2 for
k > ky. Then,

/(\Vu\p(z) + |u|p(z)) _ )\/gk(x)|u|‘m) _ /fk(x)|u|r(x) -0,
! 5
[ i (7up s+ upe) [ S e - [ Lo <o 1 .

Combining the last two expressions, we obtain

(1 _ 1> / (|vu|p(w) + |u|p(m)) + (1 — 1>>\/gk(x)u|q("”) < Cop + @.
Dy - q- - 2

By previous calculations, we have

1 1 .
( - ) win{]ful*~, [lul?*}
by T
do

1 1
-8 = el K max{ul ) < e + -

q_
Since g4 < p_, it follows that there is R > 0 such that
lul| <R forall (u,\ k) € Ay g x[0,A] x ([k1,+00) NN)

proving (a).
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PRrOOF OF (b). Supposing by contradiction that the lemma does not hold.
Then, there is {u,} C Ay, k, with A, — 0 and k,, — +oo such that ¢, u, €
Moy i, and t,, — oo as n — oo. Without loss of generality, we can assume that
ty, > 1. Since ty, u, € Mok, and foo < f(z) for all z € RY, we derive

(6, [ (TP ) 2 ot [ ",
or equivalently,
(5.4) J (0P @) = fti e [

for n large enough.
Now, we claim that there is 77 > 0 such that

(5.5) /|un\r(z) >, forallneN.

Indeed, arguing by contradiction, there is a subsequence, still denoted by {u,}
such that

/|un|’“(“") =o0,(1) asn— oo.

As u, € M;n,kn C My, .k, , We get

(- = 0) [ (FuaP )+ funP®) = (1 = ) [ fu@lual ™ <0

By item (a), there are positive constants ¢; and ¢y such that ¢; < p1(un) < ca.

Thus,
o [ @l [
-+ < =0,(1)
C1

<
T+ — Q4+ / (|vun|;0(z) + |un‘P(z))

which is a contradiction, proving the claim. Thereby, from inequality (5.4),
p1(uy) = / (|vun|p(w) =+ |un|p(w)) — 400,

implying that {u,} is a unbounded sequence. However, this is impossible, be-
cause by item (a), {u,} is bounded, showing that (b) holds.

By Claim 5.4 (b) and Hdlder’s inequality, it follows from (5.3) that

A x
Jox(tuw) < Iy k(u) + qicq+||gk||@(x)|”u|q( M) /ata)-

Once that u € A 1, we get

]
Jo.k(tute) < oo + 5+ Aczllgi o) 116 llro) ato)-
Using Sobolev’s embedding theorem combined with Claim 5.4 (a), we obtain

%

Jo i (tutt) < Coo + 5

+ Acsllgrllo@) for all u € Ay,
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where c3 is a positive constant. Setting A* := 6o/(2¢3||gk|lo2)) and A € [0,A¥),
we get tyu € Moy and Jo i (t,u) < coo + Jo. Then, by Lemma 5.2, Qg (t,u) €
Ko . Now, it remains to note that Qx(u) = Qg (t,u), to conclude the proof of

lemma. O

From now on, we will use the ensuing notations

[ ] 93\716 = {’LL S M;,k: : |Qk(u) — ai| < PO},
[} 863\7k = {’LL S M;,k : |Qk(u> — ail = PO},
* Ap= Inf I (w),

u€el)

] ﬁ;\k = inf J>\7k(u).
’ uGBGf\Yk

The above numbers are very important in our approach, because we will prove
that there is a (PS) sequence of Jy j associated with each 9§7k fori=1,...,¢
To this end, we need of the following technical result:

LEMMA 5.5. There are 0 < Ay < A* and k > ky such that
Bk < Cro — M()\m/(quf) + /\pf/pfffu)) and B, < gf\k
for all A € [0, Ay) and k > ky.

PROOF. From now on, U € WP (RN) is a ground state solution associated
with (Pw), that is, Joo(U) = coo and J. (U) = 0 (see Theorem 3.12).
For 1 <i </ and k € N, we define the function U,i: RN 5 R by

Ui(z) = U(x — kay).

CLAM 5.6. For alli € {1,...,¢}, we have that

lim sup (sup Ixk (tﬁ,ﬁ)) < Coo.
k——+oco t>0

Indeed, since p,q and r are Z"-periodic, and a; € Z~, making a change of
variable gives

tp(@)
p(z)
—/\/ (k= x—!—az |U\q /fk T+ a;) ()IU\

J,\,k(tﬁé) = / (VUp(m) + |U|p(z)>

Moreover, we know that there exists s = s(k) > 0 such that
max Iak(tUL) = Jan(sUL) > B,

where § was given in Lemma 3.1. By a direct computation, it is possible to
prove that s(k) /4 0 and s(k) /4 oo as k — co. Thus, without loss of generality,



556 C.O. ALvEs — J.L.P. BARREIRO — J.V.A. GONGALVES

we can assume s(k) — sg > 0 as k — oo. Thereby,
[ 5" () (z) 55" ()
1' 7 < plx plT _ . r(x
i (mase T (00) < [ S (0UP 0P = [ fa) 0]

< Joo(s0U) < mgg{Joo(sU) = Joo(U) = Coo-

Consequently, lim sup (sup JA7k(tﬁ)) < oo fori € {1,..., £}, showing the claim.
k—+oo N 120
By Lemma 5.1, there is 0 < Ay < A* such that
Coo < Cf — M()\”/(p*_q*) + )\p*/(”*_‘”)) for any X € [0, Ay).
Choosing 0 < § < &y, we have that
Coo + 0 <y — M(NP+/(P+=02) 4 \P=/(P==04))  for any A € [0, Ay).

Since Qx(U}) — ai as k — oo, then U}, € 6 , for all k large enough. On the
other hand, by Claim 5.6, J) ;(U}) < coo +6/2 holds also for k large enough and
A € [0,A4). This way, there exists ks € N such that

ﬁf\,k < Coo t+ g < cf, — M()\P+/(P+—q—) + /\p—/(p——q+))’

for all X € [0,Ay) and k > ky.
In order to prove the other inequality, we observe that Lemma 5.3 yields
Ink(U}) = oo 4 00/2 for all u € 965 ;,, if A € [0, Ay) and k > k3. Therefore,

Eﬁ\k > Coo + %0, for A € [0,A,) and k > ks.

Fixing ky = max{ks, k4}, we derive that Bg\,k < Ef\,k, for X € [0,Ay) and k > k4.0

LEMMA 5.7. For each 1 < i < {, there exists a (Ps)ﬂi , sequence, {ul,} C 65,
for the functional Jy . ’

ProOOF. By Lemma 5.5, we know that Bf\,k < Bf\k Then, the result follows
adapting the same ideas explored in [31]. O

6. Proof of Theorem 1.1

Let {u,} C 6}, be a (Ps)ﬁi,k sequence in My, for the functional Jyx
given by Lemma 5.7. Since £} , < ¢f.. — M()\m/(p*_q*) + A=/ (P==a0)) py
Lemma 4.1, there is v’ such that ul, — u? in W'P@) (RN). Thus,

ut e 037,6, Jak(u') =B, and J,’\Jg(ui) =0.

Now, we infer that u® # u/ for i # j as 1 < 4,j < £. To see why, it remains to
observe that

Qk(ui) € Bpo(ai) and Qk(uj) € BPo(a’j)'



MULTIPLICITY OF SOLUTIONS OF SOME (QUASILINEAR EQUATIONS IN RN 557

Since By, (a;) N B,y (aj) = 0 for i # j, it follows that u’ # «’ for i # j. From
this, Jy  has at least ¢ critical points in M;k for A € [0,A4) and k > k;. By
Theorem 4.3, it follows that problem (P ;) admits at least ¢ 4+ 1 solutions for
NS [O,Au) and k > ky. U
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